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Usual Bernoulli numbers

The Bernoulli numbers are given by the generating series

n

X X
Bp—=—-—.
Z "nl exp(x) —1

n>0

This can be restated as
exp(x + Bx) — exp(Bx) = x

by using the umbral (symbolic) convention B" = B,,.
By Taylor expansion, one finds

1 if =1
B+r1)—gr={" " "T%
0 else.



Usual Bernoulli numbers

1 if =1
(B + 1)!1 _ Bn — | n 9
0 else.

One can use this equation to compute the Bernoulli numbers :

1,-1/2,1/6,0,—1/30,0,1/42,0, —1/30,0,5/66,0, —691 /2730,
0,7/6,0,—3617/510,0,43867/798,0, —174611/330, . ..

The numbers Byp41 vanish when n > 1.

Rational numbers, with important properties, well-known in
number theory.

Used in the Euler—Maclaurin summation formula.

Related to values of the Riemann zeta function at negative
integers.



Riemann ¢ function

The Riemann ¢ function is defined for s € C with fRe(s) > 1 by

-Y Hl_i

n>1 peP

where the product runs over the set P of prime numbers.

It can be extended to a meromorphic function on C with unique
pole at s = 1.

Euler has computed the values at negative integers :

a-n="2r,

n

for n > 2.



Carlitz g-Bernoulli numbers

Leonard Carlitz has introduced (in 1948) g-analogues of Bernoulli
numbers defined by the initial value 8p = 1 and the formula

1 if n=1,

a(aBf +1)" =8 :{0 i on> 1.

with the convention that 5”7 = §,. This gives the following

fractions
1 q
= 1 = —
Bo=1, p1= o, B2 D03
g = 90-9) 5 _ald' - —2¢° —q+1)
3T 9,050, ! D30, Ps ’

where ®,, are cyclotomic polynomials.



Carlitz g-Bernoulli numbers

Bo=1,B =-1/2, B,=1/6, Bs=0, B4 = —1/30,. ..

1 q q(1—q)
= ]_ = —— = — e
Bo=1, B oy’ B2 D03 B3 ©y030,
8, = 9(¢* —¢* —2¢° —q +1)
‘ Dy P3P, D5

g-analogues : Bernoulli numbers are recovered by letting g = 1.
denominator : a product of cyclotomic polynomials of order
between 2 and n+ 1, with multiplicity at most one. Multiplicity
can be zero (starting with ®3 absent in /37).

numerator : a factor g for n > 2, a factor 1 — g when n > 3 is odd,
and a big (irreducible 7) factor.



Zeroes and poles

Nice pattern, that needs to be explained : many zeros on the circle,
some on the positive real line, a few others

FIGURE: Roots e and poles e of the Carlitz g-Bernoulli number 514



g-Bernoulli numbers are natural.

In the works of Carlitz, the g-Bernoulli numbers have been related
to the g-Eulerian numbers.

They appear more recently in a completely different setting,
involving Lie idempotents in the descent algebras of symmetric
groups, dendriform algebras, pre-Lie algebras, etc.



As coefficients in a sum over rooted trees
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CLAIM : The Carlitz g-Bernoulli numbers are natural objects!

Are they related to some kind of g-analogue of Riemann ¢
function 7



Previous attempts of g-zeta function

One can find articles by many authors on various g-analogues of
the Riemann (-function :

m lvan Cherednik,

m Taekyun Kim

m Neal Koblitz,

m M. Kaneko, N. Kurokawa and M. Wakayama,

m Junya Satoh.

(not an exhaustive list)

They proposed many different functions as g-analogues of (.
BUT : They did not find any simple relationship with Carlitz
g-Bernoulli numbers.

These functions do not have an Eulerian product.



g-analogue is a linear operator

Main Idea

The correct g-analogue of the value (4(s) is not a complex
number, but a linear operator on the vector space of formal power
series in q.

Consider the space C[[q]] of formal power series in q.
For every integer n > 1, define a linear operator F, by

Fa(f(q)) = f(q").

This is some kind of “Frobenius operator”.



Key lemma

Now introduce the g-numbers :

1-q”
= :1 n_l.
[n]q 1—gq +q+ +4q

Let s be any complex number.

CRUCIAL LEMMA

For every integers m and n, one has
1 1 1 1 1
() () - () ()
[m]g [n]g [mn]g, [l [m]

This is a g-analogue of the obvious fact that
tr_ 1 11

msns  (mn)s  nSms’



Definition of g-zeta operators

One can now introduce the linear operator (,4(s) :

Cols) = Z[nl]sa,

n>1

for every s € C.

To ensure convergence, one has to restrict the domain to the space
qC[[q]] of formal power series without constant term.

This operator can be factorised (by using the key lemma) :

_ L
CQ(S) - H(Id [P]ZFP) )

peP

which is the g-analogue of the Eulerian product for ((s).



Rationality at negative integers

For example, consider (4(0) acting on g :

Gq(0)g = Z[nl]anq = an =q/(1-q).

n>1 n>1

Proposition

For every integer j > 0, and every integer n > 0, the formal power
series (q(—n)q’ is a rational fraction, i.e. belongs to Q(q).

