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Abstract—This paper shows how Hahn moments provide a unified understanding

of the recently introduced Chebyshev and Krawtchouk moments. The two latter

moments can be obtained as particular cases of Hahn moments with the

appropriate parameter settings and this fact implies that Hahn moments

encompass all their properties. The aim of this paper is twofold: 1) To show how

Hahn moments, as a generalization of Chebyshev and Krawtchouk moments, can

be used for global and local feature extraction and 2) to show how Hahn moments

can be incorporated into the framework of normalized convolution to analyze local

structures of irregularly sampled signals.

Index Terms—Hahn polynomials, Hahn moments, discrete orthogonal

polynomials, normalized convolution.
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1 INTRODUCTION

THE notion of discrete orthogonal moments was introduced by
Mukundan et al. [1]. In their paper, the set of Chebyshev moments
was proposed and utilized for image analysis and the advantages
of this particular set of moments are: 1) no numerical approxima-
tion is needed in computing the moments since their moment
kernels are polynomials of discrete variables, i.e., discrete Cheby-
shev polynomials [1] and 2) no spatial domain normalization is
required due to the fact that the domain of the polynomials
matches the discrete domain of the image.

Taking the cue from Mukundan et al.’s work, we introduced the
set of Krawtchouk moments [2]. Krawtchouk moments, like Cheby-
shev moments, belong to the class of discrete orthogonal moments.
However, Krawtchouk moments are local descriptors; this is
different from Chebyshev moments which are global descriptors.
By the term global, it is meant that the features are extracted from the
image as a whole, i.e., giving equal emphasis to all the pixels in the
image. On the contrary, the term local means that the features
extracted are from only a particular portion of the image, i.e., more
emphasis is given to a certain portion or region of the image.

The concern of this paper is to show how Hahn moments [3], [4],
[5] provide a unified understanding of Chebyshev and Krawtchouk
moments, and how this point can be exploited and utilized in the
context of image analysis. The set of Hahn moments becomes
Chebyshev moments or Krawtchouk moments depending on how
the parameters f�1; �1; �2; �2g are set, i.e., Chebyshev and
Krawtchouk moments are particular cases of Hahn moments. A
direct implication of this fact is that Hahn moments encompass all
the properties of both Chebyshev and Krawtchouk moments, and
Hahn moments, in addition, also exhibit intermediate properties
between the extremes set by Chebyshev and Krawtchouk moments.

This makes Hahn moments a unique set of feature descriptors in
their own right. This paper aims to highlight the generalization
property of Hahn moments and to show how this property can be
properly exploited to make Hahn moments a useful set of image
feature descriptors.

The accuracy of Hahn moments as descriptors is assessed by
means of image reconstruction. By inspecting the image recon-
structed from its set of moments, one can determine the number of
moments required to capture the essential characteristics of the
image. To illustrate the global feature extraction capability of Hahn
moments, images are reconstructed with Hahn, Chebyshev,
Zernike, and Legendre moments, and their respective results are
presented. To demonstrate the local feature extraction capability, it
is shown how Hahn moments can be used to extract features from
different locations of an image. To further demonstrate this point, a
simple adaptive image reconstruction scheme is presented to show
how the parameters of Hahn moments can be selected adaptively
based on the image characteristics. The results of these experiments
collectively show that Hahn moments give positive improvements
and has added advantage over the other moments in consideration.

To further demonstrate the usefulness of Hahn moments, it is
also shown how Hahn moments can be incorporated into the
framework of normalized convolution [6] to analyze local structures
of irregularly sampled signals. This is built upon the fact that the set
of Hahn polynomials [7] spans a weighted space defined by the
related weight function, which for the case of Hahn polynomials
resembles the Gaussian function. The weight function serves as a
windowing function which gives higher importance to points at the
center of the neighborhood than points farther away, i.e., the weight
function decreases monotonically toward its tails. Hahn polyno-
mials provide an orthogonal basis in this weighted space, making
analysis a little easier when compared to nonorthogonal basis.

2 MATHEMATICAL BACKGROUND

We first list here some notations and definitions which will be
useful later.

