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ABSTRACT 

We prove the connecteclness of the set of all nonzero bounded linear operators 
on a complex Hilbert space having a generalized inverse. 

In a recent paper [3] S. V. Phadke and N. K. Thakare conjectured that in 
a complex Hilbert space H the set of operators having a generalized inverse 
is not connected. The purpose of this note is to disprove this conjecture. We 
recall that a bounded linear operator A#0 on H is said to have a generalized 
inverse if there is a bounded linear operator B on H such that 

ABA=A. (I) 

As usual we write ]A( : = (A*A)‘i2 and denote by s(]A]) the support of ]A]. 
Then (1) is easily seen to be equivalent to the following condition: there is 
C > 0 such that 

A*A > Cs(lAl). (2) 

The set of all operators with generalized inverse will be denoted by GI(H). 
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THEOREM. GI( H) is p&wise connected. 

Proof. Let A # 0 be a bounded linear operator on H with generalized 
inverse, and let UI A I= A be the polar decomposition of A. Then 

tHU((l- t)(Al+t~(lAJ)), =[0,1], 

is a path in GI(H) in view of (2), connecting A and U. The operators 
P: = UU* and Q : = U* U are orthogonal projections on H, and we may 
assume that dim (1, - P)(H) < dim (1, - Q)(H). Now if P is finite, then these 
dimensions are equal. Consequently, there exists a partial isometry V on H 
with W*=l,-P, V*V=lH-Q. But then U+V is unitary and can be 
connected with U through a path in GI(H), namely 

twu+tv, E[O,l]. 

Next we assume that P is infinite. Then we can find a partial isometry V 
on H with W* = 1, - P and V* V G 1, - Q. As before, U can be connected 
with U+ V in GI(H), so we may assume P= 1, from now on. We pick 
projections P,, Pz on H with P,Pz = 0, P, + Pz = l,, and dim Pl( H) = dimP,( H) 
= dim H. Then the operators Qi : = U*P, U, i = 1,2, are orthogonal projec- 
tions, too, satisfying Q1 QZ = 0, Q1 + Q2 = Q, and dim Qj( H) = dim Pi( H) = 
dim H, i = 1,2. But then also dim (1, - Q,)(H) = dim H, implying that there is 
a partial isometry W on H with WW* = P2 and W* W= 1, - Q1. We now 
define 

u(t):= 
uQ1+(1-t)UQ,, tE[O,l], 

uQ,+(t-1)W tq1,21. 

Then U(0) = U, and U(2) is again unitary. Moreover, using (2), it follows that 
U(t) EGI(H) for t E [0,2]. Since the set of all invertible bounded linear 
operators on H is connected [2, p. 701, U can be connected with 1, and the 
theorem is proved. n 

We remark that (1) makes sense in an arbitrary W*-algebra. The above 
statement holds also in this more general case; the details of the proof can be 
found in [l]. 
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