On a Generalization of the Classical Moment Problem

Konrad Schmüdgen

Sektion Mathematik, Karl-Marx-Universität Leipzig, DDR-7010 Leipzig, German Democratic Republic

Submitted by Ky Fan

Received September 9, 1985

Let $\mathscr{M}^*(\mathbb{R}^n)$, $n \in \mathbb{N}$, denote the set of all positive Borel measures on \mathbb{R}^n having moments of all orders. We study the following generalization of the classical moment problem: Given a multisequence $\{S_x = (s_{ij}(\alpha)); \alpha \in \mathbb{N}_0^n\}$ of (k, k) matrices with complex entries $s_{ij}(\alpha)$, when does there exist a nonnegative (k, k) matrix $A = (\lambda_{ij})$ of complex Borel measures λ_{ij} on \mathbb{R}^n such that $|\lambda_{ij}| \in \mathscr{M}^*(\mathbb{R}^n)$ and $s_{ij}(\alpha) = \int x^x d\lambda_{ij}(x)$ for all $\alpha \in \mathbb{N}_0^n$ and i, j = 1, ..., k? \square 1987 Academic Press, Inc

INTRODUCTION

The problem formulated above will be called the k-moment problem. Moment problems of this kind or of a more general type in case n = 1 occur (for instance) in [12, 9, and 8]. Obviously, in case k = 1 the problem reduces to the classical *n*-dimensional moment problem.

Section 1 contains some preliminaries and some basic definitions needed in the sequel. In Section 2 we give necessary and sufficient conditions for the existence of a solution. In Section 3 we define and discuss two concepts of determinacy for the k-moment problem.

Notation. \mathbb{N}_0 are the nonnegative integers. For $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}_0^n$ and $x = (x_1, ..., x_n) \in \mathbb{R}^n$, we let $x^{\alpha} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, where $x_j^0 := 1$. \mathcal{B}_n are the Borel sets on \mathbb{R}^n . Let δ_x denote the unit mass concentrated at x.

The inner product of \mathbb{C}^k is denoted by (\cdot, \cdot) . Let $e_j = (\delta_{ij}), j = 1,...,k$, be the standard basis of \mathbb{C}^k . δ_{ij} is the Kronecker symbol. We shall identify the vector space $M(k, \mathbb{C})$ of all (k, k) matrices with complex entries and the vector space $L(\mathbb{C}^k)$ of all endomorphisms of \mathbb{C}^k via the basis $e_j, j = 1,...,k$. Let \mathcal{P}_n be the vector space of all polynomials in $x_1,...,x_n$ with complex coefficients, considered as functions from \mathbb{R}^n into \mathbb{C} . We denote by \mathcal{P}_n the vector space of all Borel functions f on \mathbb{R}^n which grow at most like polynomials (i.e., there exists a $p_f \in \mathcal{P}_n$ such that $|f(x)| \leq P_f(x)$ for $x \in \mathbb{R}^n$). $\mathcal{P}_n \otimes M_k$ and $\mathcal{F}_n \otimes M_k$ are the vector spaces of al (k, k) matrices with entries in \mathscr{P}_n and \mathscr{F}_n , respectively. We denote by \mathscr{P}_n^+ , \mathscr{F}_n^+ , $(\mathscr{P}_n \otimes M_k)^+$ and $(\mathscr{F}_n \otimes M_k)^+$ the sets of all $p \in \mathscr{P}_n$, $f \in \mathscr{F}_n$, $(p_{ij}) \in \mathscr{P}_n \otimes M_k$ and $(f_{ij}) \in \mathscr{F}_n \otimes M_k$, respectively, which are nonnegative for all $x \in \mathbb{R}^n$.

We refer to [1, 10] for the notation and the results concerning the classical moment problem we use.

1. The k-Moment Problem

(1.1)

Let $k \in \mathbb{N}$ and $n \in \mathbb{N}$. We denote by $\mathcal{M}_k^*(\mathbb{R}^n)$ the set of all (k, k) matrices $\Lambda = (\lambda_{ij})$ of complex Borel measures λ_{ij} on \mathbb{R}^n such that:

- (a) $\lambda(\mathfrak{M}) = (\lambda_{ii}(\mathfrak{M}))$ is a nonnegative matrix for each $\mathfrak{M} \in \mathscr{B}_n$.
- (b) $|\lambda_{ij}| \in \mathcal{M}^*(\mathbb{R}^n)$ for all i, j = 1, ..., k.

We denote by $\lambda_A = \sum_{i=1}^k \lambda_{ij}$ the tracial measure of $A = (\lambda_{ij})$. Obviously, (a) implies that λ_{ij} , j = 1, ..., k, and λ_A are positive Borel measures. Moreover, if (a) is true, then (b) is equivalent to $\lambda_A \in \mathcal{M}^*(\mathbb{R}^n)$. This is an immediate consequence of Lemma 1.1. For later use we collect some simple and well-known properties (see [2], V.2) of $A = (\lambda_{ij}) \in \mathcal{M}_k^*(\mathbb{R}^n)$ in

LEMMA 1.1. Let $\Lambda = (\lambda_{ii}) \in \mathcal{M}_k^*(\mathbb{R}^n)$ and let $m, r \in \{1, ..., k\}$.

(i) λ_{mr} is absolutely continuous with respect to Λ_{mm} , λ_{rr} , and λ_{Λ} . Let g_{mr} denote the Radon–Nikodym derivative of λ_{mr} with respect to λ_{Λ} .

(ii) (g_{ij}) is a nonnegative (k, k) matrix λ_A -a.e. and $\sum_{j=1}^k g_{jj} = 1$ λ_A -a.e.