2.1 Notations and Definitions

Definition 2.1 (Pochhammer symbol). The Pochhammer symbol is
defined as

ðaÞk ¼ aðaþ 1Þðaþ 2Þ . . . ðaþ k� 1Þ; ð1Þ
where k ¼ 1; 2; 3; . . . and ðaÞ0 ¼ 1.

Definition 2.2 (Hypergeometric series).

rFs
a1; . . . ; ar
b1; . . . ; bs

����z
� �

¼
X1
k¼0

ða1; . . . ; arÞk
ðb1; . . . ; bsÞk

zk

k!
; ð2Þ

where ða1; . . . ; arÞk ¼ ða1Þk; . . . ; ðarÞk and

ðb1; . . . ; asÞk ¼ ðb1Þk; . . . ; ðbsÞk:

Definition 2.3 (Orthogonality condition). For a set of discrete
orthogonal polynomials fvnðxÞg, n, x ¼ 0; 1; . . . ; N , with weight
wðxÞ and norm �ðnÞ, we have orthogonality condition

XN
x¼0

wðxÞvmðxÞvnðxÞ ¼ �ðnÞ�mn: ð3Þ

Definition 2.4 (Weighted polynomials). For weighted polynomials,
distinguished with an overline and defined as

vnðxÞ ¼
wðxÞ
�ðnÞ

� �1
2

vnðxÞ; ð4Þ
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we have an orthogonal system

XN
x¼0

vmðxÞvnðxÞ ¼ �mn ð5Þ

and it is simple to prove that: jvnðxÞj � 1.

Definition 2.5 (Discrete moments). The discrete moment of order

ðmþ nÞ of a two-dimensional image with intensity function fðx; yÞ,1
x 2 SM�1, y 2 SN�1, Sk ¼ f0; 1; 2; . . . ; kg is defined as

�mn ¼
XM�1

x¼0

XN�1

y¼0

�mnðx; yÞfðx; yÞ; ð6Þ

where �mnðx; yÞ,m 2 SM�1, andn 2 SN�1, are the moment kernel or

basis function of the moment. If the moment kernels are mutually

orthogonal, we call the moments discrete orthogonal moments. In

cases where the kernel is separable, we can express the kernel in two

separate terms

�mnðx; yÞ ¼ �mðxÞ�nðyÞ: ð7Þ

If the basis set is complete, the image is completely characterized by

the total of M �N moments.

Definition 2.6 (Image reconstruction). The image intensity function,

fðx; yÞ, can be reconstructed easily by the linear combination of the set

of moments, f�mng, i.e.,

fðx; yÞ ¼
XM�1

m¼0

XN�1

n¼0

�mn�mnðx:yÞ: ð8Þ

If the order of f�mng is limited to m � mmax, n � nmax, where

mmax �M � 1 and nmax � N � 1, f̂ðx; yÞ is an approximation of

fðx; yÞ

f̂ðx; yÞ ’
Xmmax

m¼0

Xnmax

n¼0

�mn�mnðx; yÞ: ð9Þ

The quadratic error related to this approximation is

�2ðf̂Þ ¼
XM�1

x¼0

XN�1

y¼0

f̂ðx; yÞ � fðx; yÞ
h i2

ð10Þ

¼
XM�1

x¼0

XN�1

y¼0

fðx; yÞ½ �2�
Xmmax

m¼0

Xnmax

n¼0

�mn½ �2: ð11Þ

If the maximum order of f�mng is restricted to ðmþ nÞ � P , where
P �M þN � 2, we have

f̂ðx; yÞ ’
XP
m¼0

Xm
n¼0

�m�n;n�m�n;nðx; yÞ ð12Þ

and the error related to this approximation is

�2ðf̂Þ ¼
XM�1

x¼0

XN�1

y¼0

fðx; yÞ½ �2�
XP
m

Xm
n¼0

�m�n;n
� �2

: ð13Þ

3 CHEBYSHEV, KRAWTCHOUK, AND HAHN MOMENTS

3.1 Definitions

Chebyshev, Krawtchouk, and Hahn moments all have discrete
orthogonal polynomials as their moment kernels. Table 1 gives a
summary of the polynomials, the weights by which the polynomials
can be derived from monomials using Gram-Schmidt orthogonali-
zation [8], the norms, and also the parameters available for each.
Note that, in formulating the moments, we use the weighted
versions of the polynomials and this would give greater numerical
stability as shown in [2]. The polynomials are used in a separable
sense as shown in (7) and for each dimension, one set of polynomials
is used. All the polynomials have support x ¼ 0; 1; . . . ; N .

