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Abstract: Consider lattice paths in the plane allowing the steps (1,1), (1,-1), and (w,0), for some

nonnegative integer w. For n > 1, let E(n,0) denote the set of paths from (0,0) to (n,0) running strictly above
the x-axis except initially and finally. Generating functions are given for sums of moments of the ordinates of

the lattice points on the paths in E(n,0). In particular, recurrencess are derived for the cardinality, the sum of

the first moments (essentially the area), and the sum of the second moments for paths in E(n,0). These

recurrences unify known results for w= 0, 1, 2, i.e. those for the Dyck (or Catalan), Motzkin, and Schröder
paths, respectively. The sum of the second moments is seen to equal the number of unrestricted paths running

from (0,0) to (0,n-2).
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1.   Introduction: the paths and their moments

Let w be a fixed nonnegative integer. We will consider those lattice paths in the Cartesian plane whose

permitted step types are the up diagonal step (1,1) denoted by U, the down diagonal step (1,-1) denoted

by D, and the horizontal step (w,0) denoted by H. When w= 0, only U-steps and D-steps are permitted.

We weight the steps by assigning 1 to each U-step, 1 to each D-step, and an indeterminate t to each H-step.

The t-weight of a path P, denoted by |P|, is the product of the weights of its steps; and the t-weight of a set

of paths S, denoted by |S|, is the sum of the t-weights of the paths in S.

Often we will suppress the parameter w and the indeterminate t in our notation. Let U(x,y) denote the set of
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all unrestricted lattice paths using the permitted step types and running from (0,0) to (x,y). We define the set

of generalized Motzkin paths, denoted by M(x,y), to be the set of paths in U(x,y) that never run below the

x-axis except initially and perhaps finally. Of particular interest is the set of elevated paths, denoted by

E(x,y), consisting of those paths in M(x,y) that never touch the x-axis except initially and perhaps finally. For

an example, see Figure 1 and the left column of Table 1 which give the four paths in E(5,0) when w = 1.

  

Figure 1: The 4 elevated Motzkin paths of E(5,0), for w = 1, bound a total area of 20 units.

Equivalently the sum of their path ordinates is 20.

Let fn(w) denote |E(n,0) | for n >= 2, with f0(w) = f1(w) = 0. For t = 1, there are three classical sequences

covered by this notation, specifically for w = 0, 1 or 2. When w = 0, there are no horizontal steps and the
paths of E(n,0) are the so-called elevated Dyck (or Catalan) paths; the corresponding sequence (fn(0))n >= 2

= (1, 0, 1, 0, 2, 0, 5, 0, 14, . . . ) is the sequence of (aerated) Catalan numbers. For w = 1 and t = 1,

(fn(1))n >= 2 is the sequence of Motzkin numbers. For w = 2 and t = 1, (fn(2))n >= 2 is the sequence of

(aerated) large Schröder numbers. See Table 2 in Section 7. In 1948, using different indexing, Motzkin [12]

introduced the sequence (fn(1))n >= 2, where fn(1) denotes the number of ways to join n-2 points on a circle

by nonintersecting chords. Donaghey and Shapiro [4] made an early study of this sequence which included

lattice paths equivalent to those of M(n,0) with w= 1.

Consider a path P in E(n,0) as a rectilinear curve. Let (0, P(0)), (1, P(1)), ..., (n, P(n)) be the list of all
lattice points (points with integer coordinates) on the path P. We will refer to the values P(0), P(1), P(2), ...,

P(n) as the path ordinates of P. Define the rth moment of P to be 

The zeroth moment of P equals 1. By the elementary formula for the area of a trapezoid, we see that

 equals the area bounded by the path P and the x-axis.

path contribution contribution contribution contribution

 to f5(1) to g5(1) to total area to h5(1)

UHUDD t 5t/4 5 7t/4

UUHDD t 6t/4 6 10t/4



UUDHD t 5t/4 5 7t/4

UHHHD t3 4t3/4 4 4t3/4

Table 1: This table gives the contributions to f5(1) = 3t+t3, g5(1) = 4t+t3, h5(1) = 6t+t3, and the total area

by the the four paths of E(5,0) for w = 1. 

For fixed w >= 0 and for n >= 2, we define the following sums of t-weighted moments for the path set

E(n,0): 

    

fn(w) = (1)

an(w) = (2)

gn(w) = (3)

hn(w) = (4)

The main results of this paper are the three recurrences for these sequences, given uniformly in equations (5),

(6), and (7), and the generating function for the factorial moments given in Proposition 5. In Section 2 we
state these recurrences, which we then establsh by generating function methods in Sections 3, 4, and 5. In
Section 6 we prove a surprising result relating second moments to central unrestricted numbers. In Section 7

we will give some examples of these sequences.

