On a Generalization of the Classical Moment Problem

Konrad Schmüdgen
Sektion Mathematik, Karl-Marx-Universität Leipzig, DDR-7010 Leipzig, German Democratic Republic
Submitted by Ky Fan
Received September 9, 1985

Abstract

Let $\mathscr{M}^{*}\left(\mathbb{R}^{n}\right), n \in \mathbb{N}$, denote the set of all positive Borel measures on \mathbb{R}^{n} having moments of all orders. We study the following generalization of the classical moment problem: Given a multisequence $\left\{S_{x}=\left\{s_{i j}(\alpha)\right) ; x \in \mathbb{N}_{0}^{n}\right\}$ of (k, k) matrices with complex entries $s_{i j}(\alpha)$, when does there exist a nonnegative (k, k) matrix $A=\left(\lambda_{i j}\right)$ of complex Borel measures $\lambda_{i j}$ on \mathbb{R}^{n} such that $\left|\hat{\lambda}_{i j}\right| \in \mathscr{M}^{*}\left(\mathbb{R}^{n}\right)$ and $s_{i j}(\alpha)=$ $\int x^{x} d \lambda_{i j}(x)$ for all $x \in \mathbb{N}_{0}^{n}$ and $i, j=1, \ldots, k ? \quad 1987$ Academic Press. Inc.

Introduction

The problem formulated above will be called the k-moment problem. Moment problems of this kind or of a more general type in case $n=1$ occur (for instance) in [12, 9, and 8]. Obviously, in case $k=1$ the problem reduces to the classical n-dimensional moment problem.
Section 1 contains some preliminaries and some basic definitions needed in the sequel. In Section 2 we give necessary and sufficient conditions for the existence of a solution. In Section 3 we define and discuss two concepts of determinacy for the k-moment problem.

Notation. \mathbb{N}_{0} are the nonnegative integers. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in N_{0}^{n}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, we let $x^{\alpha_{0}}:=x_{1}^{x_{1}} \cdots x_{n}^{\chi_{n}}$, where $x_{j}^{0}:=1 . \mathscr{B}_{n}$ are the Borel sets on \mathbb{R}^{n}. Let δ_{x} denote the unit mass concentrated at x.
The inner product of \mathbb{C}^{k} is denoted by $(,$,$) . Let \epsilon_{,}=\left(\delta_{i j}\right), j=1, \ldots, k$, be the standard basis of \mathbb{C}^{k}. $\delta_{i j}$ is the Kronecker symbol. We shall identify the vector space $M(k, \mathbb{C})$ of all (k, k) matrices with complex entries and the vector space $L\left(\mathbb{C}^{k}\right)$ of all endomorphisms of \mathbb{C}^{k} via the basis $e_{j}, j=1, \ldots, k$. Let \mathscr{P}_{n} be the vector space of all polynomials in x_{1}, \ldots, x_{n} with complex coefficients, considered as functions from \mathbb{R}^{n} into \mathbb{C}. We denote by \mathscr{F}_{n} the vector space of all Borel functions f on \mathbb{R}^{n} which grow at most like polynomials (i.e., there exists a $p_{f} \in \mathscr{P}_{n}$ such that $|f(x)| \leqslant P_{f}(x)$ for $x \in \mathbb{R}^{n}$). $\mathscr{P}_{n} \otimes M_{k}$ and $\mathscr{F}_{n} \otimes M_{k}$ are the vector spaces of al (k, k) matrices with
entries in \mathscr{P}_{n} and \mathscr{F}_{n}, respectively. We denote by $\mathscr{P}_{n}^{+}, \mathscr{F}_{n}^{+},\left(\mathscr{P}_{n} \otimes M_{k}\right)^{+}$and $\left(\mathscr{F}_{n} \otimes M_{k}\right)^{+} \quad$ the sets of all $p \in \mathscr{P}_{n}, \quad f \in \mathscr{F}_{n}, \quad\left(p_{i j}\right) \in \mathscr{P}_{n} \otimes M_{k} \quad$ and $\left(f_{i j}\right) \in \mathscr{F}_{n} \otimes M_{k}$, respectively, which are nonnegative for all $x \in \mathbb{R}^{n}$.

We refer to $[1,10]$ for the notation and the results concerning the classical moment problem we use.

1. The k-Moment Problem

Let $k \in \mathbb{N}$ and $n \in \mathbb{N}$. We denote by $\mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$ the set of all (k, k) matrices $\Lambda=\left(\lambda_{i j}\right)$ of complex Borel measures $\lambda_{i j}$ on \mathbb{R}^{n} such that:
(a) $\lambda(\mathfrak{M})=\left(\lambda_{i j}(\mathfrak{M})\right)$ is a nonnegative matrix for each $\mathfrak{M}_{\mathcal{M}} \in \mathscr{B}_{n}$.
(b) $\left|\lambda_{i j}\right| \in \mathscr{M}^{*}\left(\mathbb{R}^{n}\right)$ for all $i, j=1, \ldots, k$.

We denote by $\lambda_{A}=\sum_{j=1}^{k} \lambda_{j j}$ the tracial measure of $\Lambda=\left(\lambda_{i j}\right)$. Obviously, (a) implies that $\lambda_{i j}, j=1, \ldots, k$, and λ_{A} are positive Borel measures. Moreover, if (a) is true, then (b) is equivalent to $\lambda_{1} \in \mathscr{M}^{*}\left(\mathbb{R}^{n}\right)$. This is an immediate consequence of Lemma 1.1. For later use we collect some simple and wellknown properties (see [2], V.2) of $\Lambda=\left(\lambda_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$ in

Lemma 1.1. Let $A=\left(\lambda_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$ and let $m, r \in\{1, \ldots, k\}$.
(i) $\lambda_{m r}$ is absolutely continuous with respect to $\Lambda_{m m}, \lambda_{r r}$, and λ_{A}. Let $g_{m r}$ denote the Radon-Nikodym derivative of $\lambda_{m r}$ with respect to λ_{A}.
(ii) $\left(g_{i j}\right)$ is a nonnegative (k, k) matrix λ_{1}-a.e. and $\sum_{j=1}^{k} g_{j j}=1$ λ_{A}-a.e..
(iii) $\left|g_{m r}\right|^{2} \leqslant g_{m m} g_{r r} \leqslant g_{r r} \leqslant 1 \lambda_{A}$-a.e..
(iv) $\operatorname{supp} \lambda_{m r} \subseteq \operatorname{supp} \lambda_{m m} \cap \operatorname{supp} \lambda_{r r}$.

