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Let .#*(R"), neN, denote the set of all positive Borel measures on R” having
moments of all orders. We study the following generalization of the classical
moment problem: Given a multisequence {S, = (s;(«)); xe Nj} of (k, k) matrices
with complex entries s5;(a), when does there exist a nonnegative (k, k) matrix
A=(4;) of complex Borel measures 4, on R” such that |4,]| € #*(R") and s, ()=
{x*di,(x) for all e N2 and i, j=1,.., k? € 1987 Academic Press, Inc

INTRODUCTION

The problem formulated above will be called the k-moment problem.
Moment problems of this kind or of a more general type in case n=1
occur (for instance) in [12, 9, and 8]. Obviously, in case k = 1 the problem
reduces to the classical n-dimensional moment problem.

Section 1 contains some preliminaries and some basic definitions needed
in the sequel. In Section 2 we give necessary and sufficient conditions for
the existence of a solution. In Section 3 we define and discuss two concepts
of determinacy for the k-moment problem.

Notation. N, are the nonnegative integers. For o = («,,..., a,) € N§ and
x=(X,m, x,)€R", we let x*:=x3---x2, where x7:=1. &, are the Borel
sets on R". Let 4, denote the unit mass concentrated at x.

The inner product of C* is denoted by (-, -). Let «;=(d,), j=1.... k, be
the standard basis of C*. §,, is the Kronecker symbol. We shall identify the
vector space M(k, C) of all (k, k) matrices with complex entries and the
vector space L(C¥) of all endomorphisms of C* via the basis ¢,, j=1,..., k.
Let 2, be the vector space of all polynomials in x,,..., x,, with complex coef-
ficients, considered as functions from R” into C. We denote by .%, the vec-
tor space of all Borel functions f on R" which grow at most like
polynomials (i.e., there exists a p, € #, such that | f(x)| < P(x) for xe R").
P ROM, and F ® M, are the vector spaces of al (k, k) matrices with
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entries in £, and %,, respectively. We denote by 2}, # .7, (Z,® M;)* and
(#®M,)* the sets of al ped, fe#, (p;)eZ®M, and
(f;) € %, ® M,, respectively, which are nonnegative for all xe R

We refer to [1,10] for the notation and the results concerning the
classical moment problem we use.

1. THE k-MOMENT PROBLEM

(1.1)

Let ke N and ne N. We denote by .#}* (R") the set of all (k, k) matrices
A= (4;) of complex Borel measures 4, on R” such that:

(a) A(M)=(4;(IM)) is a nonnegative matrix for each Me 4,.
(b) |A;leM*(R")forallij=1,., k.

We denote by 4,=3"%_, 4, the tracial measure of 4= (4;). Obviously, (a)
implies that 4;, j=1,.., k, and 4, are positive Borel measures. Moreover, if
(a) is true, then (b) is equivalent to i,e #*(R"). This is an immediate
consequence of Lemma 1.1, For later use we collect some simple and well-

known properties (see [2], V.2) of 4= (4,)e 4 }¥(R") in

LeMMA 1.1. Let A=(4;)e M ¥ (R") and let m,re {1,.., k}.

(1) A, is absolutely continuous with respect to A, A, and A 4. Let
g, denote the Radon—Nikodym derivative of A,,, with respect to A 4.

(ii) (g;) is a nonnegative (k,k) matrix i -ae. and ¥  g,=1
Ay-ae..

(111) |gmr|2<gmmgrr<grr<1 j'A'a'e"
(iv) supp 4,,, Ssupp 4,,, N supp 4,,.

Proof. (i): Since (4,(9M)) is a nonnegative for each Me %,, we have
1A ()] < Ay ()24, ()2 < A ,(M). The absolute continuity follows.

(ii): From (a) we obtain

k k
Y A eh=[ ¥ gut5di,>0 forall

ij=1 M ;i=1

t=(ty,.., t,)€C* and Me B,. Taking ¢ from a countable dense subset of
C* and using that M € 4, is arbitrary, a simple measure-theoretic argument
shows that (g;) is nonnegative 4 4-a.e..

