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Let .X*(W”), n E N, denote the set of all positive Bore1 measures on R” having 

moments of all orders. We study the following generalization of the classical 
moment problem: Given a multisequence {S, = (s,(r)); 2 E N;;} of (k, k) matrices 
with complex entries .s,,(c(), when does there exist a nonnegative (k, k) matrix 
A = (A,,) of complex Bore1 measures E.,, on iw” such that I/-,,1 t A*( rW”) and s,((c() = 
j .Y’ dI.,,(.x) for all z E N;; and i, j= l,..., k? ( 1987 Academic Press. Inc 

The problem formulated above will be called the k-moment problem. 
Moment problems of this kind or of a more general type in case n = I 
occur (for instance) in [ 12, 9, and 81. Obviously, in case k = 1 the problem 
reduces to the classical n-dimensional moment problem. 

Section 1 contains some preliminaries and some basic definitions needed 
in the sequel. In Section 2 we give necessary and sufficient conditions for 
the existence of a solution. In Section 3 we define and discuss two concepts 
of determinacy for the k-moment problem. 

Notation. N, are the nonnegative integers. For c( = (a, ,..,, a,,) E Nt and 
x = ( x , ) . . . ) x,)ER”, we let ~‘:=xp~.~.xl:n, where A$‘: = 1. a,,, are the Bore1 
sets on R”. Let 6, denote the unit mass concentrated at s. 

The inner product of @’ is denoted by ( -, .). Let (, = (6,,), j = l,..., k, be 
the standard basis of C“. 6,, is the Kronecker symbol. We shall identify the 
vector space M(k, C) of all (k, k) matrices with complex entries and the 
vector space L(@) of all endomorphisms of Ck via the basis pj, j= l,..., k. 
Let 9” be the vector space of all polynomials in X, ,..., X, with complex coef- 
ficients, considered as functions from R” into C. We denote by Ffl the vec- 
tor space of all Bore1 functions f on R” which grow at most like 
polynomials (i.e., there exists a 4, E Pn such that If(x)] d P,(x) for x E R”). 
:‘$,a M, and ,“z, 0 M, are the vector spaces of al (k, k) matrices with 
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entries in Pm and 9,,, respectively. We denote by 9’:) S,+ , (Pn @ Mk) + and 
tEaok)+ the sets of all PEE’,, f~3$,, (P~)E~$‘,OM~ and 
(fi,) E P$@ Mk, respectively, which are nonnegative for all x E R”. 

We refer to [l, lo] for the notation and the results concerning the 
classical moment problem we use. 

1. THE ~-MOMENT PROBLEM 

(1.1) 
Let k E N and n E N. We denote by AZ (KY) the set of all (k, k) matrices 

A = (A,) of complex Bore1 measures Aii on R” such that: 

(a) A(!JJI) = (A,(!JJI)) is a nonnegative matrix for each W ~93~. 
(b) IAiil EA!*(EY) for all i, j= l,..., k. 

We denote by I., = CF=, Ajj the tracial measure of /i = (A,). Obviously, (a) 
implies that A,, j= l,..., k, and A,, are positive Bore1 measures. Moreover, if 
(a) is true, then (b) is equivalent to A,, E ./Z*(lR”). This is an immediate 
consequence of Lemma 1.1. For later use we collect some simple and well- 
known properties (see [2], V.2) of A = (A,)EA’~(PY) in 

LEMMA 1.1. Let A = (A,)EA~(W) and let m, TE (l,..., k}. 

0) L is absolutely continuous with respect to A,,,,,,, A,,, and An. Let 
g,, denote the Radon-Nikodym derivative of A,,,,. with respect to I,. 

(ii) (gli) is a nonnegative (k, k) matrix A,,-a.e. and c/“= I gii = 1 
I., -a.e.. 

(iii) I g,, I 2 6 g,, g,, 6 g,, d 1 A,-a.e.. 
(iv) supp A,, G supp A,, n supp I,,. 

ProoJ (i): Since (A,(Y.X)) is a nonnegative for each %RE~,,, we have 
IA,,(9JI)l < &,,,(9JI)‘~‘~,,(%N)‘~’ d A,, (!JJI). The absolute continuity follows. 

(ii): From (a) we obtain 

i A,(!JJI) tiq=lm ,t giiti$d,l, 20 for all 
ij= I lJ- 1 

t= (t1,..., tk) E C“ and WE gn. Taking t from a countable dense subset of 
Ck and using that ‘9JI E 5& is arbitrary, a simple measure-theoretic argument 
shows that ( gU) is nonnegative A, -a.e.. 