Proof. (i): Since $\left(\lambda_{i j}(\mathfrak{M})\right.$) is a nonnegative for each $\mathfrak{M}_{i} \in \mathscr{B}_{n}$, we have $\left|\lambda_{m r}(\mathfrak{M})\right| \leqslant \lambda_{m m}(\mathfrak{M})^{1 / 2} \lambda_{r r}(\mathfrak{M})^{1 / 2} \leqslant \lambda_{A}(\mathfrak{M})$. The absolute continuity follows.
(ii): From (a) we obtain

$$
\sum_{i j=1}^{k} \lambda_{i j}(\mathfrak{M}) t_{i} \bar{t}_{j}=\int_{\mathfrak{M}} \sum_{i, j=1}^{k} g_{i j} t_{i} \bar{t}_{j} d \lambda_{A} \geqslant 0 \quad \text { for all }
$$

$t=\left(t_{1}, \ldots, t_{k}\right) \in \mathbb{C}^{k}$ and $\mathfrak{M} \in \mathscr{B}_{n}$. Taking t from a countable dense subset of \mathbb{C}^{k} and using that $\mathfrak{M} \in \mathscr{B}_{n}$ is arbitrary, a simple measure-theoretic argument shows that $\left(g_{i j}\right)$ is nonnegative λ_{1}-a.e..

The other assertions follow immediately.
Some converse of the preceding is given in Lemma 1.2. We omit the easy proof.

Lemma 1.2. Suppose $\lambda \in \mathscr{M}^{*}\left(\mathbb{R}^{n}\right)$. Let $g_{i j}, i, j=1, \ldots, k$, be λ-almost everywhere defined measurable functions on \mathbb{R}^{n}. Suppose that the matrix $\left(g_{i j}\right)$ is nonnegative λ-a.e. and $\sum_{j=1}^{k} g_{i j}=1 \lambda$-a.e. on \mathbb{R}^{n}. We define Borel measures $\lambda_{i j}$ on \mathbb{R}^{n} by $d \lambda_{i j}=g_{i j} d \lambda$ for $i, j=1, \ldots, k$. Then $A:=\left(\lambda_{i j}\right) \in M_{k}^{*}\left(\mathbb{R}^{n}\right)$ and $\lambda_{1}=\lambda$.

(1.2)

A multisequence $\left\{S_{\alpha}=\left(s_{i j}(\alpha)\right) ; \alpha \in \mathbb{N}_{0}^{n}\right\}$ of matrices $S_{\alpha} \vDash M(k, \mathbb{C})$ is called a k-moment sequence if there exists a $\Lambda=\left(\dot{\lambda}_{i j}\right) \in \mathbb{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$ such that $s_{i j}(\alpha)=\int x^{\alpha} d \lambda_{i j}(x)$ for all $\alpha \in \mathbb{N}_{0}^{n}$ and $i, j=1, \ldots, k$. (All integrals in this paper are over \mathbb{R}^{n}.) The latter can also be written as $S_{\alpha}=\int x^{\alpha} d \Lambda(x)$ for $\alpha \in \mathbb{N}_{0}^{n}$. In this case $\Lambda=\left(\lambda_{i j}\right)$ is called a representing matrix of measures for $\left\{S_{\alpha} ; \alpha \in \mathbb{N}_{0}^{n}\right\}$.

For $A=\left(\lambda_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$, we denote by V_{A} the set of all $\tilde{A}=\left(\tilde{\lambda}_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$ which represents the same sequence of matrices as A, that is, $\int x^{\alpha} d \lambda_{i j}(x)=\int x^{\alpha} d \tilde{\lambda}_{i j}(x)$ for $\alpha \in \mathbb{N}_{0}^{n}$ and $i, j=1, \ldots, k$.

Similarly as in the theory of the classical moment problem, it is convenient to replace $\left\{S_{x} ; \alpha \in \mathbb{N}_{0}^{n}\right\}$ by the associated linear mapping \mathscr{S} from \mathscr{P}_{n} into $M(k, \mathbb{C}) . \mathscr{S}(p) \equiv\left(a_{i j}(p)\right)$ is the (k, k) matrix defined by $\mathscr{S}(p)=\sum a_{x} S_{x}$ for $p(x)=\sum a_{x} x^{\alpha} \in \mathscr{P}_{n}$. As already mentioned, we want to identify $M(k, \mathbb{C})$ and $L\left(\mathbb{C}^{k}\right)$.

Let $k \in \mathbb{N}$ and let \mathscr{P} be a linear mapping from \mathscr{P}_{n} into $L\left(\mathbb{C}^{k}\right) . \mathscr{S}$ is called k-positive if $\sum_{i, j=1}^{k}\left(\mathscr{P}\left(p_{i j}\right) c_{i}, c_{j}\right) \geqslant 0$ for all vectors $c_{1}, \ldots, c_{k} \in \mathbb{C}^{k}$ and all matrices $\left(p_{i j}\right) \in\left(\mathscr{P}_{n} \otimes M_{k}\right)^{+} . \mathscr{S}$ is called positive if $\sum_{i, j=1}^{k}\left(\mathscr{S}\left(p_{i} \bar{p}_{j}\right) c_{i}, c_{j}\right) \geqslant 0$ for all vectors $c_{1}, \ldots, c_{k} \in \mathbb{C}^{k}$ and all $p_{1}, \ldots, p_{k} \in \mathscr{P}_{n}$.