3.2 Connection of Hahn Moments with Chebyshev and
Krawtchouk Moments

The weighted Hahn, Krawtchouk, and Chebyshev polynomials are
interrelated. If we take � ¼ pt and � ¼ ð1� pÞt (hence, p ¼ �=
ð�þ �Þ, t ¼ �þ �) in weighted Hahn polynomials and let t!1, we
obtain the weighted Krawtchouk polynomials

lim
t!1

hnðx;�; �;NÞ ¼ knðx; p;NÞ: ð14Þ

If we let t! 0 or simply let � ¼ � ¼ 0, we obtain the weighted
Chebyshev polynomials

lim
t!0

hnðx;�; �;NÞ ¼ tnðxÞ: ð15Þ

Therefore, the weighted Hahn polynomials are generalizations of
weighted Krawtchouk and Chebyshev polynomials. This is shown in
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1. For the sake of simplicity, the discrete image intensity function
fðxi; yjÞ is denoted as fðx; yÞ.

TABLE 1
Discrete Orthogonal Moments and Their Respective Kernels, Weights, Norms, and Parameters



Fig. 1 for the zeroth order ðn ¼ 0Þ. As can be seen from the figure, the
weighted Hahn polynomial become increasingly like the weighted
Krawtchouk polynomial when (14) is observed and, on the other
hand, the weighted Chebyshev polynomial when (15) is observed.
The proofs for (14) and (15) can be found in [4]. Hahn moments in
connection with Chebyshev and Krawtchouk moments observe an
identical relationship, but since Hahn moments cater for 2D images,
we have two times the number of parameters: f�1; �1; �2; �2g.

3.3 Global-Local Tradeoff

It should be noted here that the Chebyshev polynomials are in fact

global while Krawtchouk polynomials are local, as can be seen from

Fig. 1. Notice that the values of Chebyshev polynomials are

distributed throughout the whole range of x for all cases as shown

in Fig. 1. Krawtchouk polynomials, on the other hand, have

distributed values, position of which, as we shall see later, can be

controlled by the parameter p. Following the discussion in the

previous section, we can see that Hahn polynomials and, hence,

their moments become more local when the value of t is increased,

and on the other end, more global when t is closer to zero. It can be

proven that, if t� 2N (hence, we can set t ¼ 20N), we can obtain a

sufficiently close approximation.

3.4 Gaussian Approximation

For Np, Nð1� pÞ > 5, and t!1, the weight function of Hahn

polynomials with parameters � ¼ pt and � ¼ ð1� pÞt approxi-

mates the Gaussian function.2 This follows from the fact that when

t!1 the weight function of Hahn polynomials approximates that

of Krawtchouk polynomials (scaled by a multiplicative factor),

which in turn is the probability mass function (PMF) of a binomial

distribution (see Table 1 for the case of Krawtchouk polynomials),

and it is well known that the PMF of a binomial distribution

approximates the probability density function (PDF) of a Gaussian

distribution when Np, Nð1� pÞ > 5. The approximated Gaussian

distribution has mean3 � ¼ Np and variance 	2 ¼ Npð1� pÞ.