The other assertions follow immediately. 
Some converse of the preceding is given in Lemma 1.2. We omit the easy 

proof. 



CLASSICAL MOMENT PROBLEM 463 

LEMMA 1.2. Suppose I~jkl*([w”). Let g,, i,j= l,..., k, he A-almost 
everywhere defined measurable functions on KY’. Suppose that the matrix (go) 
is nonnegative A-a.e. and Cf= , g, = 1 %-a.e. on KY’. We d&e Bore1 measures 
A,, on IF!” by d;l,;=g,di. .for i,j= l,..., k. Then A: = (i.,,)E&‘~(R”) und 
A , = 2. 

(1.2) 

A multisequence {S, = (~~(a)); M E NG} of matrices S, E M(k, C) is called 
a k-moment sequence if there exists a n = (jli,) E &X,* (R”) such that 
sil(sl) = 1 Y d;l,,(x) for all CI E fVt and i, j = l,..., k. (All integrals in this paper 
are over W.) The latter can also be written as S, = l X’ d/l(x) for r E N;;. In 
this case /i = (1,) is called a representing matrix of measures for 
{s,;aEN;;}. 

For /i = (A,) E &f(W), we denote by V,, the set of all 
2 = (I,,) E .kz (W) which represents the same sequence of matrices as ,4. 
that is, j x1 d,?,(x) = s x9 dxCj(x) for c( E N’I; and i,,j= l,..., k. 

Similarly as in the theory of the classical moment problem, it is con- 
venient to replace {S,; c1 E N;I} by the associated linear mapping Y from :+$ 
into M(k, C). Y(p) = (tiV(p)) is the (k, k) matrix defined by :Y(p) = C u,S, 
for p(x) = C a,x’ E :YH. As already mentioned, we want to identify M(k. @) 
and I,(@&). 

Let k E N and let Y be a linear mapping from %‘p, into L(@“). Y is called 
k-positive if CfJ=, (Y(p,) T;, ~,)a0 for all vectors c ,,..., CUE @” and all 
matrices (p,) E (YR @ Mk) +. Y is called positive if Ct, _ , (.V( I),%) (‘,, c,) 3 0 
for all vectors r, ,..., ck E Ck and all p, ,..., pk E $,. 

2. EXISTENCE OF A SOLUTION 

(2.1) 

PROPOSITION 2.1. Suppose that { S, = (s,, (cI)); 3: E Ni;l } is a multisequencc 
of matrices S, E M(k, C). Let .Y = (gii) be the associated linear mapping of’ 
9, into L(Ck). The following statements ure equivalent: 

(i) {S,, c( E Ni;r } is a k-moment sequence. 

(ii) .4p is k-positive. 

(iii) Z:J_, C3ji(pV)30for all (p;,)~(e,@M~) +. 

In the proof of Proposition 2.1 we need 

LEMMA 2.2. Each matrix (pi,) E (Pn @ Mk ) + is a .finite .sum of‘ (k, k ) 
matrices of the form (fix.), where fjE Fa,for j= l...., k. 
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Proof Fix XE [w”. Let h,(x), r = l,..., k, denote the eigenvalues of the 
nonnegative (k, k) matrix (pq(x)). By the Iinite dimensional version of the 
spectral theorem, there is a unitary (k, k) matrix (uii(x)) such that 
pii = C:= i h,(x)“‘u,,(x) .h,(x)“‘u,(x). It is easily seen that the 
functions h,V2 uii are in 9$ for i, j = 1 ,..., k. 

Proof of Proposition 2.1. (i) + (ii): Assume that there is a 
/i = (1,) E 4: (KY) such that sii(a) = j xa &,(x) for a E FVi;; and i, j = l,..., k. 
Let c,=(c,i ,... cjk))eCk for j= l,..., k. Suppose (p,)~(9~@M~)+. As in 
Lemma 1 .l, we let g, be the Radon-Nikodym derivative d,l,/dl, for 
i,j=l ,..., k. Then 

= i: j” i: p&)c,ci,g,,(x)dL. 
i,j = 1 m.r= 1 

By Lemma 2.2, it suffices to replace (pq) by a (k, k) matrix (fiJ), where 
f, ,..., fk E Fn. In this case the above expression is clearly nonnegative, 
because (gmr) is a nonnegative matrix 1, -a.e. by Lemma 1.1, (ii). 