2. Existence of a Solution

Proposition 2.1. Suppose that $\left\{S_{\alpha}=\left(s_{i j}(\alpha)\right) ; \alpha \in \mathbb{N}_{0}^{n}\right\}$ is a multisequence of matrices $S_{\alpha} \in M(k, \mathbb{C})$. Let $\mathscr{S}=\left(s_{i j}\right)$ be the associated linear mapping of \mathscr{P}_{n} into $L\left(\mathbb{C}^{k}\right)$. The following statements are equivalent:
(i) $\left\{S_{x}, \alpha \in \mathbb{N}_{0}^{n}\right\}$ is a k-moment sequence.
(ii) \mathscr{S} is k-positive.
(iii) $\sum_{i, j=1 o_{i j}}^{k}\left(p_{i j}\right) \geqslant 0$ for all $\left(p_{i j}\right) \in\left(\mathscr{P}_{n} \otimes M_{k}\right)^{+}$.

In the proof of Proposition 2.1 we need

Lemma 2.2. Each matrix $\left(p_{i j}\right) \in\left(\mathscr{P}_{n} \otimes M_{k}\right)^{+}$is a finite sum of (k, k) matrices of the form $\left(f_{i} \bar{f}_{j}\right)$, where $f_{j} \in \mathscr{F}_{n}$ for $j=1, \ldots, k$.

Proof. Fix $x \in \mathbb{R}^{n}$. Let $h_{r}(x), r=1, \ldots, k$, denote the eigenvalues of the nonnegative (k, k) matrix $\left(p_{i j}(x)\right.$). By the finite dimensional version of the spectral theorem, there is a unitary (k, k) matrix $\left(u_{i j}(x)\right)$ such that $p_{i j}(x)=\sum_{r=1}^{k} h_{r}(x)^{1 / 2} u_{r i}(x) \cdot \overline{h_{r}(x)^{1 / 2} u_{r j}(x)}$. It is easily seen that the functions $h_{i}^{1 / 2} u_{i j}$ are in \mathscr{F}_{n} for $i, j=1, \ldots, k$.

Proof of Proposition 2.1. (i) \rightarrow (ii): Assume that there is a $A=\left(\lambda_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$ such that $s_{i j}(\alpha)=\int x^{\alpha} d \lambda_{i j}(x)$ for $\alpha \in \mathbb{N}_{0}^{n}$ and $i, j=1, \ldots, k$. Let $c_{j}=\left(c_{i 1}, \ldots c_{j k}\right) \in \mathbb{C}^{k}$ for $j=1, \ldots, k$. Suppose $\left(p_{i j}\right) \in\left(\mathscr{P}_{n} \otimes M_{k}\right)^{+}$. As in Lemma 1.1, we let $g_{i j}$ be the Radon-Nikodym derivative $d \lambda_{i j} / d \lambda_{A}$ for $i, j=1, \ldots, k$. Then

$$
\begin{aligned}
\sum_{i, j=1}^{k} & \left(\mathscr{P}\left(p_{i j}\right) c_{i}, c_{j}\right) \\
& =\sum_{i, j, m, r=1}^{k} \jmath_{m r}\left(p_{i j}\right) c_{i r} \overline{c_{j m}} \\
& =\sum_{i, j=1}^{k} \int_{m, r=1} \sum_{i j}^{k} p_{i j}(x) c_{i r} \overline{c_{j m}} g_{m r}(x) d \lambda_{A}
\end{aligned}
$$

By Lemma 2.2, it suffices to replace $\left(p_{i j}\right)$ by a (k, k) matrix $\left(f_{i} \bar{f}_{j}\right)$, where $f_{1}, \ldots, f_{k} \in \mathscr{F}_{n}$. In this case the above expression is clearly nonnegative, because ($g_{m r}$) is a nonnegative matrix λ_{A}-a.e. by Lemma 1.1, (ii).
(ii) \rightarrow (ii)' is obvious, since

$$
\left(\mathscr{S}(\cdot) e_{j}, \epsilon_{i}\right)=\mathscr{J}_{i j}(\cdot)
$$

(ii') \rightarrow (i):
Suppose that the above condition is fulfilled. Then, $F\left(\left(p_{i j}\right)\right):=\sum_{i, j=1}^{k} J_{i j}\left(p_{i j}\right)$ defines a positive linear functional on $\mathscr{P}_{n} \otimes M_{k}$. Since $\left(\mathscr{P}_{n} \otimes M_{k}\right)^{+}$is cofinal in $\left(\mathscr{F}_{n} \otimes M_{k}\right)^{+}, F$ can be extended to a positive linear functional on $\mathscr{F}_{n} \otimes M_{k}$ which will be again denoted by F. Put $\partial_{m r}(f):=F\left(\left(f \delta_{i m} \delta_{j r}\right)\right)$ for $f \in \mathscr{F}_{n}$ and $m, r=1, \ldots, k$.

We now argue as in the proof of Proposition 4 in [11].
Since the (k, k) matrix $\left(f_{i} \bar{f}_{j}\right)$ is in $\left(\mathscr{F}_{n} \otimes M_{k}\right)^{+}$for $f \in \mathscr{F}{ }_{n}^{+}$, $G(f):=F\left(\left(f \delta_{i j}\right)\right)=\sum_{j=1}^{k} J_{i j}(f)$ is a positive linear functional on \mathscr{F}_{n}. Hence there is a measure $\lambda \in \mathscr{M}^{*}\left(\mathbb{R}^{n}\right)$ such that $G(f)=\int f(x) d \lambda(x)$ for all $f \in \mathscr{F}_{n}$ (see, e.g. [4], Chap. 8). Take $f \in \mathscr{F}_{n}^{+}$. For $t_{1}, \ldots, t_{k} \in \mathbb{C}$, the (k, k) matrix $\left(f t_{i} \bar{t}_{j}\right)$ is in $\left(\mathscr{F}_{n} \otimes M_{k}\right)$ and hence

$$
\begin{equation*}
F\left(\left(f t_{i} \bar{t}_{j}\right)\right)=\sum_{i, j=1}^{k} \sigma_{i j}(f) t_{i} \bar{t}_{j} \geqslant 0 \tag{}
\end{equation*}
$$