(iii)
$$|g_{mr}|^2 \leq g_{mm} g_{rr} \leq g_{rr} \leq 1 \lambda_A - a.e.$$

(iv) $\operatorname{supp} \lambda_{mr} \subseteq \operatorname{supp} \lambda_{mm} \cap \operatorname{supp} \lambda_{rr}$.

Proof. (i): Since $(\lambda_{ij}(\mathfrak{M}))$ is a nonnegative for each $\mathfrak{M} \in \mathscr{B}_n$, we have $|\lambda_{mr}(\mathfrak{M})| \leq \lambda_{mm}(\mathfrak{M})^{1/2} \lambda_{rr}(\mathfrak{M})^{1/2} \leq \lambda_{\mathcal{A}}(\mathfrak{M})$. The absolute continuity follows.

(ii): From (a) we obtain

$$\sum_{i,j=1}^{k} \lambda_{ij}(\mathfrak{M}) t_i \overline{t_j} = \int_{\mathfrak{M}} \sum_{i,j=1}^{k} g_{ij} t_i \overline{t_j} d\lambda_A \ge 0 \quad \text{for all}$$

 $t = (t_1, ..., t_k) \in \mathbb{C}^k$ and $\mathfrak{M} \in \mathscr{B}_n$. Taking t from a countable dense subset of \mathbb{C}^k and using that $\mathfrak{M} \in \mathscr{B}_n$ is arbitrary, a simple measure-theoretic argument shows that (g_{ij}) is nonnegative λ_A -a.e..

The other assertions follow immediately.

Some converse of the preceding is given in Lemma 1.2. We omit the easy proof.

LEMMA 1.2. Suppose $\lambda \in \mathcal{M}^*(\mathbb{R}^n)$. Let g_{ij} , i, j = 1,...,k, be λ -almost everywhere defined measurable functions on \mathbb{R}^n . Suppose that the matrix (g_{ij}) is nonnegative λ -a.e. and $\sum_{j=1}^{k} g_{jj} = 1$ λ -a.e. on \mathbb{R}^n . We define Borel measures λ_{ij} on \mathbb{R}^n by $d\lambda_{ij} = g_{ij} d\lambda$ for i, j = 1,...,k. Then $\Lambda := (\lambda_{ij}) \in \mathcal{M}_k^*(\mathbb{R}^n)$ and $\lambda_A = \lambda$.

(1.2)

A multisequence $\{S_{\alpha} = (s_{ij}(\alpha)); \alpha \in \mathbb{N}_{0}^{n}\}$ of matrices $S_{\alpha} \in M(k, \mathbb{C})$ is called a *k-moment sequence* if there exists a $\Lambda = (\lambda_{ij}) \in \mathcal{M}_{k}^{*}(\mathbb{R}^{n})$ such that $s_{ij}(\alpha) = \int x^{\alpha} d\lambda_{ij}(x)$ for all $\alpha \in \mathbb{N}_{0}^{n}$ and i, j = 1, ..., k. (All integrals in this paper are over \mathbb{R}^{n} .) The latter can also be written as $S_{\alpha} = \int x^{\alpha} d\Lambda(x)$ for $\alpha \in \mathbb{N}_{0}^{n}$. In this case $\Lambda = (\lambda_{ij})$ is called a *representing matrix of measures* for $\{S_{\alpha}; \alpha \in \mathbb{N}_{0}^{n}\}$.

For $\Lambda = (\lambda_{ij}) \in \mathcal{M}_k^*(\mathbb{R}^n)$, we denote by V_A the set of all $\tilde{\Lambda} = (\tilde{\lambda}_{ij}) \in \mathcal{M}_k^*(\mathbb{R}^n)$ which represents the same sequence of matrices as Λ , that is, $\int x^{\alpha} d\lambda_{ij}(x) = \int x^{\alpha} d\tilde{\lambda}_{ij}(x)$ for $\alpha \in \mathbb{N}_0^n$ and i, j = 1, ..., k.

Similarly as in the theory of the classical moment problem, it is convenient to replace $\{S_{\alpha}; \alpha \in \mathbb{N}_{0}^{n}\}$ by the associated linear mapping \mathscr{S} from \mathscr{P}_{n} into $M(k, \mathbb{C})$. $\mathscr{S}(p) \equiv (a_{ij}(p))$ is the (k, k) matrix defined by $\mathscr{S}(p) = \sum a_{\alpha} S_{\alpha}$ for $p(x) = \sum a_{\alpha} x^{\alpha} \in \mathscr{P}_{n}$. As already mentioned, we want to identify $M(k, \mathbb{C})$ and $L(\mathbb{C}^{k})$.

Let $k \in \mathbb{N}$ and let \mathscr{S} be a linear mapping from \mathscr{P}_n into $L(\mathbb{C}^k)$. \mathscr{S} is called *k*-positive if $\sum_{i,j=1}^k (\mathscr{S}(p_{ij}) c_i, c_j) \ge 0$ for all vectors $c_1, ..., c_k \in \mathbb{C}^k$ and all matrices $(p_{ij}) \in (\mathscr{P}_n \otimes M_k)^+$. \mathscr{S} is called positive if $\sum_{i,j=1}^k (\mathscr{S}(p_i \overline{p_j}) c_i, c_j) \ge 0$ for all vectors $c_1, ..., c_k \in \mathbb{C}^k$ and all $p_1, ..., p_k \in \mathscr{P}_n$.