The other assertions follow immediately.

Some converse of the preceding is given in Lemma 1.2. We omit the easy
proof.
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LEmMma 1.2. Suppose Ae M*(R"). Let g;, i,j=1,.,k be Ai-almost
everywhere defined measurable functions on R". Suppose that the matrix (g;)
is nonnegative A-a.e. and Zf: 1 8;=1 A-ae. on R". We define Borel measures
Ay on R" by di,=g,dl for i,j=1..k Then A:=(i,)e. #}(R") and
Ay=4

(12)

A multisequence {S, = (s;(«)); xe N} of matrices S, e M(k, C) is called
a k moment sequence 1f there exists a A= (4;)e.#}F(R") such that
= | x*di;(x)forall e Njand i,j=L,.., k. (All integrals in this paper
are over R".) The latter can also be written as S, = [ x* dA(x) for ae N7, In
this case A=(4;) is called a representing matrix of measures for
{S,;ae NI
. For A=(i,)e #}(R"), we denote by V, the set of all
A=(4;)e #F(R") which represents the same sequence of matrices as A,
that is, | x* di,(x)= | x*di;(x) for xe N7 and i, j=1,.., k.

Similarly as in the theory of the classical moment problem, it is con-
venient to replace {S,; e NJ} by the associated linear mapping & from :#,
into M(k, C). #(p)=(s,(p)) is the (k, k) matrix defined by #(p)=3 a,S,
for p(x)=> a,x*e #,. As already mentioned, we want to identify M(k, C)
and L(C*).

Let ke N and let ¥ be a linear mapping from #, into L(C*). . is called
k-positive if Zw_l (Z(p;) e, j)>0 for all vectors ¢,,.., c,€C* and all
matrices (p;) € (#,® M,)". ¥ is called positive if 3%, | (¥ (p,p,) e, ;)20
for all vectors ¢,,..., ¢, € C* and all p,,..., p, e 2,

2. EXISTENCE OF A SOLUTION

(2.1)

PROPOSITION 2.1.  Suppose that {S,= (s,(«)); xe N3} is a multisequence
of matrices S,e M(k, C). Let ¥ = (s;) be the associated linear mapping of
2, into L(C*). The following statements are equivalent:

(1) {S,,2eNg} is a k-moment sequence.
(i) & is k-positive.
(iil) X5, 95(py) =0 for all (p,)e(A,OM,)".

In the proof of Proposition 2.1 we need

Lemma 2.2, Each matrix (p,)e (@M, )" is a finite sum of (k, k)
matrices of the form (f,-f_j), where f,e %, for j=1..., k.

409:425°2-11
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Proof. Fix xeR" Let h.(x), r=1,.., k, denote the eigenvalues of the
nonnegative (k, k) matrix (p;(x)). By the finite dimensional version of the
spectral theorem, there is a unitary (k, k) matrix (u;(x)) such that
py(x)= Lh () Pu ,,(x) L(x)u,;(x). It is easily seen that the
functions h”zu are in &, for i, j=1,.., k.

Proof of Proposition 2.1. (i) > (ii): Assume that there is a
A=(4,)e 4 ¥ (R") such that s;(a) = [ x* di,;(x) for ae N and i, j= L,.., k.
Let ¢;=(c;,... c4)€C* for ]—1, . k. Suppose (py)E(ZOM,)*. As in

Lemma 1.1, we let g; be the Radon-Nikodym derivative di;/di, for
i,j=1,.., k. Then

Z (y(p” c,,(‘)
ij=1
k

= Y 9m(Py) CaTim

ijmr=1
k

= Z J Z pxj(x)clr jmgmr( )d}'A
=1 myr=1

By Lemma 2.2, it suffices to replace (p;) by a (k, k) matrix (f;f;), where
Sirsfr€%,. In this case the above expression is clearly nonnegative,
because (g,, ) is a nonnegative matrix 1 ,-a.e. by Lemma 1.1, (ii).