This is obvious for n = 0, where one gets ¢/ /(1 — ¢/).



g-analogue of Euler result

Proposition

For every integer j > 0, and every integer n > 0, the formal power
series (q(—n)q' is a rational fraction with a pole at ¢ = 1.

For every every integer n > 2, there holds

Cq(1 = n)(q — (n+1)q°) = B(n).

This formula is a g-analogue of the Euler formula

¢(L = n)(=n) = Bn,

relating Bernoulli numbers and values of { at negative integers.



Higher g-analogues

Taekyun Kim has considered some other g-analogues of Bernoulli
numbers, similar to Carlitz g-Bernoulli numbers. Fix an integer
k > 1. The k' higher g-analogue is defined by By = ﬁ and

1 if n=1,

k n__ pn _
T(ap 1) =5 {0 if n>1

For k =1, they are Carlitz g-Bernoulli numbers.
One can show that they satisfy

Ca(1 = n)(kg" — (n+ Kk)g"™) = B(n).



g-zeta functions from g-zeta operator

One can interpret the g-zeta functions considered by several
authors as

Cq(s)a, Cq(s)qt, Cq(s)a®, Cq(s)qsﬁv Ca(s)g™™ ™, Cq(s)qs_l'

This does not quite fit in our framework of formal power series,
unless the power of g is an integer.



A second variable enters.

One can turn (4(s) into an operator on formal power series in two
variables g and z by extending the “Frobenius operator” by

Fn(f(q,2)) = f(q",2").

Then (4(s) makes sense as an operator on formal power series in q
and z without constant term.

Proposition

For every integer n > 0, the formal power series (4(—n)z is a
rational fraction of g and z, i.e. belongs to Q(q, z).

For example,



The proof is by induction on n using the difference operator

f(q,qz) — f(q,2)

A(f(q.2) = =2

Y

which satisfies
A(Z") = [n]q2"

and therefore sends
Cq(—n)z = (g(—n—1)z.

As A maps fractions to fractions, one gets that every (q(—n)z is in

Q(z, q).



These fractions have been considered before in the study of the
symmetric groups. This is closely related to the original viewpoint
of Carlitz.

Proposition

One has -
maj o deso
Zoesn q Z

[liol—q'z

Cq(=n)z =

where maj, des are the Major index and descent number of
permutations.

The fraction (q(—n)z is therefore a generating function for two
parameters on the symmetric group S,.



General Dirichlet series

The formalism above for the Riemann zeta function can be applied
to any Dirichlet series.

U =2 L =X ik

n>1 n>1

If the Dirichlet series is multiplicative, Lq(s) will have a
factorisation, over the set P of prime numbers, as an operator.
This allows for example to define incomplete operators by
removing a finite number of primes.

Also, for any two Dirichlet series L and L', the operators Lg(s) and
Ly (s) commute (by the key lemma).

But this is not true in general for L,(s) and Ly (t) with s # t.



One can show for L-series associated with Dirichlet characters
that Ly(—n)z is a rational fraction of q and z for every n > 0.

Generating series for these values Ly(—n)z for n > 0 satisfy simple
functional equations.

In a few cases, one can describe the numerator in a combinatorial
way.

For example, in the case of the primitive Dirichlet character of
conductor 4, the fractions Ly(—n)z are related to the
hyperoctahedral groups (Coxeter groups of type B/C)



Eisenstein series

There is also another g-zeta function, considered by Rivoal,
Zudilin, Jouhet & Mosaki and others in transcendence theory :

n
V4
_an 1%

n>1

qul(

where g is taken to be 1.
This is related to the classical Eisenstein series (modular form) Eiy
whose associated Dirichlet series is

(s = k+1)¢(s)

This may suggest to consider

Col =K+ 1)Co(0)7 = Col—k +1) 12—

as a g-analogue of the Eisenstein series.



Relation with Lambert series

A Lambert series is a sum of the following shape

n
Za"liqn'

n>1

This kind of series can be restated, using the associated operator
Ls)=S -2 F
q(s) = Z "
n>1 q

La(0)=—1— = L4(0)¢4(0)q-



g-analogues of polylogarithms

The usual polylogarithm function is defined by

L@ =5

n>1

This can be written as
Cq:l(k)z

And therefore suggest the following (well-known) g-analogue

Cq(k)z

n>1

The g-analogue of £1 has a nice functional equation, analogue of

log(1 — x —y + xy) = log(1 — x) + log(1 — y)



Missing points, open directions

1 : back to g=1

How to deduce the classical results by letting g tends to 17

2 : other explicit values

Find some other examples of closed evaluation (outside Dirichlet
characters)

3 : functional equation, modularity, completed operator

the functional equation for the { operator
or the definition of a nice Archimedean factor
or some kind of g-analogue of modular forms

3 : zeta functions of orders

Understand the relation to genus zeta functions of orders (Louis
Solomon, Marleen Denert)