2. EXISTENCE OF A SOLUTION

(2.1)

PROPOSITION 2.1. Suppose that $\{S_{\alpha} = (s_{ij}(\alpha)); \alpha \in \mathbb{N}_0^n\}$ is a multisequence of matrices $S_{\alpha} \in M(k, \mathbb{C})$. Let $\mathscr{S} = (\mathfrak{z}_{ij})$ be the associated linear mapping of \mathscr{P}_n into $L(\mathbb{C}^k)$. The following statements are equivalent:

- (i) $\{S_{\alpha}, \alpha \in \mathbb{N}_{0}^{n}\}$ is a k-moment sequence.
- (ii) *S* is k-positive.
- (iii) $\sum_{i,j=1}^{k} \sigma_{ij}(p_{ij}) \ge 0$ for all $(p_{ij}) \in (\mathscr{P}_n \otimes M_k)^+$.

In the proof of Proposition 2.1 we need

LEMMA 2.2. Each matrix $(p_{ij}) \in (\mathscr{P}_n \otimes M_k)^+$ is a finite sum of (k, k) matrices of the form $(f_i \overline{f_j})$, where $f_j \in \mathscr{F}_n$ for j = 1, ..., k.

Proof. Fix $x \in \mathbb{R}^n$. Let $h_r(x)$, r = 1,...,k, denote the eigenvalues of the nonnegative (k, k) matrix $(p_{ij}(x))$. By the finite dimensional version of the spectral theorem, there is a unitary (k, k) matrix $(u_{ij}(x))$ such that $p_{ij}(x) = \sum_{r=1}^k h_r(x)^{1/2} u_{ri}(x) \cdot \overline{h_r(x)^{1/2}} u_{rj}(x)$. It is easily seen that the functions $h_i^{1/2} u_{ij}$ are in \mathscr{F}_n for i, j = 1,...,k.

Proof of Proposition 2.1. (i) \rightarrow (ii): Assume that there is a $A = (\lambda_{ij}) \in \mathcal{M}_k^*(\mathbb{R}^n)$ such that $s_{ij}(\alpha) = \int x^{\alpha} d\lambda_{ij}(x)$ for $\alpha \in \mathbb{N}_0^n$ and i, j = 1, ..., k. Let $c_j = (c_{j1}, ..., c_{jk}) \in \mathbb{C}^k$ for j = 1, ..., k. Suppose $(p_{ij}) \in (\mathcal{P}_n \otimes M_k)^+$. As in Lemma 1.1, we let g_{ij} be the Radon-Nikodym derivative $d\lambda_{ij}/d\lambda_A$ for i, j = 1, ..., k. Then

$$\sum_{i,j=1}^{k} \left(\mathscr{S}(p_{ij}) c_i, c_j \right)$$
$$= \sum_{i,j,m,r=1}^{k} \mathfrak{s}_{mr}(p_{ij}) c_{ir} \overline{c_{jm}}$$
$$= \sum_{i,j=1}^{k} \int \sum_{m,r=1}^{k} p_{ij}(x) c_{ir} \overline{c_{jm}} g_{mr}(x) d\lambda_A$$

By Lemma 2.2, it suffices to replace (p_{ij}) by a (k, k) matrix $(f_i \overline{f_j})$, where $f_1, ..., f_k \in \mathcal{F}_n$. In this case the above expression is clearly nonnegative, because (g_{mr}) is a nonnegative matrix λ_A -a.e. by Lemma 1.1, (ii).

 $(ii) \rightarrow (ii)'$ is obvious, since

$$(\mathscr{S}(\,\cdot\,)\,e_i,\,e_i)=s_{ii}(\,\cdot\,).$$

 $(ii') \rightarrow (i)$:

Suppose that the above condition is fulfilled. Then, $F((p_{ij})):=\sum_{i,j=1}^{k} \sigma_{ij}(p_{ij})$ defines a positive linear functional on $\mathscr{P}_n \otimes M_k$. Since $(\mathscr{P}_n \otimes M_k)^+$ is cofinal in $(\mathscr{F}_n \otimes M_k)^+$, F can be extended to a positive linear functional on $\mathscr{F}_n \otimes M_k$ which will be again denoted by F. Put $\sigma_{mr}(f):=F((f\delta_{im}\delta_{jr}))$ for $f \in \mathscr{F}_n$ and m, r = 1, ..., k.

We now argue as in the proof of Proposition 4 in [11].

Since the (k, k) matrix $(f_i \overline{f_j})$ is in $(\mathscr{F}_n \otimes M_k)^+$ for $f \in \mathscr{F}_n^+$, $G(f) := F((f\delta_{ij})) = \sum_{j=1}^k \sigma_{ij}(f)$ is a positive linear functional on \mathscr{F}_n . Hence there is a measure $\lambda \in \mathscr{M}^*(\mathbb{R}^n)$ such that $G(f) = \int f(x) d\lambda(x)$ for all $f \in \mathscr{F}_n$ (see, e.g. [4], Chap. 8). Take $f \in \mathscr{F}_n^+$. For $t_1, ..., t_k \in \mathbb{C}$, the (k, k) matrix $(f t_i \overline{t_i})$ is in $(\mathscr{F}_n \otimes M_k)$ and hence

$$F((f t_i \overline{t_j})) = \sum_{i,j=1}^k \sigma_{ij}(f) t_i \overline{t_j} \ge 0.$$
 (*)

Consequently, for i, j = 1, ..., k,

$$|\mathfrak{z}_{ij}(f)| \leq \mathfrak{z}_{ii}(f)^{1/2} \mathfrak{z}_{jj}(f)^{1/2} \leq \mathfrak{z}_{ii}(f) + \mathfrak{z}_{jj}(f) \leq \int f \, d\lambda.$$

Writing $f \in \mathscr{F}_n$ as $f = (f_1 - f_2) + i(f_3 - f_4)$ with $f_1, ..., f_4 \in \mathscr{F}_n^+$, we get $|z_{ij}(f)| \leq 2 \int |f(x)| d\lambda(x)$ for all $f \in \mathscr{F}_n$. This implies the existence of a function $g_{ij} \in L^{\infty}(\lambda)$ such that $z_{ij}(f) = \int fg_{ij} d\lambda$ for $f \in \mathscr{F}_n$ and i, j = 1, ..., k.