Consequently, for $i, j=1, \ldots, k$,

$$
\left|\partial_{i j}(f)\right| \leqslant o_{i i}(f)^{1 / 2} \jmath_{j j}(f)^{1 / 2} \leqslant o_{i i}(f)+o_{j i}(f) \leqslant \int f d \lambda_{.}
$$

Writing $f \in \mathscr{F}_{n}$ as $f=\left(f_{1}-f_{2}\right)+i\left(f_{3}-f_{4}\right)$ with $f_{1}, \ldots, f_{4} \in \mathscr{F}_{n}^{+}$, we get $\left|\sigma_{i j}(f)\right| \leqslant 2 \int|f(x)| d \lambda(x)$ for all $f \in \mathscr{F}_{n}$. This implies the existence of a function $g_{i j} \in L^{\infty}(\lambda)$ such that $s_{i j}(f)=\int f g_{i j} d \lambda$ for $f \in \mathscr{F}_{n}$ and $i, j=1, \ldots, k$.

If $f \in \mathscr{F}_{n}^{+}$, then $\left(^{*}\right)$ yields $\int\left(\sum_{i, j=1}^{k} g_{i j} t_{i} \bar{t}_{j}\right) f d \lambda \geqslant 0$ for arbitrary $t_{1}, \ldots, t_{k} \in \mathbb{C}$. A routine measure-theoretic argument (as in the proof of Lemma 1.1, (ii)) shows that $\left(g_{i j}\right)$ is nonnegative λ-a.e. on \mathbb{R}^{n}. Defining $\lambda_{i j}$ by $\lambda_{i j}=g_{i j} d \lambda$ for $i, j=1, \ldots, k$, we have $A:=\left(\lambda_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$. By construction, $S_{x}=\int x^{\alpha} d \Lambda(x)$ for all $\alpha \in \mathbb{N}_{0}^{n}$ which completes the proof.

In case $n=1$ the conditions in Proposition 2.1 can be weakened.
Proposition 2.3. Suppose that $n=1$. Let $\left\{S_{\alpha} ; \alpha \in \mathbb{N}_{0}\right\}$ and $\mathscr{S}=\left(\sigma_{i i}\right)$ be an in Proposition 2.1. The following statements are equivalent:
(i) $\left\{S_{\alpha} ; \alpha \in \mathbb{N}\right\}$ is a k-moment sequence.
(ii) \mathscr{S} is positive.
(iii) $\sum_{i, j=1}^{k} j_{i j}\left(p_{i} \overline{p_{j}}\right) \geqslant 0$ for all $p_{1}, \ldots, p_{k} \in \mathscr{P}_{n}$.

Proof. Since $\quad\left(p_{i} \bar{p}_{j}\right) \in\left(\mathscr{P}_{n} \otimes M_{k}\right)^{+} \quad$ for \quad arbitrary $\quad p_{1}, \ldots, p_{k} \in \mathscr{P}_{n}$, we obviously have that (ii) \rightarrow (iii). Combined with Proposition 2.1. this yields (i) \rightarrow (iii). From

$$
\left(\mathscr{S}(\cdot) e_{j}, \ell_{i}\right)=s_{i j}(\cdot)
$$

we see that (iii) \rightarrow (iii)'.
To prove that (iii) \rightarrow (i), it is sufficient to show that $(\mathrm{iii})^{\prime} \rightarrow(\mathrm{ii})^{\prime}$ because of Proposition 2.1. Let $\left(p_{i j}\right)$ be a (k, k) matrix from $\left(\mathscr{P}_{n} \otimes M_{k}\right)^{+}$. Then there exists a (k, k) matrix $\left(q_{i j}\right) \in \mathscr{P}_{n} \otimes M_{k}$ such that $\left(p_{i j}\right)=\left(q_{i j}\right)\left(q_{i j}\right)^{*}$ (see, e.g. [5]), that is, $p_{i j}=\sum_{r=1}^{k} q_{i r} \bar{q}_{j r}$ for $i, j=1, \ldots, k$.

Therefore, the matrix $\left(p_{i j}\right)$ is a finite sum of matrices of the form $\left(p_{i} \overline{p_{j}}\right)$, where $p_{1}, \ldots, p_{k} \in \mathscr{P}_{n}$. Thus (iii)' $\rightarrow(\mathrm{ii})^{\prime}$ and the proof is complete.

Remarks. (1) The proof of Proposition 2.1 gives the following generalization of Haviland's theorem as well. Let Ω be a closed subset of \mathbb{R}^{n} and let $\left(\mathscr{P}_{n} \otimes M_{k}\right)_{\mathcal{M}}^{+}$denote the set of all $\left(p_{i j}\right) \in \mathscr{P}_{n} \otimes M_{k}$ which are nonnegative for each $x \in \mathcal{S}$. If $\left\{S_{x} ; \alpha \in \mathbb{N}_{0}^{n}\right\}$ and $\mathscr{P}=\left(\sigma_{i j}\right)$ are as in Proposition 2.1, then the following are equivalent:
(i) There exists a representing matrix $A \in \mathcal{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$ for $\left\{S_{x}\right.$; $\left.\alpha \in \mathbb{N}_{0}^{n}\right\}$ such that $\operatorname{supp} \lambda_{A} \subseteq \mathcal{R}$.
(ii) $\sum_{i, j=1}^{k}\left(\mathscr{S}\left(p_{i j}\right) c_{i}, c_{j}\right) \geqslant 0$ for all vectors $c_{i}, \ldots, c_{k} \in \mathbb{C}^{n}$ and every $\left(p_{i j}\right) \in\left(\mathscr{P}_{n} \otimes M_{k}\right)_{\Omega}^{+}$.
(iii) $\sum_{i, j=1}^{k} J_{i j}\left(p_{i j}\right) \geqslant 0$ for every $\left(p_{i j}\right) \in\left(\mathscr{P}_{n} \otimes M_{k}\right)_{\Omega}^{+}$.
(In the above proof of (ii) \rightarrow (i) we use Haviland's theorem ([7]) to infer that supp $\lambda_{A} \subseteq \boldsymbol{\Omega}$.)
(2) It is clear the k-moment problem could be reformulated and studied in terms of operator theory (that is, simultaneous spectral resolution of commuting self-adjoint operators in dilation spaces). We do not consider these aspects in the present paper.