2.   The recurrences

For any w >= 0, consider the following unified set of recurrences for the sequences, (fn)n >= 2, (gn)n >= 2, and

(hn)n >= 2, which we have defined above in terms of t-weighted elevated paths: 

   

n fn = 4(n-3) fn-2 + (2n - 3 w ) t fn-w - (n - 3 w ) t2 fn-2w, (5)

(n-1)gn = 4(n-3) gn-2 + (2n - 2w-2)tgn-w - (n - 2 w-1)t2 gn-2w, (6)

(n-2)hn = 4(n-3) hn-2 + (2n - w - 4 )thn-w - (n - w - 2)t2 hn-2w. (7)



These recurrences are valid except for certain initial values, as specified in the propositions below. We first

state these recurrences for the known case of elevated Dyck (or Catalan) paths.

Proposition 1.   For w = 0, the sequences (fn(0))n >= 2, (gn(0))n >= 2, and (hn(0))n >= 2 satisfy 

   

n fn(0) = 4(n-3) fn-2(0) (8)

(n-1) gn(0) = 4(n-3) gn-2(0) (9)

(n-2) hn(0) = 4(n-3) hn-2(0) (10)

for n >= 3, subject to the initial conditions that fn(0) = gn(0) = hn(0) = 0 for n < 2 and f2(0) = g2(0) = h2(0)

= 1.

The proof of this Proposition is covered by the proofs of Propositions 2, 3, and 4. Recurrence (8) dates from

about 1758, when Euler [5] recorded it, slightly re-indexed, when he and Segner [14] were considering

counting triangulations of convex polygons. See Section 8. It follows immediately that, for k >= 0,

 
(11)

For w >= 1, we have the following more general result, which in proved in the next section:

Proposition 2.   For w >= 1, the sequence (fn )n >= 2 satisfies recurrence (5) for n > 2w, with initial values

satisfying fn = fn(0) + (n-w-1)t fn-w(0) for n <= 2w.

With an = an(w) denoting the t-weighted area, , the trapezoidal

area formula shows that an = (n-1)gn for all n >= 2. The following result, proved in Section 5, generalizes

one of Kreweras [9] for w = 2 and t = 1.

Proposition 3.   For w >= 1, (gn)n >= 2 satisfies recurrence (6) for n > w + 2, with initial values gn = gn(0)

for n <= w + 2, and gw+2 = gw+2(0) + t. Equivalently, for w >= 1, the sequence (an)n >= 2 satisfies the

recurrence

 

an = 4 an-2 + 2 tan-w - t2an-2w (12)

for n > w + 2, with initial values an = (n-1)gn(0) for n <= w + 2, and aw+2 = (w+1)gw+2(0) + (w+1)t.



We remark that (10) is a well-known recurrence for the central binomial coefficients. In the case when w = 1
with t = 1, recurrence (7) dates from 1764, as Euler [6] proved that the central trinomial coefficients satisfy

this recurrence when appropriately re-indexed. Our knowledge that these central coefficients are solutions to

the recurrences (7) and (10) led to an interesting relationship between second moments and central numbers

of the form |U(n,0)| for arbitrary w. Specifically, in Section 6 we will see that |U(n-2, 0 )| satisfies a
recurrence that is also satisfied by hn(t); thus we have a proof of identity (13) below. The proof of the first

part of the following appears in Section 5.

Proposition 4.   For w >= 1, the sequence (hn)n >= 2 satisfies recurrence (7) for n >= 3, with the initial

values hn = 0 for n < 2 and h2 = 1. Moreover, for any w and for n >= 2,

 

hn = |U(n-2,0)|. (13)

3.   Enumerating restricted paths

Consider the generating function . With the exception of the point path,

each path in M(n,0) either begins with an H-step or immediately leaves the x-axis and then later returns for a

first time. Consequently, with L denoting  and with juxtaposition indicating concatenation,

we have a decomposition that defines L recursively: 

With z marking a horizontal unit and with t marking each H-step, the decomposition yields 

 

M(z) = 1 + tzw M(z) + z2M(z)2, (14)

and hence

 
(15)

Let . Since fn+2 = |M(n,0)|, 



 
(16)

Note that the coefficient of zn both in the power series for F(z) and in the power series for 

must agree for all coefficients fn, except for n = 0 or n = w. Logarithmic differentiation yields 

j+w,k) to (n,0).

By symmetry, R can be matched with a path in E(n-j,k). Let m(j,k) denote |E(j,k)|.

