On a Conjecture of Phadke and Thakare

Jochen Brüning
Fachbereich Mathematik der Universität München
Theresienstrasse 39
8000 München 2
Federal Republic of Germany
and
Ki Hang Kim and Fred N. Roush
Mathematics Research Group
Alabama State University
Montgomery, Alabama 36101

Submitted by Richard A. Brualdi

Abstract

We prove the connectedness of the set of all nonzero bounded linear operators on a complex Hilbert space having a generalized inverse.

In a recent paper [3] S. V. Phadke and N. K. Thakare conjectured that in a complex Hilbert space H the set of operators having a generalized inverse is not connected. The purpose of this note is to disprove this conjecture. We recall that a bounded linear operator $A \neq 0$ on H is said to have a generalized inverse if there is a bounded linear operator B on H such that

$$
\begin{equation*}
A B A=A . \tag{1}
\end{equation*}
$$

As usual we write $|A|:=\left(A^{*} A\right)^{1 / 2}$ and denote by $s(|A|)$ the support of $|A|$. Then (1) is easily seen to be equivalent to the following condition: there is $C>0$ such that

$$
\begin{equation*}
A^{*} A \geqslant C s(|A|) . \tag{2}
\end{equation*}
$$

The set of all operators with generalized inverse will be denoted by $\mathrm{GI}(H)$.

Theorem. GI(H) is pathwise connected.
Proof. Let $A \neq 0$ be a bounded linear operator on H with generalized inverse, and let $U|A|=A$ be the polar decomposition of A. Then

$$
t \mapsto U((1-t)|A|+t s(|A|)), \quad t \in[0,1]
$$

is a path in $\mathrm{GI}(H)$ in view of (2), connecting A and U. The operators $P:=U U^{*}$ and $Q:=U^{*} U$ are orthogonal projections on H, and we may assume that $\operatorname{dim}\left(\mathrm{l}_{H}-P\right)(H) \leqslant \operatorname{dim}\left(1_{H}-Q\right)(H)$. Now if P is finite, then these dimensions are equal. Consequently, there exists a partial isometry V on H with $V V^{*}=1_{H}-P, V^{*} V=1_{H}-Q$. But then $U+V$ is unitary and can be connected with U through a path in $\mathrm{GI}(H)$, namely

$$
t \mapsto U+t V, \quad t \in[0,1]
$$

Next we assume that P is infinite. Then we can find a partial isometry V on H with $V V^{*}=1_{H}-P$ and $V^{*} V \leqslant 1_{H}-Q$. As before, U can be connected with $U+V$ in $\mathrm{GI}(H)$, so we may assume $P=1_{H}$ from now on. We pick projections P_{1}, P_{2} on H with $P_{1} P_{2}=0, P_{1}+P_{2}=1_{H}$, and $\operatorname{dim} P_{1}(H)=\operatorname{dim} P_{2}(H)$ $=\operatorname{dim} H$. Then the operators $Q_{i}:=U^{*} P_{i} U, i=1,2$, are orthogonal projections, too, satisfying $Q_{1} Q_{2}=0, Q_{1}+Q_{2}=Q$, and $\operatorname{dim} Q_{i}(I I)=\operatorname{dim} P_{i}(H)=$ $\operatorname{dim} H, i=1,2$. But then also $\operatorname{dim}\left(1_{H}-Q_{1}\right)(H)=\operatorname{dim} H$, implying that there is a partial isometry W on H with $W W^{*}=P_{2}$ and $W^{*} W=1_{H}-Q_{1}$. We now define

$$
U(t):= \begin{cases}U Q_{1}+(1-t) U Q_{2}, & t \in[0,1] \\ U Q_{1}+(t-1) W, & t \in[1,2] .\end{cases}
$$

Then $U(0)=U$, and $U(2)$ is again unitary. Moreover, using (2), it follows that $U(t) \in \mathrm{GI}(H)$ for $t \in[0,2]$. Since the set of all invertible bounded linear operators on H is connected [2, p. 70], U can be connected with 1_{H} and the theorem is proved.

We remark that (1) makes sense in an arbitrary W^{*}-algebra. The above statement holds also in this more general case; the details of the proof can be found in [1].

REFERENCES

1 J. Brüning, Über Windungszahlen in endlichen W^{*}-Algebren und verwandte Fragen, Habilitationsschrift, Marburg, 1977.
2 P. R. Halmos, A Hilbert Space Problem Book. Princeton, Van Nostrand, 1967.
3 S. V. Phadke and N. K. Thakare, Gencralized inverses and operator equations, Linear Algebra and Appl. 23:191-199 (1979).