(i1) — (i1)’ is obvious, since

(y(‘)ej,ei)zf‘ij(')-

(ii") - (i):

Suppose  that the above condition is fulfilled. Then,
Fl(py)):= ,J  9;5(py) defines a positive linear functional on Z,® M,.
Since (Z,®@ M) * is cofinal in (%,® M,)™", F can be extended to a positive
linear functional on %,® M, which will be again denoted by F. Put
e (f) 1= F((f3,,0,,)) for fe #, and m,r=1,.., k.

We now argue as in the proof of Proposition 4 in [11].

Since the (k, k) matrix (fj?) is in (#®M,)" for fe/
G(f) :=F((f6;))=XF_, 4,;(f) is a positive linear functional on % Hence
there is a measure Ae .#*(R") such that G(f)= | f(x) di(x) for all fe #,
(see, e.g. [4], Chap.8). Take fe #;. For t,.., t,eC, the (k, k) matrix
(ft.1) is in (#,® M,) and hence

k
F(ft,5))= ) o,(f) t,5;=0. (*)

=1
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Consequently, for i,j=1,.., k,
|9,j/(f)| < 9ii(f)]/24,‘j(f)l/2 <au(f)+ ﬂ/j/(f) < ffd/”,.

Writing fe %, as f=(f,—fo)+ifs—/f) with f,..f,e F}, we get
(<2 [1f(x) dA(x) for all fe %, This implies the existence of a
function g, e L*(4) such that s,(f)={fg, dA for fe %, and i, j=1,.., k.

If fe#, then (*) yields I(foJ: 185 1:1,)fdi>0 for arbitrary
L, 1, €C. A routine measure-theoretic argument (as in the proof of
Lemma 1.1, (i1)) shows that (g;) is nonnegative i-a.e. on R". Defining 4,
by A,=g;dAfor i,j=1,., k, we have A:=(1,)e.#¥(R"). By construc-
tion, S, = | x* dA(x) for all xe N which completes the proof.

(2.2)

In case n=1 the conditions in Proposition 2.1 can be weakened.

PROPOSITION 2.3. Suppose that n=1. Let {S,; ae Ny} and & = (1) be
an in Proposition 2.1. The following statements are equivalent:

(i) {S,; aeN?} is a k-moment sequence.
(1) & is positive.
(i) X5_,9:(pp) =0 for all p,,..,p, e,

Proof. Since (p,p)e(#®M,)* for arbitrary p,.,..,p,e%, we
obviously have that (ii) — (iii). Combined with Proposition 2.1. this yields
(i) = (i11). From

(#(- )5/’ ¢;)= "),j/( ")

we see that (iii) — (iii)".

To prove that (iii)’ — (i), it is sufficient to show that (iii)’ — (ii)" because
of Proposition 2.1. Let (p;) be a (k, k) matrix from (#,® M,)*. Then there
exists a (k, k) matrix (g,)e Z,® M, such that (p,)=(q,)g,)* (see, eg.
[5]), thatis, p,=3% | q,q, for i,j=1,.. k.

Therefore, the matrix (p;) is a finite sum of matrices of the form (p7;),
where p,,.., p,€%,. Thus (iii} - (ii)" and the proof is complete.

Remarks. (1) The proof of Proposition2.1 gives the following
generalization of Haviland’s theorem as well. Let & be a closed subset of R”
and let (#,® M, )& denote the set of all (p;)e 2, ® M, which are non-
negative for each xe® If {S,;aeNj} and ¥ =(s,;) are as in
Proposition 2.1, then the following are equivalent:

(i) There exists a representing matrix Ae #}(R") for {S,:
ae NZ} such that supp 1, < K.
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(i) Xk_, (L(py) e ¢)) =0 for all vectors ¢;,..., ¢, € C" and every
(py)e(Z,@M)q .

(iii) 31 9,(py) 20 for every (p;)€(£,@M,){ .

(In the above proof of (i) — (i) we use Haviland’s theorem ([7]) to infer
that supp 1, < K.)

