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Image Analysis by Tchebichef Moments
R. Mukundan, Senior Member, IEEE, S. H. Ong, and P. A. Lee

Abstract—This paper introduces a new set of orthogonal mo-
ment functions based on the discrete Tchebichef polynomials. The
Tchebichef moments can be effectively used as pattern features in
the analysis of two-dimensional images. The implementation of
moments proposed in this paper does not involve any numerical
approximation, since the basis set is orthogonal in the discrete
domain of the image coordinate space. This property makes
Tchebichef moments superior to the conventional orthogonal
moments such as Legendre moments and Zernike moments, in
terms of preserving the analytical properties needed to ensure
information redundancy in a moment set. The paper also details
the various computational aspects of Tchebichef moments and
demonstrates their feature representation capability using the
method of image reconstruction.

Index Terms—Discrete orthogonal systems, image feature repre-
sentation, orthogonal moments, Tchebichef polynomials.

I. INTRODUCTION

M OMENT functions have been used as shape descriptors
in a variety of applications in image analysis, like visual

pattern recognition [1], [4], object classification [7], template
matching [6], edge detection [5], pose estimation [13], robot vi-
sion [12], and data compression [9]. In all these applications,
geometric moments and their extensions in the form of radial
and complex moments have played important roles in charac-
terizing the image shape, and in extracting features that are in-
variant with respect to image plane transformations. Teague [18]
introduced moments with orthogonal basis functions, with the
additional property of minimal information redundancy in a mo-
ment set. In this class, Legendre and Zernike moments have
been extensively researched in the recent past, and several new
techniques have emerged involving orthogonal moment based
feature detectors [10], [14], [20].

In the following, we consider some of the major problems
that are commonly encountered while implementing moment
functions.

A. Numerical Approximation of Continuous Integrals

The general two-dimensional (2-D) moment definition using
a moment weighting kernel (also known as the basis function)

, and an image intensity function is given as

(1)
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The integrals in the above equation are usually approximated by
discrete summations, and this process not only leads to numer-
ical errors in the computed moments, but also severely affects
the analytical properties which they were intended to satisfy,
such as invariance, orthogonality, etc.

B. Large Variation in the Dynamic Range of Values

The kernel often involves powers ofand . For example,
geometric moments of order on an image of size
pixels, are defined using the following kernel:

(2)

Similarly, a radial moment of order and repetition has the
kernel

(3)

Moments computed with the above schemes will therefore have
large variation in the dynamic range of values for different or-
ders. Applications involving such moment functions will have
to additionally include scale normalization to maintain equal
weight for all the components in a set of feature vectors. Fur-
ther, it may also be necessary to develop methods for avoiding
numerical instabilities when the image size is large.

C. Coordinate Space Transformation

Orthogonal basis functions do not have the aforesaid problem
of large dynamic range variation, but they generally have a do-
main which is completely different from the image coordinate
space. For example, the Legendre polynomials are valid only in
the range , while the Zernike radial polynomials are de-
fined inside the unit circle [2], [10], [11], [18]. The application
of such orthogonal polynomials as basis functions in (1) will
require an appropriate transformation of the image coordinate
space [15]. The elemental area in (1) also gets scaled
by the corresponding factor, thus increasing the computational
complexity.

The above problems motivate us to consider using discrete
orthogonal polynomials as the basis set, and to define the cor-
responding moments directly on the image coordinate space.
Since the implementation of discrete orthogonal moments does
not involve any numerical approximations, the basis functions
will exactly satisfy the orthogonality property, and thus yield a
superior image reconstruction. Consider a discrete orthogonal
system , where . The orthogonality property
in the above domain can then be written as

(4)
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TABLE I
SOME IMPORTANT DISCRETEORTHOGONAL POLYNOMIALS AND THEIR WEIGHT

FUNCTIONS(p; �; c; �;  ; � ARE PARAMETERSATTACHED TO THERESPECTIVE

POLYNOMIALS. n DENOTES THEDEGREE)

where is the weighting function (also called the jump func-
tion), and is the squared norm. The weighting functions of
some important discrete orthogonal systems [3], [16] are given
in Table I. The simplest among these systems is the Tchebichef
polynomial which has a unit weight, and has a domain of def-
inition that is ideally suited for square images of size
pixels.

In this paper, we propose a new set of orthogonal moment
features based on discrete Tchebichef polynomials. The or-
ganization of the paper is as follows. A brief outline of the
properties of continuous orthogonal moments is given in Sec-
tion II. The equations related to Legendre and Zernike moments
are presented to highlight their implementation aspects and to
use them later as a reference to compare the performance of
Tchebichef moments. A review of discrete orthogonal systems,
and the prerequisites for defining a set of moments on a
discrete coordinate space are given in Section III. This section
also provides the definition of Tchebichef polynomials. The
scaled Tchebichef polynomials and the Tchebichef moments
are introduced in Section IV. A few important properties of
Tchebichef polynomials, which can be effectively used in
moment computation, are given in Section V. Experimental
results validating the theoretical derivations, and a comparative
analysis of performance of Tchebichef moments with Legendre
and Zernike moments are included in Section VI.