3.5 Hypergeometric Distribution Approximation

It can be shown that for integer values of �, � and if �, � � N , the

weight function of Hahn polynomials approximates the PMF of a

hypergeometric distribution [9]. This can be shown by noting that

wðx;�; �;NÞ � �

x

	 
 �

N � x

� �
¼ �

x

	 
 t� �
N � x

� �
; ð16Þ

where t ¼ �þ �. The PMF of hypergeometric distribution can be

obtained by dividing the results with t
N

� �
. The hypergeometric

distribution has some properties which can be used to help better

select the values of � and �: mean � ¼ �N
�þ� , mode bð�þ1ÞðNþ1Þ

�þ�þ2 c, and

variance 	2 ¼ ��ð�þ��NÞN
ð�þ�Þ2ð�þ��1Þ . Since �, � � N , the mode and the

variance can be approximated as b�ðNþ1Þ
�þ� c and ��N

ð�þ�Þ2 , respectively.

3.6 Parameter Selection

The region of emphasis of Hahn moments can be controlled by the

parameters4�1¼p1t1, �1 ¼ ð1� p1Þt1, and�2 ¼ p2t2, �2 ¼ ð1� p2Þt2.

From the above discussion, we have seen that the weight function of

Hahn polynomials approaches the PDF of a Gaussian distribution

and hypergeometric distribution under different conditions. One

important thing to note is that the means and modes of these two

distributions have the value5 pN ¼ �N
�þ� . It can in fact be proven6 that

the weight function of Hahn polynomials peaks at b�ðNþ1Þ
�þ� c. We can

utilize this fact to select the parameters of Hahn moments by first

selecting p1 ¼ xc=N and p2 ¼ yc=N based on the center ðxc; ycÞ of the

intended region of emphasis and then setting �1 ¼ p1t1, �1 ¼
ð1� p1Þt1 and �2 ¼ p2t2, �2 ¼ ð1� p2Þt2; the parameters t1 and t2

are determined in a global-local tradeoff fashion as discussed in

Section 3.3, the different values of t1 and t2 permit information to be

extracted from the image in either a global or local sense. When �,

� � N , the smallest area of coverage of Hahn moments is roughly7

the box whose edges are of two standard deviations from the center

ðxc; ycÞ, i.e., the box ðxc � 2	1; xc þ 2	1Þ � ðyc � 2	2; yc þ 2	2Þ, where

	k ¼
�k�kN

ð�k þ �kÞ2

" #1=2

¼ pkð1� pkÞN½ �1=2:

4 EXPERIMENTAL STUDIES

4.1 Global Feature Extraction

Hahn moments can be set into global feature extraction mode by

setting �1 ¼ �1 ¼ �2 ¼ �2 ¼ 0. In this experiment, the Hahn

moments of the image are first calculated and, subsequently, their

image representation power is verified by reconstructing the image

from the moments and measuring the difference between the

original image and the reconstructed image using the Mean Squared

Error (MSE). A set of 100 test images are selected from different

categories of the WBIIS [10] database. The images are converted to

gray-scale format and are each resized to M �N ¼ 128� 128. A

sample image and its reconstructed versions using Hahn moments

are shown in Fig. 2. The average MSE values for Hahn moments

(which are equivalent to Chebyshev moments in this case),

Legendre moments [11], and Zernike moments8 [11], up to order

P (see (12)), are shown in Fig. 3. Note that the reconstruction error

decreases monotonically with the increase of the order as predicted

by (13). When compared to other moments, the results of Hahn
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Fig. 1. The relationship between weighted Hahn, Krawtchouk, and Chebyshev
polynomials. (1) Weighted Krawtchouk polynomial with p ¼ 0:3, (2) Weighted
Chebyshev polynomial, (3a) Weighted Hahn polynomial with � ¼ 0:3, � ¼ 0:7,
(3b) � ¼ 3, � ¼ 7, (3c) � ¼ 30, � ¼ 70, and (3d) � ¼ 300, � ¼ 700. For all cases,
n ¼ 0. Since t0ðx;NÞ ¼ k0ðx; p;NÞ ¼ h0ðx;�; �;NÞ ¼ 1, the lines shown are in fact
scaled versions of the square roots of the respective weight functions.

2. There are other criteria to determine whether the binomial distribution
approximates the Gaussian distribution well enough, but we have chosen
this one for simplicity.