For n >= 2, 

=  

 =  

 =  

 =  

 =  

 =  

With M denoting M(z), we claim that the following string of equations holds: 

   

=  

   

 = (17)



 = (18)

 = (19)

 =  

To establish this string we first note that each path in E(j,k) must depart from each line y = c, for integer c, 0

<= c < k, for a last time. Hence a simple convolution argument shows that the generating function for m(j,k)

satisfies 

 
(20)

This implies (17). Line (18) is a consequence of binomial theorem in the form

To handle the middle fraction in (19) we use (14) twice: 

To handle the last fraction in (19) use the following result derived from formula (15), with

: 



5.   Area and second moments

Setting r = 1 in Proposition 5, we obtain a generating function for sums of the t-weighted areas: 

 

(21)

Then the first part of Proposition 3 follows upon comparing coefficients in (21), rewritten as 

and checking the obvious initial conditions. Recurrence (6) is then immediately derived from (12) by (2) and

(3).

There is an interesting corollary when w = 1. Using partial fractions decomposition, the generating function

(21) yields 

and so, for w = 1 and n >= 2, 

To obtain the generating function for the second moments, , we use the following,



where the constant of integration is checked to be 0: 

 

H(z) =  

 =  

 =  

 =  

 = (22)

Let . From (22), differentiation with respect to z yields 

 runs from 

(0,-2)  to  (n,0) }        (23) <->  U(n,0) -  U(n,2).        (24) To obtain (23), observe that each path   P   in

the set  { P  in  U(n,0) :  P  intersects the line  y=-1}  can be decomposed as P = QR, where Q terminates at

the first intercept of the line y = -1 by the path P. Let Q' denote the reflection of the path Q about the line y =

-1. The matching P = QR with P' =Q'R now defines the bijection indicated in (23). A simple translation yields

(24).

Let u(x,y) denote |U(x,y)|. Since any path to the point (n+1,k) must end with a U, D, or H step, we have 

u(n+1,k) = u(n, k-1) + u(n, k+1) + t u(n-w+1)

and u(n, -1) = u(n, 1). Using (24) and these identities, we obtain 

 

2fn+2 = 2u(n,0) - 2u(n,2)  

 = 4 u(n,0) - 2u(n+1,1) +2 t u(n-w+1,1)  

 = 4 u(n,0) + t u(n-w+2,0)- u(n+2,0) - (t2u(n-2w+2,0)-t u(n-w+2,0))  

 = -u(n+2,0) + 4 u(n,0) + 2 t u(n-w+2,0) -t2 u(n-2w+2,0). (25)

Returning to results (16) and (22), we observe that they imply 

=  



=  

Comparing coefficients yields the mixed recurrence 

 

2fn+2 = - hn+4 + 4 hn+2 + 2t hn-w+4 - t2 hn-2w+4. (26)

But this recurrence for fn and hn has the same form as that for fn and u(n,0) given in (25). Since the initial

conditions agree, we have the second statement of Proposition 4 by induction. Moreover, we have that the

generating function for u(n,0) = |U(n,0)| satisfies 

We have omitted the explicit formulas for fn and hn, which are weighted sums of Catalan and binomial

coefficients, respectively. In light of (13), we can find these sums by counting the ways to insert horizontal

steps into the respective paths.

The first formula of (11) yields the following known relation between the Catalan numbers and the central

binomial numbers. Upon replacing 2k+2 by n in that formula, we find for h = 0, n >= 2 and n even, 

The following gives an analogous result for general w:

Proposition 6.   For n > 2w, 

Proof: One can substitute expressions given by recurrence (7) and (26) into (5), which is valid for n > 2w.

Our substitutions were facilitated using a computer algebra program. Equation (13) then is applied to

complete the proof.

7.   Examples

In Table 2, we record the previously studied, and named, examples satisfying the recurrences in Propositions
1 to 4, along with their reference number from Sloane's On-Line Encyclopedia of Integer Sequences [16].

These examples correspond to sets of elevated paths, (E(n,0) )n >= 2, so in the table n = 2, 3, 4 . . . and k =

1, 2, 3 . . . .



t Sequence Name Sloane

1 fn(0) 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42 aerated Catalan nos.  

1 f2k(0) 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862 Catalan nos. A000108

1 a2k(0) 1, 4, 16, 64, 256, 1024, 4096, 16384 powers of 4 A000302

1 h2k(0) 1, 2, 6, 20, 70, 252, 924, 3432, 12870 central binomial nos. A000984

1 fn(1 ) 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188 Motzkin nos. A001006

2 fn(1 ) 1, 2, 5, 14, 42, 132, 429, 1430, 4862 (lacking initial 1) A000108

3 fn(1 ) 1, 3, 10, 36, 137, 543, 2219, 9285, 39587 (tree-like polyhexes) A002212

4 fn(1 ) 1, 4, 17, 76, 354, 1704, 8421, 42508 (walks on cubic lattice) A005572

1 an(1) 1, 2, 7, 20, 61, 182, 547, 1640, 4921  A014983

1 hn(1 ) 1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139 central trinomial nos. A002426