(ii) + (ii)’ is obvious, since 

(Y( . ) ej, q) = s,j( . ). 

(ii’) + (i): 
Suppose that the above condition is fulfilled. Then, 

F( ( pv)): = x:;“, = i gii ( pg) defines a positive linear functional on 9” @ M,. 
Since (g” @ Mk) + is colinal in (Yn @ Mk)+, F can be extended to a positive 
linear functional on Fn@ M, which will be again denoted by F. Put 
tim,(f):=F((f6im6,,))forfe9n andm,r=l,..., k. 

We now argue as in the proof of Proposition 4 in [ 111. 
Since the (k, k) matrix (f;if;) is in (Fn@MMk)+ for feF;, 

G(f) : = F((f6,)) = C,“= 1 sii(f) is a positive linear functional on 9”. Hence 
there is a measure A E &*(W”) such that G(f) = J f (x) dil(x) for all f E Ffl 
(see, e.g. [4], Chap. 8). Take fE 9;. For t, ,..., tk E C, the (k, k) matrix 
(f tit,) is in (Fn 0 Mk) and hence 

F((ft$))= i dii(f) tiq>O. (*I 
i,j = 1 
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Consequently, for i, j= l,..., k, 

Idi, 6 (iii(f) “*d~y(f)~‘* < 3ii(f) + ilj,(f) 6 jfdi. 

Writing f E 9$n as f= (f, -fi) + i(f3 -f4) with fi ,..., f4 E 97, we get 
b,(f)1 G 2 j If(x)I 4x) f or all f E pn. This implies the existence of a 
function giiE L”(1) such that clii(f) = jfgV dA for fE 9” and i,j= l,..., k. 

If ,fGFZ, then (*) yields j (xfJ=, g,, t,t/)fdj. > 0 for arbitrary 
t,,..., t, EC. A routine measure-theoretic argument (as in the proof of 
Lemma 1.1, (ii)) shows that (gii) is nonnegative A-a.e. on R”. Defining i.,, 
by i,, = g, djL for i, j = l,..., k, we have A : = (,I,) E &‘z (KY’). By construc- 
tion, S, = J x1 d/l(x) for all c( E NE which completes the proof. 

(2.2) 

In case n = 1 the conditions in Proposition 2.1 can be weakened. 

PROPOSITION 2.3. Suppose that n = 1. Let {S,; c( E No} and 9’ = ( ~J,,) he 
an in Proposition 2.1. The following statements are equivalent: 

(i) is,; CI E N } is a k-moment sequence. 

(ii) .Y is positive. 

(iii) Et,=, :jji(p,P,) 3 0 for all p, ,..., pk E Y” 

Proof: Since (p,p7) E (Y”‘,o Mk)+ for arbitrary p ,,..., pk EP~, we 
obviously have that (ii) + (iii). Combined with Proposition 2.1. this yields 
(i) + (iii). From 

(m. ) Y,’ &,I = :j,,( 1 

we see that (iii) + (iii)‘. 
To prove that (iii)’ + (i), it is sufficient to show that (iii)’ -+ (ii)’ because 

of Proposition 2.1. Let (pO) be a (k, k) matrix from (PM 0 Mk) +. Then there 
exists a (k, k) matrix (qii)E 9”‘,0Mk such that (p,,) = (qli)(q,j)* (see, e.g. 
[S]), that is, p,=CFcI qirG for i, j= l,..., k. 

Therefore, the matrix (pV) is a finite sum of matrices of the form (p,P,), 
where p, ,...,pkcYn. Thus (iii)‘-+ (ii)’ and the proof is complete. 

Remarks. (1) The proof of Proposition 2.1 gives the following 
generalization of Haviland’s theorem as well. Let R be a closed subset of IF!” 
and let (9$‘,0 Mk)z denote the set of all (p,)~p~,O Mk which are non- 
negative for each XE A. If {S,; GL E N;;} and 9 = (jr,) are as in 
Proposition 2.1, then the following are equivalent: 

(i) There exists a representing matrix ,4 E Mu for {S,: 
a E N;;} such that supp 2, c 52. 
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(ii) C&= i (Y(pV) ci, ci) > 0 for all vectors c~,..., CUE C” and every 
(P,j) E @?I 0 Mk)R+. 

(iii) CfJ=, dij(pV)aO for every (p,)E(E@OMk)R+. 