3. The mode and the median share the same value with the mean.

4. We restrict our discussion to cases where �1, �1, �2, and �2 � 0.

5. The term 1 in b�ðNþ1Þ
�þ� c can be taken as a continuity correction term and

its effect diminished as N increases, i.e., �ðNþ1Þ
�þ� � �N

�þ� .

6. By considering the fact that the weight function wðxÞ is maximum at

point x with wðxÞ=wðx� 1Þ � 1 and wðxþ 1Þ=wðxÞ � 1.
7. The coverage grows as the order increases.
8. The images are mapped inside the unit circle.



moments are generally better. The similarity of results between

Hahn (hence, Chebyshev) and Legendre moments is not surprising

and has in fact been explained in [1].

4.2 Local Feature Extraction

Hahn moments can be set into local feature extraction mode by
setting the parameters �1; �1; �2; �2f g > 0. Details on how to set the
parameters of Hahn moments have been provided in Section 3.6.
Fig. 4 shows the reconstruction results of the image Fig. 4a, where
the four different aircrafts are located at the four different quadrants
of the 128� 128 image. Notice that only the features of the location
specified by the respective settings of parameters f�1; �1; �2; �2g are
extracted, as verified by the reconstructed images in Figs. 4e, 4f, 4g,
and 4h. Figs. 4b, 4c, and 4d show the reconstructed images when
Hahn moments are set to global mode (i.e., f�1; �1; �2; �2g ¼ 0).
Notice that, in these cases, a larger number of moments are needed
to extract the characteristics of the original image. Figs. 4i, 4j 4k, and
4l show the Hahn moment kernels for m ¼ n ¼ 1 at different
positions as determined by the parameters.

4.3 Adaptive Feature Extraction

In this section, we show how the set of Hahn moments can be
utilized to adaptively capture information of an image. By
reconstructing the image from the moments, it is shown that the
error of the reconstructed image under this adaptive scheme is
reduced. In order to capture the features of an image adaptively,
the parameters f�1; �1; �2; �2g are set accordingly to the character-
istics of the image. We choose

�1ðfÞ ¼ xct1ðfÞ; �1ðfÞ ¼ ð1� xcÞt1ðfÞ; ð17Þ

�2ðfÞ ¼ yct2ðfÞ; �2ðfÞ ¼ ð1� ycÞt2ðfÞ; ð18Þ

where ðx0; y0Þ 2 ½0; 1� � ½0; 1� is the normalized centroid

xc ¼
1

M � 1

XM�1

x¼0

XN�1

y¼0

xfðx; yÞ
 ! XM�1

x¼0

XN�1

y¼0

fðx; yÞ
 !�1

; ð19Þ

yc ¼
1

N � 1

XM�1

x¼0

XN�1

y¼0

yfðx; yÞ
 ! XM�1

x¼0

XN�1

y¼0

fðx; yÞ
 !�1

: ð20Þ

Parameters t1ðfÞ and t2ðfÞ are to be selected in a global-local

tradeoff manner described as follows: If we let s1ðfÞ and s2ðfÞ be

measures determining the spread of the image object defined as

0 � s1ðfÞ ¼ max jxc � xminj; jxc � xmaxj½ � �M � 1;

0 � s2ðfÞ ¼ max jyc � yminj; jyc � ymaxj½ � � N � 1;
ð21Þ

where

xmin ¼ inffxj9y : fðx; yÞ 6¼ 0g;
xmax ¼ supfxj9y : fðx; yÞ 6¼ 0g;
ymin ¼ inffxj9x : fðx; yÞ 6¼ 0g;
ymax ¼ supfxj9x : fðx; yÞ 6¼ 0g;

ð22Þ

we can let tkðfÞ ¼ akebkskðfÞ, where parameters ak and bk can be

determined by using the following constraints: when s1ðfÞ ¼
2	1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mxcð1� xcÞ

p
, t1ðfÞ ¼ 20M ; when s1ðfÞ ¼M � 1, t1ðfÞ ¼

0:01 � 0; when s2ðfÞ ¼ 2	2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nycð1� ycÞ

p
, t2ðfÞ ¼ 20N ; and

when s2ðfÞ ¼ N � 1, t2ðfÞ ¼ 0:01 � 0.