1 f2k(2) 1, 2, 6, 22, 90, 394, 1806, 8558, 41586 large Schröder A006318

1 a2k(2) 1, 7, 41, 239, 1393, 8119, 47321, 275807  A002315

1 h2k(2) 1, 3, 13, 63, 321, 1683, 8989, 48639 central Delannoy nos. A001850

1 fn(3 ) 1, 0, 1, 1, 2, 3, 6, 10, 20, 36, 72, 136  A005418

1 an(3) 1, 0, 4, 4, 16, 24, 71, 128, 328, 650  A053441

1 hn(3 ) 1, 0, 2, 1, 6, 6, 21, 30, 82, 141, 342, 650  A053442

Table 2

In Table 2, the ``walks on cubic lattice'' entry illustrates one role played by the indeterminate t.

Corresponding to the case w = 1 and t = 4, Guy [7] found fn (mildly re-indexed) to count the walks on a

three-dimensional lattice that use unit steps in all six standard directions (i.e. the positive and negative unit
steps parallel to the three axes), that start at (0,0,0), end on the x-y plane, and never pass beneath that plane.

More generally, for m > 3, w = 1 and t = 2m-1, we find that fn counts the walks of length n-2 on the m-

dimensional integer lattice that use the unit steps in all 2m standard directions, start at the origin, end on the
hyperplane, x1 + ... +xm-1 = 0, and never pass through a lattice point (x1, ... , xm) for which xm < 0. To see

this we identify the unit step in the positive xm direction with the U-step, the unit step in the negative xm

direction with the D-step, and the set of the other 2m-1 steps, none of which affects the distance from the

hyperplane, x1 + ... +xm-1 = 0, with a weighed H-step.

Another example utilizing t is the enumeration of the horizontal steps over all paths in E(n,0). Let fn,k  denote

the number of paths in E(n,0) having k horizontal steps. We find that the generating function for the total

number of horizontal steps on paths having k horizontal steps satisfies 



Consequentially, the total number of horizontal steps is expressible in terms of t-weighted unrestricted paths
as follows: for n >= 0, 

8.   Related Studies

As noted in [8], in the 1730's, Ming An-tu, a Mongolian mathematician, was aware of the Catalan numbers,
(cn)n>=0 = (1, 1, 2, 5, 14, ...), in a non-combinatorial sitting. He discovered several recurrence for these

numbers including the well-known convolution recurrence, cn = c0cn-1 + c1cn-2 + . . . + cn-1c0. In about

1758, Euler [5] and Segner [14] made the first European discovery of these numbers while counting the
triangulations of a convex polygon. They observed that cn-2 is the number of ways to draw non-crossing

diagonals between the vertices of a convex n-gon. Segner recorded and proved the above convolution

recurrence in terms of triangulations of polygons. Euler observed, without giving a proof, that cn = (4n-

2)/(n+1) cn-1, which is essentially (8), and then gave a closed form for cn as a product of ratios that reduces

to a ratio of product as in the first formula of (11).

There are several studies on lattice paths, in addition to those mentioned previously, that have influenced our
results. Barcucci, Pinzani, and Sprugnoli [1] have made a systematic analysis containing recurrences - many

mixed - for the Motzkin paths, i.e. w = 1 and t = 1, involving the sequences for count, central entries (central

trinomial coefficients), and other related statistics. Recently the author [20] has established (5), (6), and (7)
bijectively for Motzkin paths.

Besides Kreweras [9], Bonin, Shapiro, and Simion [2] have considered elevated Schröder paths and the
recurrence (12) for w = 2. For w = 2 the author [18] has employed bijective schema to establish recurrences

(5) and (12); in [19] he has considered (5), (6), and (7) in terms of parallelogram polyominoes. Most recently
for w = 2, Merlini, Sprugnoli, and Verri [11] have given additional proofs for (5) with essentially an arbitrary

t, while Pergola and Pinzani [13] have developed an encoding relating area to path count to obtain (12)

bijectively.

Merlini, Sprugnoli, and Verri [10] have developed generating functions for the total area bounded by lattice

paths where the permitted steps are more general than our U, D, and H. For Dyck paths, Chapman [3] has
considered the generating functions for the sums of path moments and the relationship between the generating

functions for elevated versus non-elevated paths.

Stanley [17] has given an extensive treatment of generalizations of the central entries, |U(n,0)|, under the



name ``diagonals''. In [17] his results for differentiably finite power series relate to our use of the generating

functions  and  of Sections 3 and 5. Correspondingly, he considered polynomially recursive

sequences, for which our sequences (fn), (gn), and (hn) are prime examples.
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