If $f \in \mathscr{F}_n^+$, then (*) yields $\int (\sum_{i,j=1}^k g_{ij} t_i \overline{t_j}) f d\lambda \ge 0$ for arbitrary $t_1, ..., t_k \in \mathbb{C}$. A routine measure-theoretic argument (as in the proof of Lemma 1.1, (ii)) shows that (g_{ij}) is nonnegative λ -a.e. on \mathbb{R}^n . Defining λ_{ij} by $\lambda_{ij} = g_{ij} d\lambda$ for i, j = 1, ..., k, we have $\Lambda := (\lambda_{ij}) \in \mathscr{M}_k^*(\mathbb{R}^n)$. By construction, $S_{\alpha} = \int x^{\alpha} d\Lambda(x)$ for all $\alpha \in \mathbb{N}_0^n$ which completes the proof.

(2.2)

In case n = 1 the conditions in Proposition 2.1 can be weakened.

PROPOSITION 2.3. Suppose that n = 1. Let $\{S_{\alpha}; \alpha \in \mathbb{N}_0\}$ and $\mathscr{S} = (\mathfrak{I}_{ij})$ be an in Proposition 2.1. The following statements are equivalent:

- (i) $\{S_{\alpha}; \alpha \in \mathbb{N}\}$ is a k-moment sequence.
- (ii) *S* is positive.
- (iii) $\sum_{i,j=1}^{k} \mathfrak{I}_{ij}(p_i \overline{p_j}) \ge 0$ for all $p_1, \dots, p_k \in \mathcal{P}_n$.

Proof. Since $(p_i \overline{p_j}) \in (\mathscr{P}_n \otimes M_k)^+$ for arbitrary $p_1, ..., p_k \in \mathscr{P}_n$, we obviously have that (ii) \rightarrow (iii). Combined with Proposition 2.1. this yields (i) \rightarrow (iii). From

$$(\mathscr{S}(\,\cdot\,)\,e_i,\,e_i) = s_{ii}(\,\cdot\,)$$

we see that (iii) \rightarrow (iii)'.

To prove that (iii)' \rightarrow (i), it is sufficient to show that (iii)' \rightarrow (ii)' because of Proposition 2.1. Let (p_{ij}) be a (k, k) matrix from $(\mathscr{P}_n \otimes M_k)^+$. Then there exists a (k, k) matrix $(q_{ij}) \in \mathscr{P}_n \otimes M_k$ such that $(p_{ij}) = (q_{ij})(q_{ij})^*$ (see, e.g. [5]), that is, $p_{ij} = \sum_{r=1}^k q_{ir} \overline{q_{jr}}$ for i, j = 1, ..., k.

Therefore, the matrix (p_{ij}) is a finite sum of matrices of the form $(p_i \overline{p_j})$, where $p_1, ..., p_k \in \mathscr{P}_n$. Thus (iii)' \rightarrow (ii)' and the proof is complete.

Remarks. (1) The proof of Proposition 2.1 gives the following generalization of Haviland's theorem as well. Let \Re be a closed subset of \mathbb{R}^n and let $(\mathscr{P}_n \otimes M_k)_{\Re}^+$ denote the set of all $(p_{ij}) \in \mathscr{P}_n \otimes M_k$ which are non-negative for each $x \in \Re$. If $\{S_{\alpha}; \alpha \in \mathbb{N}_0^n\}$ and $\mathscr{S} = (\sigma_{ij})$ are as in Proposition 2.1, then the following are equivalent:

(i) There exists a representing matrix $\Lambda \in \mathcal{M}_k^*(\mathbb{R}^n)$ for $\{S_{\alpha}: \alpha \in \mathbb{N}_0^n\}$ such that supp $\lambda_{\Lambda} \subseteq \Re$.

(ii) $\sum_{i,j=1}^{k} (\mathscr{S}(p_{ij}) c_i, c_j) \ge 0$ for all vectors $c_i, \dots, c_k \in \mathbb{C}^n$ and every $(p_{ij}) \in (\mathscr{P}_n \otimes M_k)_{\Re}^+$. (iii) $\sum_{i,j=1}^{k} \mathcal{I}_{ij}(p_{ij}) \ge 0$ for every $(p_{ij}) \in (\mathscr{P}_n \otimes M_k)_{\Re}^+$.

(In the above proof of (ii)' \rightarrow (i) we use Haviland's theorem ([7]) to infer that supp $\lambda_A \subseteq \Re$.)

(2) It is clear the k-moment problem could be reformulated and studied in terms of operator theory (that is, simultaneous spectral resolution of commuting self-adjoint operators in dilation spaces). We do not consider these aspects in the present paper.

3. Determinacy

(3.1)

DEFINITION 3.1. Let $\{S_{\alpha} = (s_{ij}(\alpha)); \alpha \in \mathbb{N}_{0}^{n}\}$ be a k-moment sequence and let $\Lambda = (\lambda_{ij}) \in \mathcal{M}_{k}^{*}(\mathbb{R}^{n})$ be a representing matrix of measures for $\{S_{\alpha}; \alpha \in \mathbb{N}_{0}^{n}\}$. Let $m, r \in \{1, ..., k\}$. We say that $s_{mr}(\cdot)$ (or the measure λ_{mr}) is k-determinate if $\lambda_{mr} = \tilde{\lambda}_{mr}$ for each $\tilde{\Lambda} = (\tilde{\lambda}_{ij}) \in \mathcal{M}_{k}^{*}(\mathbb{R}^{n})$ with $\tilde{\Lambda} \in V_{\Lambda}$. $\{S_{\alpha}; \alpha \in \mathbb{N}_{0}^{n}\}$ (or Λ) is called k-determinate if V_{Λ} is a singleton.