Some results using this adaptive scheme are shown in Fig. 5. It

can be observed that Hahn moments adapt according to the

location and size of the image object. To further the demonstrate

the effectiveness of this scheme, we position the image object (an

instance is shown in Fig. 5d) at 50 randomly selected locations and

with adaptive Hahn moments extract the relevant information at

the region of interest. The information extracted is again reflected

by image reconstruction and the average MSE values are shown in

Fig. 6. It can be observed that Hahn moments perform significantly

better compared with the other moments in terms of reconstruction
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Fig. 2. Global feature extraction using Hahn moments. (a) Original. (b) P ¼ 20.

(c) P ¼ 40. (d) P ¼ 60.

Fig. 4. Each individual aircraft can be extracted from the combined image (a), size
128� 128, by setting the values of �1, �1, �2, �2 to: (e) �1 ¼ 250, �1 ¼ 750,
�2 ¼ 250, �2 ¼ 750, (f) �1 ¼ 750, �1 ¼ 250, �2 ¼ 250, �2 ¼ 750, (g) �1 ¼ 250,
�1 ¼ 750, �2 ¼ 750, �2 ¼ 250, (h) �1 ¼ 750, �1 ¼ 250, �2 ¼ 750, �2 ¼ 250. The
order is limited to mmax ¼ nmax ¼ 10. (b), (c), and (d) show the cases where global
features are extracted, i.e., �1 ¼ 0, �1 ¼ 0, �2 ¼ 0, �2 ¼ 0. In these cases, orders
subject to (b) mmax ¼ nmax ¼ 10, (c) mmax ¼ nmax ¼ 20, and (d) mmax ¼ nmax ¼ 30
have been used. (i), (j), (k), and (l) show the Hahn moment kernels for m ¼ n ¼ 1
at different positions as determined by the parameters. Images (b), (c), (d), (e), (f),
(g), and (h) are thresholded.

Fig. 3. MSE comparison of images reconstructed using Hahn/Chebyshev,

Legendre, and Zernike moments, respectively.



error. This provides the empirical proof that image information can

be compacted in a lesser number of moment terms if the weight

function is appropriately set to reflect the location of significance of

the image. The weight function related to Hahn moments in this

case gives more weight to the portion of the image which contains

more relevant information and less weight to the portion of the

image with less or discardable information.

5 LOCAL STRUCTURE ANALYSIS

The set of Hahn polynomials forms a complete basis in the weighted

space defined bywðx;�; �;N � 1Þ. Sincewðx;�; �;N � 1Þ, when � ¼
� is a Gaussian like function which peaks in the middle and falls off

toward the sides, Hahn polynomials can be adapted for local image

analysis. The normalized convolution framework developed by

Knutsson and Westin [6] is particularly well-suited for this purpose.

The distinct advantage of normalized convolution is its concept of

Signal Certainty philosophy [6], in which the both the data and the

operator are separated into a signal part and a certainty part. This is

especially useful in cases where the image data being dealt with is

incomplete or is irregularly sampled. Incomplete data can be due to

drop-outs or estimation problems in earlier processing stages. Using

normalized convolution, the missing data can be simply handled by

setting the certainty to zero in the corresponding certainty

description and irregular sampling is handled by setting the

certainty to one in the sampling points and zero elsewhere.

Let f denote the neighborhood of a given point of signal f .

Assuming that the neighborhood is of finite size, f can be taken as an

element of a vector space with finite dimension Cn. Regardless of the

dimensionality of the space, f is represented by an n� 1 column

vector. A set of basis functions, fbigm1 2 Cn, can be chosen to give a

local model for the signal. The set of basis functions can be collected

as the column vectors of a n�m matrix B. In the case where the

basis function are linearly independent with respect to the norm

k 	 kW,9 normalized convolution is at each signal point a question of

finding a least square representation of the neighborhood f :

arg min
r2Cm
kBr� fkw ð23Þ

and the solution of which is given by [6]