(In the above proof of (ii)’ + (i) we use Haviland’s theorem ([7]) to infer 
that supp 1, c %.) 

(2) It is clear the k-moment problem could be reformulated and 
studied in terms of operator theory (that is, simultaneous spectral 
resolution of commuting self-adjoint operators in dilation spaces). We do 
not consider these aspects in the present paper. 

3. DETERMINACY 

(3.1) 

DEFINITION 3.1. Let {S, = (.~~(a)); ME N;t} be a k-moment sequence 
and let /i = (1,) E J&!: (l&Y) be a representing matrix of measures for {S,; 
tl E N;}. Let m, r E { l,..., k}. We say that s,,( . ) (or the measure n,,) is 
k-determinate if A,,,, = I,,,, for each ;i = (I,) E &Zz (Iw”) with ;i E VA. (S,; 
c1 E N ;;} (or /1) is called k-determinate if V,, is a singleton. 

It is clear from the above definition that a k-moment sequence 
{S,=(s,(a)); a~FVj;j) (or /i=(n,)~~V~(ll?Y)) is k-determinate if sii(.) (or 
1,) is k-determinate for all i,j= l,..., k. 

PROPOSITION 3.1. Suppose that A = (A,) E Aft (R”). If A,, is determinate, 
then A is k-determinate. 

Proof. Let ;i = (x,j) E V,, . That is, we have by definition lp(x) dA,(x) = 
jp(x) dx,(x) for all p E $, and i, j= l,..., k. In particular, {p(x) dA,, (x) = 
ip(zr;di.,(x) for PC,%. S ince A,, is assumed to be determinate, this implies 

A 2. 
Fix m, TE { l,..., k}. As in Lemma 1.1, we denote by g,, and g,, the 

Radon-Nikodym derivatives d&,,fdjl,, and dI,,,,ldAA, respectively. From 
;i E V, and 2, = 1A we conclude that j p(x)(g,,(x) -f,,(x)) dA,, = 0 for 
all polynomials p E Yn. Since I, is determinate, 9n is dense in L’(A,, ) [ 1, 
p. 473. (Though the result is stated in [l] only in case n = 1, the proof 
applies to any dimension no N.) By Lemma 1.1, (iii), gmr-gm,ELm(A,,). 
Therefore, we get g,, - g,, = 0 A,, -a.e. on K?“. This clearly implies A,,,, = I,,,,, 
i.e., imr is k-determinate. This completes the proof. 

The converse of Proposition 3.1 is not valid. The following examples 
shows that /1= (1,) E -%e,* (KY) can be k-determinate if i, is indeterminate. 
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EXAMPLE 3.1. Let i, i and Al2 be determinate measures from A*( KY’) 
with disjoint supports such that A : = Ai, + & is indeterminate. (The sim- 
plest way to fulfill these assumptions is as follows. Let n = 1. Take an 
indeterminate M-extremal measure I = C;= I a,d.,” on [w and set ,?,, = u, 6 ,, 
and A,, = jU - A,, . By [l, p. 1151, or [3, Theorem 73, A,, and A,, are deter- 
minate.) Put I.,, = E”,, = 0. Then A : = (A,) E.&‘*(W) is 2-determinate, but 
A,,, = ,! is indeterminate. A,, and A,, are obviously 2-determinate. For 
A,? n supp I,, = @ and Lemma 1.1, (iv). 

(3.2) 
Now we discuss the relation between the A--determinacy of 

A = (A,,) E A‘~ ( W) and the determinacy of A], ,..., A,, . 

PROPOSITION 3.2. Suppose A = (Aii) E A’~(W). Let r E { l,..., k ). Suppose 
that A,., is determinate. In case n > 2 we assume in addition thut 9” is dense in 
L’(E.,,). Then A,r and A,, are k-determinate ,fbr each m E ( l,..., k }. 

Ij these assumptions are satisfied for all r = l,..., k, then A is k-deter- 
minate. 

Proqf: It clearly suffices to prove the first part. Fix m E { l,..., k 1. 
By Lemma 1.1, there are functions g,EL’(lb,,) such that dA,,=g!,dA,, 

for i,j=l,.., k. Moreover, by Lemma 1.1, Ig,,,I’dg,,g,,<g,, A,,-a.e. 
on 5X”. The function g,,g, ’ is measurable and E.,,-almost everywhere 
defined. Since J 1 g,, 1 2 g,’ dA,, = j I g,, I ’ g,; ’ dE,,, d di.,, < SC because of 
E.,, E .4’*(W), we have g,,gr;’ E L’(l,,). 