(2) Tt is clear the k-moment problem could be reformulated and
studied in terms of operator theory (that is, simultaneous spectral
resolution of commuting self-adjoint operators in dilation spaces). We do
not consider these aspects in the present paper.

3. DETERMINACY

(3.1)

DErFINITION 3.1. Let {S,=(s;(«)); aeNj} be a k-moment sequence
and let A= (4;)e.#}(R") be a representing matrix of measures for {Sa,
aeN2Y Let m,re{l,. ,k} We say that s,, (") (or the measure 4,,) is
k-determinate if A, =17, for each A= (I U)eﬂ*(lR") with Ae V. {S,;
aeNp} (or A) is called k-determinate if V', is a singleton.

It is clear from the above definition that a k-moment sequence
{S,=(s;(x)); ae NG} (or A=(4;)e #¥(R"))is k-determinate if 5;(-) (or
;) is k-determinate for all i, j= L,..., k.

PROPOSITION 3.1.  Suppose that A= (4;)e # ¥ (R"). If A, is determinate,
then A is k-determinate.

Proof. Let A= (1, )e V 4. That is, we have by definition | p(x) dA;(x) =
jp(x ) dZ,(x) for all pe#, and i, j=1,.., k. In particular, | p(x)dA,(x)=
{ p(x)diz(x)for pe?,. Smce A 4 1s assumed to be determinate, thls implies
Aa=43.

Fix m,re{l,.,k}. As in Lemma 1.1, we denote by g,. and §,, the
Radon-Nikodym derivatives dA,,/di, and di,,/diy, respectively. From
AeV, and A,=A4; we conclude that jp(x)(g,,,,(x) — 8. (x))di,=0 for
all polynomials pe #,. Since 1, is determinate, 2, is dense in L'(1,) [1,
p. 47]. (Though the result is stated in [1] only in case n=1, the proof
applies to any dimension neN.) By Lemma 1.1, (iit), g,,., — £,., € L7(1,).
Therefore, we get g, — &,, =0 A ,-a.e. on R”. This clearly implies 1,,, =1,
1.€., 4,, 18 k-determinate. This completes the proof.

The converse of Proposition 3.1 is not valid. The following examples
shows that 4 =(4;)e .} (R") can be k-determinate if 4, is indeterminate.
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ExaMmpLE 3.1. Let 4,; and A,, be determinate measures from .#*(R")
with disjoint supports such that A:=4,, + 4,, is indeterminate. (The sim-
plest way to fulfill these assumptions is as follows. Let n=1 Take an
indeterminate .4"-extremal measure A=3" ,a,6, on Randset 4,,=«,d,,
and A, =4A—4,,. By [1, p. 115], or [3, Theorem 7], 4, and 4,, are deter-
minate.) Put 4,,=4,,=0. Then 4 :=(4,)e.#*(R") is 2-determinate, but
A,=4 is indeterminate. A,, and A,, are obviously 2-determinate. For
A, nsupp 45, = & and Lemma 1.1, (iv).

(3.2)

Now we discuss the relation between the &-determinacy of
A= (4;)e #F(R") and the determinacy of 4,,..., Ax.

PROPOSITION 3.2.  Suppose A =(4;)e #}¥(R"). Let re {1,.., k|. Suppose
that A,, is determinate. In case n =2 we assume in addition that 2, is dense in
L*(4,,). Then 4,, and 4,, are k-determinate for each me {1,... k}.

If these assumptions are satisfied for all r=1,.., k, then A is k-deter-
minate.

Proof. 1t clearly suffices to prove the first part. Fix me {1,.., k}.

By Lemma 1.1, there are functions g;e L™ (4,) such that di, =g, dA,
for i,j=1,. k. Moreover, by Lemma 1.1, |g, |°<g,.8m<g, 4,-dc.
on R" The function g,.g,' is measurable and 4, -almost everywhere
defined. Since ||g,,1°g,%dA,={|8m|’ g, ' di,<d},<o because of
L€ M*(R"), we have g,.g-'e L*4,,).