r ¼ ðBHW2BÞyBHW2f ; ð24Þ

where ð	ÞH denotes the Hermitian transpose. Signal interpolation

utilizing normalized convolution is simply the process of finding a

local model Br for each signal point and taking the middle point of

the model as the interpolated value. Denoting a and c as the

applicability function and signal certainty,10 respectively, we can let

the n� nmatrices Wa ¼ diagðaÞ and Wc ¼ diagðcÞ, and replace W2

with WaWb. In the current context, the set of 2D Hahn polynomials,

fhmðx;�1; �1;M � 1Þhnðy;�2; �2; N � 1Þg, can be used as the basis

function and the weight function wðx;�1; �1;M � 1Þwðy;�2; �2; N �
1Þ as the applicability function. We demonstrate the application of

this scheme by performing, in the manner used in [6], interpolation

of sparse irregularly sampled test image. The test image11 shown in

Fig. 7d is generated from Fig. 7a by gated white noise with the

threshold chosen so that only 10 percent of the data remains.

Attempts to reconstruct the image using simple smoothing

operation are deemed to fail due to sample density variation, see

Fig. 7b and Fig. 7c. On the other hand, normalized convolution

compensates for the density variation effectively and, hence, gives

far better results, as shown in Fig. 7e and Fig. 7f.

6 CONCLUSION

The concern of this paper is to show how Hahn moments provide a

unified understanding of Chebyshev and Krawtchouk moments,

and how this point can be exploited and utilized in the context of

image analysis. The set of Hahn moments becomes Chebyshev

moments or Krawtchouk moments depending on how the para-

meters f�1; �1; �2; �2g are set, i.e., Chebyshev and Krawtchouk

moments are particular cases of Hahn moments. A direct implication

of this fact is that Hahn moments encompass all the properties of

both Chebyshev and Krawtchouk moments, and Hahn moments, in

addition, also exhibit intermediate properties between the extremes

set by Chebyshev and Krawtchouk moments. This makes Hahn

moments a unique set of feature descriptors in their own right. This

paper aims to highlight the generalization property of Hahn

moments and to show how this property can be properly exploited

to make Hahn moments a useful set of image feature descriptors. In

addition, we have also shown how Hahn moments can be
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Fig. 5. Local feature extraction. Hahn moments adapt according to the location

and size of the image object. (a) and (d) Original images, (b) and (e) reconstructed

images (thresholded), and (c) and (f) moment kernels with m ¼ n ¼ 1. We have

used P ¼ 10 for all cases.

Fig. 6. MSE comparison of images reconstructed using Chebyshev, Legendre,

Zernike, and adaptive Hahn moments, respectively. Note that the values for

Chebyshev and Legendre moments are overlapped.

9. kvkW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv;vÞW

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWv;WvÞ

p
¼ kWvk.

10. Certainty gives the relative importance of the signal values in the
least squares fit, while applicability gives the relative importance of basis
functions and, hence, the points in the neighborhood.

11. We thank Corbis (pro.corbis.com) for this image.



incorporated into the framework of normalized convolution to

analyze local structures of irregularly sampled signals. This is build

upon the fact that the set of Hahn polynomials spans a weighted

space defined by the related weight function, which for the case of

Hahn polynomials resembles the Gaussian function.
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Fig. 7. Image interpolation. (a) Original image used for test. (d) The sampled test
image containing only 10 percent of the original data. (b) Interpolation using
standard convolution using the weight function of Hahn polynomials with �1 ¼ �1 ¼
�2 ¼ �2 ¼ 5 as the smoothing filter. (e) Interpolation using normalized convolution
with the same filter in (b) as applicability function; the zeroth order ðm;nÞ ¼ ð0; 0Þ
2D Hahn polynomial is used. (c) Interpolation using standard convolution with a
more local smoothing filter ð�1 ¼ �1 ¼ �2 ¼ �2 ¼ 50Þ. (f) Normalized convolution
using the same filter in (c) as applicability function and Hahn polynomials of higher
order ðm;nÞ 2 fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð0; 2Þ; ð2; 0Þ; ð1; 1Þg.