It is clear from the above definition that a k-moment sequence $\{S_{\alpha} = (s_{ij}(\alpha)); \alpha \in \mathbb{N}_{0}^{n}\}$ (or $\Lambda = (\lambda_{ij}) \in \mathcal{M}_{k}^{*}(\mathbb{R}^{n})$) is k-determinate if $s_{ij}(\cdot)$ (or λ_{ij}) is k-determinate for all i, j = 1, ..., k.

PROPOSITION 3.1. Suppose that $\Lambda = (\lambda_{ij}) \in \mathcal{M}_k^*(\mathbb{R}^n)$. If λ_{Λ} is determinate, then Λ is k-determinate.

Proof. Let $\tilde{A} = (\tilde{\lambda}_{ij}) \in V_A$. That is, we have by definition $\int p(x) d\lambda_{ij}(x) = \int p(x) d\tilde{\lambda}_{ij}(x)$ for all $p \in \mathcal{P}_n$ and i, j = 1, ..., k. In particular, $\int p(x) d\lambda_A(x) = \int p(x) d\lambda_{\tilde{A}}(x)$ for $p \in \mathcal{P}_n$. Since λ_A is assumed to be determinate, this implies $\lambda_A = \lambda_{\tilde{A}}$.

Fix $m, r \in \{1, ..., k\}$. As in Lemma 1.1, we denote by g_{mr} and \tilde{g}_{mr} the Radon-Nikodym derivatives $d\lambda_{mr}/d\lambda_A$ and $d\tilde{\lambda}_{mr}/d\lambda_A$, respectively. From $\tilde{A} \in V_A$ and $\lambda_A = \lambda_{\tilde{A}}$ we conclude that $\int p(x)(g_{mr}(x) - \tilde{g}_{mr}(x)) d\lambda_A = 0$ for all polynomials $p \in \mathcal{P}_n$. Since λ_A is determinate, \mathcal{P}_n is dense in $L^1(\lambda_A)$ [1, p. 47]. (Though the result is stated in [1] only in case n = 1, the proof applies to any dimension $n \in \mathbb{N}$.) By Lemma 1.1, (iii), $g_{mr} - \tilde{g}_{mr} \in L^{\infty}(\lambda_A)$. Therefore, we get $g_{mr} - \tilde{g}_{mr} = 0 \lambda_A$ -a.e. on \mathbb{R}^n . This clearly implies $\lambda_{mr} = \tilde{\lambda}_{mr}$, i.e., λ_{mr} is k-determinate. This completes the proof.

The converse of Proposition 3.1 is not valid. The following examples shows that $\Lambda = (\lambda_{ij}) \in \mathcal{M}_k^*(\mathbb{R}^n)$ can be k-determinate if λ_A is indeterminate.

466

EXAMPLE 3.1. Let λ_{11} and λ_{22} be determinate measures from $\mathscr{M}^*(\mathbb{R}^n)$ with disjoint supports such that $\lambda := \lambda_{11} + \lambda_{22}$ is indeterminate. (The simplest way to fulfill these assumptions is as follows. Let n = 1. Take an indeterminate \mathscr{N} -extremal measure $\lambda = \sum_{n=1}^{\infty} a_n \delta_{x_n}$ on \mathbb{R} and set $\lambda_{11} = a_1 \delta_{x_1}$ and $\lambda_{22} = \lambda - \lambda_{11}$. By [1, p. 115], or [3, Theorem 7], λ_{11} and λ_{22} are determinate.) Put $\lambda_{12} = \lambda_{21} = 0$. Then $\Lambda := (\lambda_{ij}) \in \mathscr{M}^*(\mathbb{R}^n)$ is 2-determinate, but $\lambda_A = \lambda$ is indeterminate. λ_{11} and λ_{22} are obviously 2-determinate. For $\lambda_{12} \cap \text{supp } \lambda_{22} = \varnothing$ and Lemma 1.1, (iv).

(3.2)

Now we discuss the relation between the k-determinacy of $A = (\lambda_{ij}) \in \mathcal{M}_k^*(\mathbb{R}^n)$ and the determinacy of $\lambda_{11}, ..., \lambda_{kk}$.

PROPOSITION 3.2. Suppose $\Lambda = (\lambda_{ij}) \in \mathcal{M}_k^*(\mathbb{R}^n)$. Let $r \in \{1,...,k\}$. Suppose that λ_{rr} is determinate. In case $n \ge 2$ we assume in addition that \mathcal{P}_n is dense in $L^2(\lambda_{rr})$. Then λ_{mr} and λ_{rm} are k-determinate for each $m \in \{1,...,k\}$.

If these assumptions are satisfied for all r = 1,...,k, then Λ is k-determinate.

Proof. It clearly suffices to prove the first part. Fix $m \in \{1, ..., k\}$.