3. Determinacy

Definition 3.1. Let $\left\{S_{\alpha}=\left(s_{i j}(\alpha)\right) ; \alpha \in \mathbb{N}_{0}^{n}\right\}$ be a k-moment sequence and let $A=\left(\lambda_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$ be a representing matrix of measures for $\left\{S_{\alpha}\right.$; $\left.\alpha \in \mathbb{N}_{0}^{n}\right\}$. Let $m, r \in\{1, \ldots, k\}$. We say that $s_{m r}(\cdot)$ (or the measure $\lambda_{m r}$) is k-determinate if $\lambda_{m r}=\tilde{\lambda}_{m r}$ for each $\tilde{\Lambda}=\left(\tilde{\lambda}_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$ with $\tilde{\Lambda} \in V_{A} .\left\{S_{\alpha} ;\right.$ $\left.\alpha \in \mathbb{N}_{0}^{n}\right\}$ (or Λ) is called k-determinate if V_{A} is a singleton.

It is clear from the above definition that a k-moment sequence $\left\{S_{\alpha}=\left(s_{i j}(\alpha)\right) ; \alpha \in \mathbb{N}_{0}^{n}\right\}$ (or $\Lambda=\left(\lambda_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$) is k-determinate if $s_{i j}(\cdot)$ (or $\lambda_{i j}$) is k-determinate for all $i, j=1, \ldots, k$.

Proposition 3.1. Suppose that $A=\left(\lambda_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$. If λ_{A} is determinate, then A is k-determinate.

Proof. Let $\tilde{\Lambda}=\left(\tilde{\lambda}_{i j}\right) \in V_{A}$. That is, we have by definition $\int p(x) d \lambda_{i j}(x)=$ $\int p(x) d \tilde{\lambda}_{i j}(x)$ for all $p \in \mathscr{P}_{n}$ and $i, j=1, \ldots, k$. In particular, $\int p(x) d \lambda_{A}(x)=$ $\int p(x) d \lambda_{A}(x)$ for $p \in \mathscr{P}_{n}$. Since λ_{A} is assumed to be determinate, this implies $\lambda_{A}=\lambda_{\lambda}$.

Fix $m, r \in\{1, \ldots, k\}$. As in Lemma 1.1, we denote by $g_{m r}$ and $\tilde{g}_{m r}$ the Radon-Nikodym derivatives $d \lambda_{m r} / d \lambda_{A}$ and $d \tilde{\lambda}_{m r} / d \lambda_{\lambda}$, respectively. From $\tilde{\lambda} \in V_{A}$ and $\lambda_{A}=\lambda_{\lambda}$ we conclude that $\int p(x)\left(g_{m r}(x)-\tilde{g}_{m r}(x)\right) d \lambda_{A}=0$ for all polynomials $p \in \mathscr{P}_{n}$. Since λ_{A} is determinate, \mathscr{P}_{n} is dense in $L^{1}\left(\lambda_{A}\right) L 1$, p. 47]. (Though the result is stated in [1] only in case $n=1$, the proof applies to any dimension $n \in \mathbb{N}$.) By Lemma 1.1, (iii), $g_{m r}-\tilde{g}_{m r} \in L^{\infty}\left(\lambda_{A}\right)$. Therefore, we get $g_{m r}-\tilde{g}_{m r}=0 \lambda_{A}$-a.e. on \mathbb{R}^{n}. This clearly implies $\lambda_{m r}=\bar{\lambda}_{m r}$, i.e., $\lambda_{m r}$ is k-determinate. This completes the proof.

The converse of Proposition 3.1 is not valid. The following examples shows that $\Lambda=\left(\lambda_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$ can be k-determinate if λ_{A} is indeterminate.

Example 3.1. Let λ_{11} and λ_{22} be determinate measures from $\mathscr{M}^{*}\left(\mathbb{R}^{n}\right)$ with disjoint supports such that $\lambda:=\lambda_{11}+\lambda_{22}$ is indeterminate. (The simplest way to fulfill these assumptions is as follows. Let $n=1$. Take an indeterminate \mathcal{N}-extremal measure $\lambda=\sum_{n=1}^{\infty} a_{n} \delta_{x_{n}}$ on \mathbb{R} and set $\lambda_{11}=a_{1} \delta_{x_{1}}$ and $\lambda_{22}=\lambda-\lambda_{11}$. By [1, p. 115], or [3, Theorem 7], λ_{11} and λ_{22} are determinate.) Put $\lambda_{12}=\lambda_{21}=0$. Then $\Lambda:=\left(\lambda_{i j}\right) \in \mathscr{M ^ { * }}\left(\mathbb{R}^{n}\right)$ is 2-determinate, but $\lambda_{A}=\lambda$ is indeterminate. λ_{11} and λ_{22} are obviously 2-determinate. For $\lambda_{12} \cap \operatorname{supp} \lambda_{22}=\varnothing$ and Lemma 1.1, (iv).

Now we discuss the relation between the k-determinacy of $A=\left(\lambda_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$ and the determinacy of $\dot{\lambda}_{11}, \ldots, \lambda_{k k}$.

Proposition 3.2. Suppose $A=\left(\lambda_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$. Let $r \in\{1, \ldots, k\}$. Suppose that $\lambda_{r r}$ is determinate. In case $n \geqslant 2$ we assume in addition that \mathscr{P}_{n} is dense in $L^{2}\left(\lambda_{r r}\right)$. Then $\lambda_{m r}$ and $\lambda_{r m}$ are k-determinate for each $m \in\{1, \ldots, k\}$.

If these assumptions are satisfied for all $r=1, \ldots, k$, then A is k-determinate.