Now let ;1'~= (1;)€ V4. Let g; be the corresponding Radon-Nikodym
derivatives d4;/diyz, i,j=1,.., k. Since 4,, is determinate, i,,=A.. By the

preceding we have g,,g.' —&,.8,. '€ L*(4,)= L*Z,). From eV , we get
[ P06 e (x) = [ plx) g, (x) ik

P(X) g (X) g, (x) " dA, (x)

for pe#,. Since i, =1,, this shows that g, g.'—§&,.8." =:h,, is
orthogonal to 2, in L*(4,,). If n=1, then 2, is dense in L*(4,,), since 4,, is
determinate [1]. In case n > 2 this is true by assumption. Hence 4, =0 in
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L*(4,,), i€, &m&, ' =8mé&;" A,-ae. on R™ Therefore, di,,=g,, di, =
gmrg;l dirr :gmrg;l dIrr = dIrr and lm"= Imr' Similarly, Arm = I"m'

Remarks. (1) It seems to be unknown in case n>2 whether the
polynomials are dense in L? if the measure is determinate (see also [6]).
I conjecture that this is not true.

(2) For n=1 Proposition 3.2 shows that A=(i;)e #¥(R") is
k-determinate provided all diagonal measures A,, r=1,., k, are deter-
minate. Again the converse is not valid as the next example shows.

ExXamMPLE 3.2. Let n=1 and k=2 Let {s5,;neN,} be an arbitrary
indeterminate moment sequence of real numbers and let p(z), ze C, be the
corresponding function as defined in [10], p.42. Since {s,} is indeter-
minate, p(z) >0 for all ze C [10, Corollary 2.7, p. 50]. Fix a point x,€ R.
There exists one and only one solution A,;€.#*(R) of the moment
problem {s,; ne Ny} which has the mass p(x,) at x, [10], Corollary 2.4,
p-44]. Define 4, =4, = 45, = p(x,) 6. Clearly, 4=(4,) e .#¥(R).

Recall that 4,, is indeterminate. We now check that A is 2-determinate.
Take a A=(4;)e V. Since n=1 and A,, is determinate, Proposition 3.2
yields A,,=1,,, 4>, =4,; and A,, = 1,,. It remains to prove that A, =1,,.
The measures 4,, 1, and 1,, have the mass p(x,)>0 at x,. Since
Ae /¥ (R), this implies that Z,,({x,})>p(x,). Since AeV,, 1, is a
solution of the moment problem {s,; neN,} as well. Since p(x,) is the
largest mass concentrated at x, for all solutions of this moment problem
[10, Corollary 24], Z,,({xo})=p(x,). By the uniqueness part of
Corollary 2.4 in [10], A,,=4,,.

(3.3)

There is another concept of determinacy which might be useful.

DEFINITION 3.2, Suppose that {S,=(s;(«)); xeNj} is a k-moment
sequence and A =(4;)e 4 F(R") is a representing matrix of measures for
{S,; aeNg}. Let m, re {1,..,k}. We say that s,,.(-) or 4,, is separately
k-determ‘i.nate (with respect to A4)if 4,, =1, for each A = (Z,-j) € V , satisfy-
ing A;= 4, for all i, j such that (i, j) # (m, r) and (i, j) # (r, m).

Obviously, if 4, is k-determinate, then 4, is separately k-determinate
w.r.t 4. That the converse is not true can be seen by the following exam-
ples. We set n=1 and k=2 in both examples.

ExaMmpLE 3.3. Let p be an arbitrary indeterminate measure from
A *(R) which is not V-extremal (that is, u is not an extreme point of V).
Let 4,; and 4,, be measures from V, with disjoint supports. (For instance,
we may take two different N-extremal measures from V,.) Put 1,,=4,,=0
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and A =(4;),;-,,. Then 4, is separately k-determinate, since 4,, and 4,,
have disjoint supports (Lemma 1.1, (iv)). Since p is not V-extremal, 2, is
not dense in L'(u) [1]. Hence there is a nonzero fe L™ (u) such that
{ p(x)f(x) du( ) 0 for all pe #,. We can assume that |f ) <1 p-ae on
R. Define I“ =1y, =u, d1,,=fdu and di,, =fdu. Then, 4=(7,)eV , and
0=4,,%#1,,. This shows that 1,, is not k-determinate.