By Lemma 1.1, there are functions $g_{ij} \in L^{\infty}(\lambda_A)$ such that $d\lambda_{ij} = g_{ij} d\lambda_A$ for i, j = 1, ..., k. Moreover, by Lemma 1.1, $|g_{mr}|^2 \leq g_{rr}g_{mm} \leq g_{rr} \lambda_A$ -a.e. on \mathbb{R}^n . The function $g_{mr}g_{rr}^{-1}$ is measurable and λ_{rr} -almost everywhere defined. Since $\int |g_{mr}|^2 g_{rr}^{-2} d\lambda_{rr} = \int |g_{mr}|^2 g_{rr}^{-1} d\lambda_A \leq d\lambda_A < \infty$ because of $\lambda_A \in \mathcal{M}^*(\mathbb{R}^n)$, we have $g_{mr}g_{rr}^{-1} \in L^2(\lambda_{rr})$.

Now let $\tilde{A} = (\tilde{\lambda}_{ij}) \in V_A$. Let \tilde{g}_{ij} be the corresponding Radon-Nikodym derivatives $d\tilde{\lambda}_{ij}/d\lambda_{\bar{A}}$, i, j = 1, ..., k. Since λ_{rr} is determinate, $\lambda_{rr} = \tilde{\lambda}_{rr}$. By the preceding we have $g_{mr}g_{rr}^{-1} - \tilde{g}_{mr}\tilde{g}_{rr}^{-1} \in L^2(\lambda_{rr}) \equiv L^2(\tilde{\lambda}_{rr})$. From $\tilde{A} \in V_A$ we get

$$\int p(x) d\lambda_{mr}(x) = \int p(x) g_{mr}(x) d\lambda_A$$
$$= \int p(x) g_{mr}(x) g_{rr}(x)^{-1} d\lambda_{rr}(x)$$
$$= \int p(x) \tilde{g}_{mr}(x) \tilde{g}_{rr}(x)^{-1} d\tilde{\lambda}_{rr}(x)$$
$$= \int p(x) d\tilde{\lambda}_{mr}(x)$$

for $p \in \mathscr{P}_n$. Since $\lambda_{rr} = \tilde{\lambda}_{rr}$, this shows that $g_{mr}g_{rr}^{-1} - \tilde{g}_{mr}\tilde{g}_{rr}^{-1} = :h_{mr}$ is orthogonal to \mathscr{P}_n in $L^2(\lambda_{rr})$. If n = 1, then \mathscr{P}_n is dense in $L^2(\lambda_{rr})$, since λ_{rr} is determinate [1]. In case $n \ge 2$ this is true by assumption. Hence $h_{mr} = 0$ in

KONRAD SCHMÜDGEN

 $L^{2}(\lambda_{rr})$, i.e., $g_{mr}g_{rr}^{-1} = \tilde{g}_{mr}\tilde{g}_{rr}^{-1} \lambda_{rr}$ -a.e. on \mathbb{R}^{n} . Therefore, $d\lambda_{mr} = g_{mr} d\lambda_{A} = g_{mr}g_{rr}^{-1} d\lambda_{rr} = \tilde{g}_{mr}\tilde{g}_{rr}^{-1} d\lambda_{rr} = d\tilde{\lambda}_{rr}$ and $\lambda_{mr} = \tilde{\lambda}_{mr}$. Similarly, $\lambda_{rm} = \tilde{\lambda}_{rm}$.

Remarks. (1) It seems to be unknown in case $n \ge 2$ whether the polynomials are dense in L^2 if the measure is determinate (see also [6]). I conjecture that this is not true.

(2) For n=1 Proposition 3.2 shows that $\Lambda = (\lambda_{ij}) \in \mathcal{M}_k^*(\mathbb{R}^n)$ is k-determinate provided all diagonal measures λ_{rr} , r = 1,...,k, are determinate. Again the converse is not valid as the next example shows.

EXAMPLE 3.2. Let n = 1 and k = 2. Let $\{s_n; n \in \mathbb{N}_0\}$ be an arbitrary indeterminate moment sequence of real numbers and let $\rho(z), z \in \mathbb{C}$, be the corresponding function as defined in [10], p. 42. Since $\{s_n\}$ is indeterminate, $\rho(z) > 0$ for all $z \in \mathbb{C}$ [10, Corollary 2.7, p. 50]. Fix a point $x_0 \in \mathbb{R}$. There exists one and only one solution $\lambda_{11} \in \mathcal{M}^*(\mathbb{R})$ of the moment problem $\{s_n; n \in \mathbb{N}_0\}$ which has the mass $\rho(x_0)$ at x_0 [10], Corollary 2.4, p. 44]. Define $\lambda_{12} = \lambda_{21} = \lambda_{22} = \rho(x_0) \delta_{x_0}$. Clearly, $\Lambda = (\lambda_{ij}) \in \mathcal{M}_2^*(\mathbb{R})$.

Recall that λ_{11} is indeterminate. We now check that Λ is 2-determinate. Take a $\tilde{\Lambda} = (\tilde{\lambda}_{ij}) \in V_A$. Since n = 1 and λ_{22} is determinate, Proposition 3.2 yields $\lambda_{12} = \tilde{\lambda}_{12}, \lambda_{21} = \tilde{\lambda}_{21}$ and $\lambda_{22} = \tilde{\lambda}_{22}$. It remains to prove that $\lambda_{11} = \tilde{\lambda}_{11}$. The measures $\tilde{\lambda}_{12}, \tilde{\lambda}_{21}$ and $\tilde{\lambda}_{22}$ have the mass $\rho(x_0) > 0$ at x_0 . Since $\tilde{\Lambda} \in \mathcal{M}_2^*(\mathbb{R})$, this implies that $\tilde{\lambda}_{11}(\{x_0\}) \ge \rho(x_0)$. Since $\tilde{\Lambda} \in V_A, \tilde{\lambda}_{11}$ is a solution of the moment problem $\{s_n; n \in \mathbb{N}_0\}$ as well. Since $\rho(x_0)$ is the largest mass concentrated at x_0 for all solutions of this moment problem [10, Corollary 2.4], $\tilde{\lambda}_{11}(\{x_0\}) = \rho(x_0)$. By the uniqueness part of Corollary 2.4 in [10], $\lambda_{11} = \tilde{\lambda}_{11}$.