Now let ;i = (I,,) E V,. Let gli be the corresponding Radon-Nikodym 
derivatives dz,,/di,-, i, j= l,..., k. Since A,, is determinate, i,, = I,,. By the 
preceding we have g,,g, ’ - g,rg,; ’ E L’(E.,,) = L’(x,,). From 2 E V,, we get 

i‘ P(X) d&,,(x) = 1 p(x) g,,,,(x) dJ,, 

= p(x) gm,(-v) g,,(x) ’ &r(x) i 

= P(X) g,,(x) g,,(x) ’ d%,(-v) s 

= P(X) d&,&) I 

for p E pn. Since A,, = X,,, this shows that g,,g,;’ - g,,,,g;; ’ = : h,, is 
orthogonal to YE in L2(&,). If n = 1, then Yn is dense in L’(A,,), since A,, is 
determinate [ 11. In case n 2 2 this is true by assumption. Hence h,, = 0 in 
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L’(Iz,,), i.e., g,,g,’ = g,,,,g’, ’ A,,-a.e. on Iw”. Therefore, d&,,, = g,, dl,, = 
g,,g, ’ dA,, = g,,,,g, ’ dI*, = dxr, and A,,,, = I,,,, . Similarly, 1, = 5,. 

Remarks. (1) It seems to be unknown in case n > 2 whether the 
polynomials are dense in L2 if the measure is determinate (see also [6]). 
I conjecture that this is not true. 

(2) For n = 1 Proposition 3.2 shows that /i = (1,) E Mt ([w”) is 
k-determinate provided all diagonal measures A,,., r = l,.., k, are deter- 
minate. Again the converse is not valid as the next example shows. 

EXAMPLE 3.2. Let n = 1 and k = 2. Let {sn ; n E N 0} be an arbitrary 
indeterminate moment sequence of real numbers and let p(z), z E C, be the 
corresponding function as defined in [lo], p. 42. Since {sn} is indeter- 
minate, p(z) > 0 for all z E @ [ 10, Corollary 2.7, p. SO]. Fix a point x,, E [w. 
There exists one and only one solution A,, E&!*(R) of the moment 
problem {sn; n E No} which has the mass p(xO) at x0 [lo], Corollary 2.4, 
p. 441. Define 2 ,2 = A,, = A,, = p(xO) 6,. Clearly, /1 = (2,) E AZ* ([w). 

Recall that A,, is indeterminate. We now check that /1 is 2-determinate. 
Take a ;i = (I,) E V,, . Since n = 1 and %22 is determinate, Proposition 3.2 
yields il,, = I,,, A,, =x2, and II,, = I,,. It remains to prove that EL,, = I,, . 
The measures I,, , I,, and I,, have the mass p(x,) >O at x0. Since 
2 E JZ; (aB), this implies that I,, ({x0}) 2 p(x,,). Since ;i E V,, , I,, is a 
solution of the moment problem {sn; n E No} as well. Since p(x,) is the 
largest mass concentrated at x0 for all solutions of this moment problem 
[lo, Corollary 2.41, x,, ( {x0}) =p(xO). By the uniqueness part of 
Corollary2.4 in [lo], i,, =X1,. 

(3.3) 
There is another concept of determinacy which might be useful. 

DEFINITION 3.2. Suppose that {S, = (.~~(a)); CIE N;I} is a k-moment 
sequence and ,4 = (A,) E J%e,* ( [Wn) is a representing matrix of measures for 
{S,; CLE IV;). Let m, re (l,..., k}. We say that s,,( . ) or A,, is separately 
k-determinate (with respect to A) if A,, = Im, for each ii = (2,) E V,, satisfy- 
ing 1, = 1, for all i,j such that (i,j) # (m, r) and (i,j) # (r, m). 

Obviously, if A,,,, is k-determinate, then A,,,, is separately k-determinate 
w.r.t A. That the converse is not true can be seen by the following exam- 
ples. We set n = 1 and k = 2 in both examples. 