Proof. It clearly suffices to prove the first part. Fix $m \in\{1, \ldots, k\}$.
By Lemma 1.1, there are functions $g_{i j} \in L^{\alpha}\left(\lambda_{1}\right)$ such that $d \lambda_{i j}=g_{i j} d \lambda_{,}$ for $i, j=1, \ldots, k$. Moreover, by Lemma 1.1, $\left|g_{m r}\right|^{2} \leqslant g_{r r} g_{m m} \leqslant g_{r r} \lambda_{i 1}$-a.e. on \mathbb{R}^{n}. The function $g_{m r} g_{r r}^{-1}$ is measurable and $\lambda_{r r}$-almost everywhere defined. Since $\int\left|g_{m r}\right|^{2} g_{r r}^{-2} d \lambda_{r r}=\int\left|g_{m r}\right|^{2} g_{r r}^{-1} d \lambda_{A} \leqslant d \lambda_{A}<\infty$ because of $\lambda_{1} \in \mathscr{M}^{*}\left(\mathbb{R}^{n}\right)$, we have $g_{m r} g_{r r}^{-1} \in L^{2}\left(\lambda_{r r}\right)$.

Now let $\tilde{A}=\left(\tilde{\lambda}_{i j}\right) \in V_{A}$. Let $\tilde{g}_{i j}$ be the corresponding Radon-Nikodym derivatives $d \tilde{\lambda}_{i j} / d \lambda_{\bar{\lambda}}, i, j=1, \ldots, k$. Since $\lambda_{r r}$ is determinate, $\dot{\lambda}_{r r}=\tilde{\lambda}_{r r}$. By the preceding we have $g_{m r} g_{r r}^{-1}-\tilde{g}_{m r} \tilde{g}_{r r}^{-1} \in L^{2}\left(\lambda_{r r}\right) \equiv L^{2}\left(\tilde{\lambda}_{r r}\right)$. From $\tilde{\lambda} \in V_{A}$ we get

$$
\begin{aligned}
\int p(x) d \lambda_{m r}(x) & =\int p(x) g_{m r}(x) d \lambda_{A} \\
& =\int p(x) g_{m r}(x) g_{r r}(x)^{\prime} d \lambda_{r r}(x) \\
& =\int p(x) \tilde{g}_{m r}(x) \tilde{g}_{r r}(x)^{\prime} d \tilde{\lambda}_{r r}(x) \\
& =\int p(x) d \tilde{\lambda}_{m r}(x)
\end{aligned}
$$

for $p \in \mathscr{P}_{n}$. Since $\lambda_{r r}=\tilde{\lambda}_{r r}$, this shows that $g_{m r} g_{r r}^{-1}-\tilde{g}_{m r} \tilde{g}_{r r}^{-1}=: h_{m r}$ is orthogonal to \mathscr{P}_{n} in $L^{2}\left(\lambda_{r r}\right)$. If $n=1$, then \mathscr{P}_{n} is dense in $L^{2}\left(\lambda_{r r}\right)$, since $\lambda_{r r}$ is determinate [1]. In case $n \geqslant 2$ this is true by assumption. Hence $h_{m r}=0$ in
$L^{2}\left(\lambda_{r r}\right)$, i.e., $g_{m r} g_{r r}^{-1}=\tilde{g}_{m r} \tilde{g}_{r r}^{-1} \lambda_{r r}$-a.e. on \mathbb{R}^{n}. Therefore, $d \lambda_{m r}=g_{m r} d \lambda_{A}=$ $g_{m r} g_{r r}^{-1} d \lambda_{r r}=\tilde{g}_{m r} \tilde{g}_{r r}^{-1} d \tilde{\lambda}_{r r}=d \tilde{\lambda}_{r r}$ and $\lambda_{m r}=\tilde{\lambda}_{m r}$. Similarly, $\lambda_{r m}=\tilde{\lambda}_{r m}$.

Remarks. (1) It seems to be unknown in case $n \geqslant 2$ whether the polynomials are dense in L^{2} if the measure is determinate (see also [6]). I conjecture that this is not truc.
(2) For $n=1$ Proposition 3.2 shows that $\Lambda=\left(\lambda_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$ is k-determinate provided all diagonal measures $\lambda_{r r}, r=1, \ldots, k$, are determinate. Again the converse is not valid as the next example shows.

Example 3.2. Let $n=1$ and $k=2$. Let $\left\{s_{n} ; n \in \mathbb{N}_{0}\right\}$ be an arbitrary indeterminate moment sequence of real numbers and let $\rho(z), z \in \mathbb{C}$, be the corresponding function as defined in [10], p. 42. Since $\left\{s_{n}\right\}$ is indeterminate, $\rho(z)>0$ for all $z \in \mathbb{C}$ [10, Corollary 2.7 , p. 50]. Fix a point $x_{0} \in \mathbb{R}$. There exists one and only one solution $\lambda_{11} \in \mathscr{M}^{*}(\mathbb{R})$ of the moment problem $\left\{s_{n} ; n \in \mathbb{N}_{0}\right\}$ which has the mass $\rho\left(x_{0}\right)$ at x_{0} [10], Corollary 2.4, p. 44]. Define $\lambda_{12}=\lambda_{21}=\lambda_{22}=\rho\left(x_{0}\right) \delta_{x_{0}}$. Clearly, $A=\left(\lambda_{i j}\right) \in \mathscr{M}_{2}^{*}(\mathbb{R})$.

Recall that λ_{11} is indeterminate. We now check that Λ is 2-determinate. Take a $\tilde{\lambda}=\left(\tilde{\lambda}_{i j}\right) \in V_{A}$. Since $n=1$ and λ_{22} is determinate, Proposition 3.2 yields $\lambda_{12}=\tilde{\lambda}_{12}, \lambda_{21}=\tilde{\lambda}_{21}$ and $\lambda_{22}=\tilde{\lambda}_{22}$. It remains to prove that $\lambda_{11}=\tilde{\lambda}_{11}$. The measures $\tilde{\lambda}_{12}, \tilde{\lambda}_{21}$ and $\tilde{\lambda}_{22}$ have the mass $\rho\left(x_{0}\right)>0$ at x_{0}. Since $\tilde{\lambda} \in \mathscr{M}_{2}^{*}(\mathbb{R})$, this implies that $\tilde{\lambda}_{11}\left(\left\{x_{0}\right\}\right) \geqslant \rho\left(x_{0}\right)$. Since $\tilde{\lambda} \in V_{A}, \tilde{\lambda}_{11}$ is a solution of the moment problem $\left\{s_{n} ; n \in \mathbb{N}_{0}\right\}$ as well. Since $\rho\left(x_{0}\right)$ is the largest mass concentrated at x_{0} for all solutions of this moment problem [10, Corollary 2.4], $\bar{\lambda}_{11}\left(\left\{x_{0}\right\}\right)=\rho\left(x_{0}\right)$. By the uniqueness part of Corollary 2.4 in [10], $\lambda_{11}=\tilde{\lambda}_{11}$.