(3.3)

There is another concept of determinacy which might be useful.

DEFINITION 3.2. Suppose that $\{S_{\alpha} = (s_{ij}(\alpha)); \alpha \in \mathbb{N}_0^n\}$ is a k-moment sequence and $A = (\lambda_{ij}) \in \mathcal{M}_k^*(\mathbb{R}^n)$ is a representing matrix of measures for $\{S_{\alpha}; \alpha \in \mathbb{N}_0^n\}$. Let $m, r \in \{1, ..., k\}$. We say that $s_{mr}(\cdot)$ or λ_{mr} is separately k-determinate (with respect to A) if $\lambda_{mr} = \tilde{\lambda}_{mr}$ for each $\tilde{A} = (\tilde{\lambda}_{ij}) \in V_A$ satisfying $\lambda_{ij} = \tilde{\lambda}_{ij}$ for all i, j such that $(i, j) \neq (m, r)$ and $(i, j) \neq (r, m)$.

Obviously, if λ_{mr} is k-determinate, then λ_{mr} is separately k-determinate w.r.t Λ . That the converse is not true can be seen by the following examples. We set n = 1 and k = 2 in both examples.

EXAMPLE 3.3. Let μ be an arbitrary indeterminate measure from $\mathcal{M}^*(\mathbb{R})$ which is not V-extremal (that is, μ is not an extreme point of V_{μ}). Let λ_{11} and λ_{22} be measures from V_{μ} with disjoint supports. (For instance, we may take two different N-extremal measures from V_{μ} .) Put $\lambda_{12} = \lambda_{21} = 0$

and $\Lambda = (\lambda_{ij})_{i,j=1,2}$. Then λ_{12} is separately k-determinate, since λ_{11} and λ_{22} have disjoint supports (Lemma 1.1, (iv)). Since μ is not V-extremal, \mathscr{P}_n is not dense in $L^1(\mu)$ [1]. Hence there is a nonzero $f \in L^{\infty}(\mu)$ such that $\int p(x) f(x) d\mu(x) = 0$ for all $p \in \mathscr{P}_n$. We can assume that $|f(x)| \leq 1$ μ -a.e. on \mathbb{R} . Define $\tilde{\lambda}_{11} = \tilde{\lambda}_{22} = \mu$, $d\tilde{\lambda}_{12} = f d\mu$ and $d\tilde{\lambda}_{21} = f d\mu$. Then, $\tilde{\Lambda} = (\tilde{\lambda}_{ij}) \in V_A$ and $0 = \lambda_{12} \neq \tilde{\lambda}_{12}$. This shows that λ_{12} is not k-determinate.

In the preceding example λ_{11} and λ_{22} were not separately k-determinate. In the next example λ_{11} and λ_{22} are separately k-determinate, but not k-determinate.

EXAMPLE 3.4. Let $\mu \in \mathcal{M}^*(\mathbb{R})$ be an indeterminate \mathcal{N} -extremal measure. Then μ is of the form $\sum_{n=1}^{\infty} a_n \delta_{x_n}$, where $a_n > 0$ for $n \in \mathbb{N}$. Put $\lambda_{11} = \lambda_{12} = \lambda_{21} = \lambda_{22} = \mu$ and $\Lambda = (\lambda_{ij})_{i,j=1,2}$. If $\mu_1 \in V_{\mu}$, then the (2, 2) matrix for which all entries equal μ_1 is in V_{μ} . That is, $\lambda_{11}, \lambda_{12}, \lambda_{21}$, and λ_{22} are not k-determinate. We show that $\lambda_{11}, \lambda_{12}, \lambda_{21}$, and λ_{22} are separately k-determinate.

We first prove this for λ_{11} . The proof for λ_{22} is the same. Suppose that $\tilde{A} = (\tilde{\lambda}_{ij}) \in V_A$ and $\lambda_{ij} = \tilde{\lambda}_{ij}$ for $(i, j) \neq (1, 1)$. Since $\tilde{\lambda}_{12} = \tilde{\lambda}_{21} = \tilde{\lambda}_{22} = \mu$ has positive mass at x_n for $n \in \mathbb{N}$, $\tilde{\lambda}_{11}$ must have positive mass, say b_n , at x_n . Because \tilde{A} is a nonnegative matrix, $b_n a_n - a_n^2 \ge 0$, that is, $b_n \ge a_n$ for $n \in \mathbb{N}$. Since $\mu = \sum a_n \delta_{x_n}$ is \mathcal{N} -extremal, the mass $a_n = \rho(x_n)$ is larger than the mass concentrated at x_n by any other $\mu_1 \in V_{\mu}$ [10, Theorem 2.13, p. 60]. Since $\tilde{\lambda}_{11} \in V_{\mu}$, it follows that $b_n = a_n$ for $n \in \mathbb{N}$ and $\lambda_{11} = \tilde{\lambda}_{11}$.