In the preceding example 4,, and 1,, were not separately k-determinate.
In the next example 4,, and 4,, are separately k-determinate, but not
k-determinate.

ExaMPLE 3.4. Let ue #*(R) be an indeterminate .4 -extremal
measure. Then y is of the form > | a,d, , where a,>0 for neN. Put
An=Ap=A4y=Ap=u and A=(4 l,)u,12 If ,u,eV“, then the (2,2)
matrix for which all entries equal p, is in V. That is, 4,,, 4,5, 45,, and 4,,
are not k-determinate. We show that Z,,, A,,, 45, and 4,, are separately
k-determinate.

We first prove this for 4,,. The proof for 4,, is the same. Suppose that
A=(Z,)eV, and i;=1; for (i,j)#(1,1). Since £,,=7y =7, =p has
positive mass at x, for ne N, 4,, must have positive mass, say b,, at x,,.
Because 4 is a nonnegative matrix, b,a, — a2 >0, that is, b,>a, for ne N.
Since p=3 a,d,. is A -extremal, the mass a,=p(x,) is larger than the
mass concentrated at x, by any other u, e V', [10, Theorem 2.13, p. 60].
Since Z,,€ V,,, it follows that b,=a, for neN and £,,=7,,.

We now show that A,, is separately k-determinate. Suppose that
A=(Z,)eV 4, A =1, and Ly, =Zy,. From supp Z,, Ssupp 4,, nsupp 4.,
(see Lemma 1.1) it follows that 1, =3, 5,0, _withsome b, e C forne N,
Ae . #*(R) gives |b,| <a, for all neN. Combined with 1 e V ,, the latter
implies that u— (1, +1,,)=3,(a,—Re b ») 0, isin .#*(R) and has zero
moments. This clearly ylelds a, —Re b, for neN. From |b,| <a, we get
b,=a, for neN, ie., A, =4, and i, = 1,,.

(3.4)

Arguing as in the proof of Proposition 3.2, we obtain

PROPOSITION 3.3. Let A=(A;)e M¥(R")and re {1,...k}. If #, is dense
in L*(4,,), then 4, and 4,, are separately k-determinate with respect to A
Sfor each me {1,...k}, m#r.

In this opposite direction we have

PROPOSITION 34. Let A= (A;)e M¥(R") and re {1,.., k}. Suppose that
there is a 6 >0 such that
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k k

Y Agm)tg;28 Y 1417 A, (M)
ij=1 j=1

for all t,,.., t,€C and all Borel sets M of R".

If 4,, is not V-extremal, then A, (and 1,,,) is not separately k-determinate
SJor every me {1,...k}, m#vr.

Proof. Since 4,, is not V-extremal, there is a nonzero fe L (4,,) which
is orthogonal to £, in L*(4,,). Fix me {1,..,k}, m#r. Let £>0. We define
a (k, k) matrix A =(I,-j) of measures by di,, :=dA,, +¢efdh,, X,,:=1%,,

~

and ;= 4, otherwise. By the above definiteness assumption, the matrix
A= (4;) becomes nonnegative for sufficiently small ¢>0. Then
Ae #¥(R"). Tt is clear that AeV,. Since f#0 in L*(1,), 4,, is not

separately k-determinate.

Concluding Remarks. A further study of the determinacy seems to be
desirable. Let us mention two questions in this direction.
(1) Is Proposition 3.4 true without the definiteness assumption?

(2) Suppose that 4,y,..., 4 are indeterminate for 4 = (4,) € 4 ¥ (R").
Does it follow that A is not k-determinate? (The answer is obviously “yes”
if 4 is a diagonal matrix.)
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