There is another concept of determinacy which might be useful.
Definition 3.2. Suppose that $\left\{S_{\alpha}=\left(s_{i j}(\alpha)\right) ; \alpha \in \mathbb{N}_{0}^{n}\right\}$ is a k-moment sequence and $\Lambda=\left(\lambda_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$ is a representing matrix of measures for $\left\{S_{\alpha} ; \alpha \in \mathbb{N}_{0}^{n}\right\}$. Let $m, r \in\{1, \ldots, k\}$. We say that $s_{m r}(\cdot)$ or $\lambda_{m r}$ is separately k-determinate (with respect to Λ) if $\lambda_{m r}=\tilde{\lambda}_{m r}$ for each $\tilde{\lambda}=\left(\tilde{\lambda}_{i j}\right) \in V_{A}$ satisfying $\lambda_{i j}=\bar{\lambda}_{i j}$ for all i, j such that $(i, j) \neq(m, r)$ and $(i, j) \neq(r, m)$.

Obviously, if $\lambda_{m r}$ is k-determinate, then $\lambda_{m r}$ is separately k-determinate w.r.t A. That the converse is not true can be seen by the following examples. We set $n=1$ and $k=2$ in both examples.

EXAMPLE 3.3. Let μ be an arbitrary indeterminate measure from $\mathscr{M}^{*}(\mathbb{R})$ which is not V-extremal (that is, μ is not an extreme point of V_{μ}). Let λ_{11} and λ_{22} be measures from V_{μ} with disjoint supports. (For instance, we may take two different N-extremal measures from V_{μ}.) Put $\lambda_{12}=\lambda_{21}=0$
and $\Lambda=\left(\lambda_{i j}\right)_{i j=1,2}$. Then λ_{12} is separately k-determinate, since λ_{11} and λ_{22} have disjoint supports (Lemma 1.1, (iv)). Since μ is not V-extremal, \mathscr{P}_{n} is not dense in $L^{1}(\mu)$ [1]. Hence there is a nonzero $f \in L^{\infty}(\mu)$ such that $\int p(x) f(x) d \mu(x)=0$ for all $p \in \mathscr{P}_{n}$. We can assume that $|f(x)| \leqslant 1 \mu$-a.e. on \mathbb{R}. Define $\tilde{\lambda}_{11}=\tilde{\lambda}_{22}=\mu, d \tilde{\lambda}_{12}=f d \mu$ and $d \tilde{\lambda}_{21}=\bar{f} d \mu$. Then, $\tilde{\lambda}=\left(\tilde{\lambda}_{i i}\right) \in V_{A}$ and $0=\lambda_{12} \neq \tilde{\lambda}_{12}$. This shows that λ_{12} is not k-determinate.

In the preceding example λ_{11} and λ_{22} were not separately k-determinate. In the next example λ_{11} and λ_{22} are separately k-determinate, but not k-determinate.

Example 3.4. Let $\mu \in \mathscr{M}^{*}(\mathbb{R})$ be an indeterminate \mathscr{A}-extremal measure. Then μ is of the form $\sum_{n=1}^{\infty} a_{n} \delta_{x_{n}}$, where $a_{n}>0$ for $n \in \mathbb{N}$. Put $\lambda_{11}=\lambda_{12}=\lambda_{21}=\lambda_{22}=\mu$ and $A=\left(\lambda_{i j}\right)_{i, j=1.2}$. If $\mu_{1} \in V_{\mu}$, then the $(2,2)$ matrix for which all entries equal μ_{1} is in V_{μ}. That is, $\lambda_{11}, \lambda_{12}, \lambda_{21}$, and λ_{22} are not k-determinate. We show that $\lambda_{11}, \lambda_{12}, \lambda_{21}$, and λ_{22} are separately k-determinate.

We first prove this for λ_{11}. The proof for λ_{22} is the same. Suppose that $\tilde{\lambda}=\left(\tilde{\lambda}_{i j}\right) \in V_{A}$ and $\lambda_{i j}=\tilde{\lambda}_{i j}$ for $(i, j) \neq(1,1)$. Since $\tilde{\lambda}_{12}=\tilde{\lambda}_{21}=\tilde{\lambda}_{22}=\mu$ has positive mass at x_{n} for $n \in \mathbb{N}, \tilde{\lambda}_{11}$ must have positive mass, say b_{n}, at x_{n}. Because $\tilde{\lambda}$ is a nonnegative matrix, $b_{n} a_{n}-a_{n}^{2} \geqslant 0$, that is, $b_{n} \geqslant a_{n}$ for $n \in \mathbb{N}$. Since $\mu=\sum a_{n} \delta_{x_{n}}$ is \mathcal{N}-extremal, the mass $a_{n}=\rho\left(x_{n}\right)$ is larger than the mass concentrated at x_{n} by any other $\mu_{1} \in V_{\mu}$ [10, Theorem 2.13, p. 60]. Since $\tilde{\lambda}_{11} \in V_{\mu}$, it follows that $b_{n}=a_{n}$ for $n \in \mathbb{N}$ and $\lambda_{11}=\tilde{\lambda}_{11}$.