We now show that λ_{12} is separately k-determinate. Suppose that $\tilde{A} = (\tilde{\lambda}_{ij}) \in V_A$, $\lambda_{11} = \tilde{\lambda}_{11}$ and $\lambda_{22} = \tilde{\lambda}_{22}$. From supp $\tilde{\lambda}_{12} \subseteq$ supp $\tilde{\lambda}_{11} \cap$ supp $\tilde{\lambda}_{22}$ (see Lemma 1.1) it follows that $\tilde{\lambda}_{12} = \sum_{n=1}^{\infty} b_n \delta_{x_n}$ with some $b_n \in \mathbb{C}$ for $n \in \mathbb{N}$. $\tilde{A} \in \mathcal{M}_2^*(\mathbb{R})$ gives $|b_n| \leq a_n$ for all $n \in \mathbb{N}$. Combined with $\tilde{A} \in V_A$, the latter implies that $\mu - \frac{1}{2}(\tilde{\lambda}_{12} + \tilde{\lambda}_{21}) = \sum_n (a_n - \operatorname{Re} b_n) \delta_{x_n}$ is in $\mathcal{M}^*(\mathbb{R})$ and has zero moments. This clearly yields $a_n = \operatorname{Re} b_n$ for $n \in \mathbb{N}$. From $|b_n| \leq a_n$ we get $b_n = a_n$ for $n \in \mathbb{N}$, i.e., $\lambda_{12} = \tilde{\lambda}_{12}$ and $\lambda_{21} = \tilde{\lambda}_{21}$.

(3.4)

Arguing as in the proof of Proposition 3.2, we obtain

PROPOSITION 3.3. Let $\Lambda = (\lambda_{ij}) \in \mathcal{M}_k^*(\mathbb{R}^n)$ and $r \in \{1, ..., k\}$. If \mathcal{P}_n is dense in $L^2(\lambda_{rr})$, then λ_{mr} and λ_{rm} are separately k-determinate with respect to Λ for each $m \in \{1, ..., k\}$, $m \neq r$.

In this opposite direction we have

PROPOSITION 3.4. Let $\Lambda = (\lambda_{ij}) \in \mathcal{M}_k^*(\mathbb{R}^n)$ and $r \in \{1, ..., k\}$. Suppose that there is a $\delta > 0$ such that

$$\sum_{i,j=1}^{k} \lambda_{ij}(m) t_i \overline{t_j} \ge \delta \sum_{j=1}^{k} |t_j|^2 \lambda_A(\mathfrak{M})$$

for all $t_1, ..., t_k \in \mathbb{C}$ and all Borel sets \mathfrak{M} of \mathbb{R}^n .

If λ_{rr} is not V-extremal, then λ_{mr} (and λ_{rm}) is not separately k-determinate for every $m \in \{1, ..., k\}, m \neq r$.

Proof. Since λ_{rr} is not *V*-extremal, there is a nonzero $f \in L^{\infty}(\lambda_{rr})$ which is orthogonal to \mathscr{P}_n in $L^2(\lambda_{rr})$. Fix $m \in \{1, ..., k\}$, $m \neq r$. Let $\varepsilon > 0$. We define a (k, k) matrix $\tilde{A} = (\tilde{\lambda}_{ij})$ of measures by $d\tilde{\lambda}_{mr} := d\lambda_{mr} + \varepsilon f d\lambda_{rr}$, $\tilde{\lambda}_{rm} := \tilde{\lambda}_{mr}$ and $\tilde{\lambda}_{ij} = \lambda_{ij}$ otherwise. By the above definiteness assumption, the matrix $\tilde{A} = (\tilde{\lambda}_{ij})$ becomes nonnegative for sufficiently small $\varepsilon > 0$. Then $\tilde{A} \in \mathscr{M}_k^*(\mathbb{R}^n)$. It is clear that $\tilde{A} \in V_A$. Since $f \neq 0$ in $L^{\infty}(\lambda_{rr})$, λ_{mr} is not separately k-determinate.

Concluding Remarks. A further study of the determinacy seems to be desirable. Let us mention two questions in this direction.

(1) Is Proposition 3.4 true without the definiteness assumption?

(2) Suppose that $\lambda_{11}, ..., \lambda_{kk}$ are indeterminate for $\Lambda = (\lambda_{ij}) \in \mathcal{M}_k^* (\mathbb{R}^n)$. Does it follow that Λ is not k-determinate? (The answer is obviously "yes" if Λ is a diagonal matrix.)

REFERENCES

- 1. N. I. AKHIEZER, "The Classical Moment Problem," Oliver & Boyd, Edinburgh, 1965.
- 2. JU. M. BEREZANSKII, "Expansions in Eigenfunctions of Self-adjoint Operators," [Russian], Naukova Dumka, Kiev, 1965.
- 3. C. BERG AND J. P. R. CHRISTENSEN, Density questions in the classical theory of moments, Ann. Inst. Fourier (Grenoble) 31 (1981), 99-114.
- 4. G. CHOQUET, "Lectures on Analysis, Vol. 2," Benjamin, New York, 1969.
- 5. D. Z. DJOKOVIC, Hermitean matrices over polynomial rings, J. Algebra 43 (1976), 359-374.
- 6. B. FUGLEDE, The multidimensional moment problem, Exposition. Math. 1 (1983), 47-65.
- E. K. HAVILAND, On the momentum problem for distributions in more than one dimension, I. Amer. J. Math. 57 (1935), 562-568 and II. Amer. J. Math. 58 (1936), 164-168.
- I. V. KOVALISHNA, Analytic theory of a class of interpolation problems [Russian], *Izv. Akad. Nauk SSR Ser. Mat.* 47 (1983), 455–497.
- 9. J. S. MACNERVEY, Hermitean moment sequences, Trans. Amer. Math. Soc. 103 (1962), 45-81.
- 10. J. A. SHOHAT AND J. D. TAMARKIN, "The Problem of Moments," Amer. Math. Soc., New York, 1943.
- 11. W. F. STINESPRING, Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216.
- 12. B. SZ.-NAGY, A moment problem for self-adjoint operators, Acta Sci. Math. (Szeged) 3 (1952), 285-292.