EXAMPLE 3.3. Let p be an arbitrary indeterminate measure from 
J%‘*(R) which is not V-extremal (that is, p is not an extreme point of I’,). 
Let A,, and A,, be measures from V, with disjoint supports. (For instance, 
we may take two different N-extremal measures from VP.) Put A,, = ;1,, = 0 
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and n = (l,)iJ.= ,,2. Then I,, is separately k-determinate, since ,I,, and iUZz 
have disjoint supports (Lemma 1.1, (iv)). Since p is not V-extremal, $, is 
not dense in L’(p) [l]. Hence there is a nonzero f~ L” (p) such that 
j P(X)f(X) 44x) = 0 f or all p E 9”. We can assume that If(x)1 < 1 p-a.e. on 
[w. Define I,, = x2* = p, dx,, =fdp and d&, =f&. Then, ,? = (I,;) E V,, and 
0 = A,* #x,,. This shows that II,, is not k-determinate. 

In the preceding example i ], and ,IZ2 were not separately k-determinate. 
In the next example A,, and & are separately k-determinate, but not 
k-determinate. 

EXAMPLE 3.4. Let p~~.R;e*(lQ) be an indeterminate ,t‘-extremal 
measure. Then p is of the form C,“=, ~,,6,~, where a, > 0 for HE N. Put 
A,, =k,2=&, = &=p and /1= (iij)jJ= l,z. If p, E V,,, then the (2, 2) 
matrix for which all entries equal pI is in V,,. That is, I.,, , i.,,, i,,, , and i.,, 
are not k-determinate. We show that >*, r, iw,2, E.,, , and jM2? are separately 
k-determinate. 

We first prove this for A,, . The proof for jUrr is the same. Suppose that 
,;i = (xlj) E V,, and AiJ = 1, for (i j) # (1, 1). Since I,> = k, = &2 = p has 
positive mass at x,, for n E N, I,, must have positive mass, say h,,, at x,,. 
Because ii is a nonnegative matrix, h,a,, - of > 0, that is, h,, 3 a,, for n E N. 
Since p = C u,6 ‘n is .M-extremal, the mass u,=p(~,) is larger than the 
mass concentrated at x, by any other p, E V,, [lo, Theorem 2.13, p. 607). 
Since I,, E V,,, it follows that h, = u, for n E N and i., , = I,, 

We now show that 1,2 is separately k-determinate. Suppose that 
2 = (I,,) E V,, A,, = I,, and I.,, = xZ2. From supp x,, c supp I,, n supp I,z 
(see Lemma 1.1) it follows that I,, = I,“= r b,,dYn with some h, E @ for n E N. 
;i E JZ: ([w) gives 16,I da, for all n E N. Combined with ;i E V,d, the latter 
implies that p - $(Xlz + I,,) = C, (a, - Re h,) 6,” is in .M*(rW) and has zero 
moments. This clearly yields a, = Re b, for n E N. From lh,, / <a, we get 
h,,=u, for HEN, i.e., i,2=z,2 and &,=i2,. 

(3.4) 
Arguing as in the proof of Proposition 3.2, we obtain 

PROPOSITION 3.3. Let A = (A,) E AZ (R”) and r E ( l,..., k}. !I’*, is dense 
in L2(ir,), then i,,,, and i,,,, are separately k-determinute with respect to A 
for each rnE {l,..., k}, mfr. 

In this opposite direction we have 

PROPOSITION 3.4. Let A = (A,) E A?: (UT) and r E {l,..., k}. Suppose that 
there is u 6 > 0 such that 
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ij= I j=l 

for all t, ,..., tk E C and all Bore1 sets YJI of W. 
Zf I,,, is not V-extremal, then A,,,, (and A.,,) is not separately k-determinate 

for every m E { l,..., k}, m # r. 

Proof Since II,, is not V-extremal, there is a nonzero f E L”(I,,) which 
is orthogonal to pH in L’(&,). Fix m E {l,..., k), m #r. Let E > 0. We define 
a (k, k) matrix 2 = (I,) of measures by d&,,, : = dll,, + &f dL,,, 5, : = I,,,, 
and 4 = A, otherwise. By the above definiteness assumption, the matrix 
ji = (A,) becomes nonnegative for sufficiently small E > 0. Then 
;i E J%‘: (R”). It is clear that 2 E V,. Since f # 0 in ~5~(1,,), A,, is not 
separately k-determinate. 

Concluding Remarks. A further study of the determinacy seems to be 
desirable. Let us mention two questions in this direction. 

(1) Is Proposition 3.4 true without the definiteness assumption? 
(2) Suppose that 2 ,,,..., A,, are indeterminate for n = (AU) E &z (R”). 

Does it follow that n is not k-determinate? (The answer is obviously “yes” 
if /1 is a diagonal matrix.) 
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