We now show that λ_{12} is separately k-determinate. Suppose that $\tilde{\lambda}=\left(\tilde{\lambda}_{i j}\right) \in V_{A}, \lambda_{11}=\tilde{\lambda}_{11}$ and $\lambda_{22}=\tilde{\lambda}_{22}$. From supp $\tilde{\lambda}_{12} \subseteq \operatorname{supp} \tilde{\lambda}_{11} \cap \operatorname{supp} \tilde{i}_{22}$ (see Lemma 1.1) it follows that $\tilde{\lambda}_{12}=\sum_{n=1}^{\infty} b_{n} \delta_{x_{n}}$ with some $b_{n} \in \mathbb{C}$ for $n \in \mathbb{N}$. $\tilde{\Lambda} \in \mathscr{M}_{2}^{*}(\mathbb{R})$ gives $\left|b_{n}\right| \leqslant a_{n}$ for all $n \subset \mathbb{N}$. Combined with $\tilde{\Lambda} \in V_{A}$, the latter implies that $\mu-\frac{1}{2}\left(\tilde{\lambda}_{12}+\tilde{\lambda}_{21}\right)=\sum_{n}\left(a_{n}-\operatorname{Re} b_{n}\right) \delta_{s_{n}}$ is in $\mu^{*}(\mathbb{R})$ and has zero moments. This clearly yields $a_{n}=\operatorname{Re} b_{n}$ for $n \in \mathbb{N}$. From $\left|b_{n}\right| \leqslant a_{n}$ we get $b_{n}=a_{n}$ for $n \in \mathbb{N}$, i.e., $\hat{\lambda}_{12}=\tilde{\lambda}_{12}$ and $\lambda_{21}=\tilde{\lambda}_{21}$.

Arguing as in the proof of Proposition 3.2, we obtain
Proposition 3.3. Let $A=\left(\lambda_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$ and $r \in\{1, \ldots, k\}$. If \mathscr{P}_{n} is dense in $L^{2}\left(\lambda_{r r}\right)$, then $\lambda_{m r}$ and $\lambda_{r m}$ are separately k-determinate with respect to A for each $m \in\{1, \ldots, k\}, m \neq r$.

In this opposite direction we have
Propostrion 3.4. Let $A=\left(\lambda_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$ and $r \in\{1, \ldots, k\}$. Suppose that there is a $\delta>0$ such that

$$
\sum_{i, j=1}^{k} \lambda_{i j}(m) t_{i} \bar{t}_{j} \geqslant \delta \sum_{j=1}^{k}\left|t_{j}\right|^{2} \lambda_{A}(\mathfrak{M})
$$

for all $t_{1}, \ldots, t_{k} \in \mathbb{C}$ and all Borel sets \mathfrak{M} of \mathbb{R}^{n}.
If $\lambda_{r r}$ is not V-extremal, then $\lambda_{m r}$ (and $\lambda_{r m}$) is not separately k-determinate for every $m \in\{1, \ldots, k\}, m \neq r$.

Proof. Since $\lambda_{r r}$ is not V-extremal, there is a nonzero $f \in L^{\infty}\left(\lambda_{r r}\right)$ which is orthogonal to \mathscr{P}_{n} in $L^{2}\left(\lambda_{r r}\right)$. Fix $m \in\{1, \ldots, k\}, m \neq r$. Let $\varepsilon>0$. We define a (k, k) matrix $\tilde{\lambda}=\left(\tilde{\lambda}_{i j}\right)$ of measures by $d \tilde{\lambda}_{m r}:=d \lambda_{m r}+\varepsilon f d \lambda_{r r}, \tilde{\lambda}_{r m}:=\tilde{\lambda}_{m r}$ and $\tilde{\lambda}_{i j}=\lambda_{i j}$ otherwise. By the above definiteness assumption, the matrix $\tilde{\Lambda}=\left(\tilde{\lambda}_{i j}\right)$ becomes nonnegative for sufficiently small $\varepsilon>0$. Then $\tilde{\Lambda} \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$. It is clear that $\tilde{\Lambda} \in V_{A}$. Since $f \neq 0$ in $L^{\infty}\left(\lambda_{r r}\right), \lambda_{m r}$ is not separately k-determinate.

Concluding Remarks. A further study of the determinacy seems to be desirable. Let us mention two questions in this direction.
(1) Is Proposition 3.4 true without the definiteness assumption?
(2) Suppose that $\lambda_{11}, \ldots, \lambda_{k k}$ are indeterminate for $\Lambda=\left(\lambda_{i j}\right) \in \mathscr{M}_{k}^{*}\left(\mathbb{R}^{n}\right)$. Does it follow that A is not k-determinate? (The answer is obviously "yes" if A is a diagonal matrix.)

References

1. N. I. Akhiezer, "The Classical Moment Problem," Oliver \& Boyd, Edinburgh, 1965.
2. Ju. M. Berezanskir, "Expansions in Eigenfunctions of Self-adjoint Operators," [Russian], Naukova Dumka, Kiev, 1965.
3. C. Berg and J. P. R. Christensen, Density questions in the classical theory of moments, Ann. Inst. Fourier (Grenoble) 31 (1981), 99-114.
4. G. Choquet, "Lectures on Analysis, Vol. 2," Benjamin, New York, 1969.
5. D. Z. Djokovic, Hermitean matrices over polynomial rings, J. Algebra 43 (1976), 359-374.
6. B. Fuglede, The multidimensional moment problem, Exposition. Math. 1 (1983), 47-65.
7. E. K. Haviland, On the momentum problem for distributions in more than one dimension, I. Amer. J. Math. 57 (1935), 562-568 and II. Amer. J. Math. 58 (1936), 164-168.
8. I. V. Kovalishna, Analytic theory of a class of interpolation problems [Russian], Izv. Akad. Nauk SSR Ser. Mat. 47 (1983), 455-497.
9. J. S. MacNervey, Hermitean moment sequences, Trans. Amer. Math. Soc. 103 (1962), 45-81.
10. J. A. Shohat and J. D. Tamarkin, "The Problem of Moments," Amer. Math. Soc., New York, 1943.
11. W. F. Stinespring, Positive functions on C^{*}-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216.
12. B. Sz.-NAGY, A moment problem for self-adjoint operators, Acta Sci. Math. (Szeged) 3 (1952), 285-292.