II. CONTINUOUS ORTHOGONAL MOMENTS

The two most important orthogonal moments that have found
several applications in the field of image shape representation
are the Legendre moments and the Zernike moments. The Le-
gendre moments of order are defined as

(5)

where is the Legendre polynomial of degree.

On an image coordinate space , the above
moment integral has the following discrete approximation:

(6)

The inverse moment transform which follows from the orthog-
onality of Legendre polynomials in the continuous domain, can
be similarly expressed as

(7)

The reconstruction of an image from a set of moments from
order 0 to order uses the truncated form of the series in
(7), to get a polynomial approximation of .

The Zernike moments of order , and repetition are
defined using polar coordinates inside a unit circle

is even (8)

In this equation, denotes the Zernike radial polynomials
of degree . A discrete approximation of (8) is

(9)

where the image coordinate transformation to the interior of the
unit circle is given by

(10)

The Zernike moment of order has com-
ponents including both positive and negative values of
, satisfying the conditions in (8). The components are

. If we write

(11)
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then using the definition (8) and the properties

, the inverse moment transform can be
conveniently expressed as follows:

exists only if is even (12)

The above formula can be used to reconstruct an image from its
Zernike moments computed up to a maximum order.

III. D ISCRETEORTHOGONAL MOMENTS

The following well-known theorem on orthogonal functions
provides the mathematical basis for arriving at a definition for
discrete orthogonal moments of an image intensity distribution

: If is a set of discrete orthogonal polynomials
with unit weight, satisfying the condition

(13)

then any bounded function , has the
following polynomial representation in terms of the functions

(14)

where the coefficients are given by

(15)

The above theorem can be generalized for orthogonal polyno-
mials with weight , by replacing each orthogonal function

by the function in (13)–(15).
Equation (15) is easily obtained by substituting for

using (14) in the expression ,
and noting that

(16)

Conversely, (14) follows from (15). In the context of image mo-
ments, it means that if we define a discrete orthogonal moment
function as in (15) with as the basis set, then the image
may be reconstructed from the moments, using (14) as the in-
verse moment transform. The moment definition as given in (15)
completely eliminates the need for any approximation of contin-

uous integrals, and does not require coordinate space transfor-
mations. We propose a modified version of Tchebichef polyno-
mials as a convenient set of discrete orthogonal basis functions
with unit weight, for defining moments of the above type.

The discrete Tchebichef polynomials [3], [8] are defined as

(17)

where is the Pochhammer symbol given by

(18)

and is the generalized hypergeometric function

(19)

With the above definitions, (17) can also be written as

(20)

The Tchebichef polynomials satisfy the property of orthogo-
nality (13), with

(21)

and have the following recurrence relation:

(22)

This set of polynomials is, however, not suitable for defining
moments, as it can be easily verified that the value of
grows as , and the value of the moment given in
(15) grows as . We therefore introduce thescaled
Tchebichef polynomials, and analyze the properties of the
corresponding moment functions.

IV. TCHEBICHEFMOMENTS

We define the scaled Tchebichef polynomials as

(23)

where is the discrete Tchebichef polynomial of degree,
given by (17), and is a suitable constant which is inde-
pendent of . Under the above transformation, the squared-norm
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Fig. 1. Plot of scaled Tchebichef polynomials forN = 20.

of the scaled polynomials gets modified according to the for-
mula

(24)

We now define the Tchebichef moments as

(25)

This equation also leads to the following inverse moment trans-
form:

(26)

The scale factor is typically a function of which
grows as . The above framework for computing the scaled
Tchebichef polynomials and the associated moments, then guar-
antees that there will not be large variations in the dynamic range
of values of moments, nor any numerical instabilities for large
values of . The simplest choice for is

(27)

in which case, we have the following recurrence formula for
as shown at the bottom of the page, where and

and

(29)

A plot of the polynomial values for , obtained from
(28) is given in Fig. 1. Other possible choices of are as
follows.

1) . With this
scale factor, the scaled polynomials satisfy the condition

if is even, and if is odd.
2) . This

choice of leads to the equation
, which is equal to the corresponding squared-norm of

the Legendre polynomials in the discrete domain.
3) . Obviously, this selection is

helpful in making the scaled polynomial set orthonormal,
with the property .

The recurrence formulae for the above cases can be obtained
in a compact form. It is also interesting to note that the recon-
structed image intensity function obtained from the inverse mo-

(28)
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ment transform, is independent of the choice of . This
can be easily verified using (23)–(26).

V. PROPERTIES OFTCHEBICHEFMOMENTS

In this section, we analyze some of the computational as-
pects of Tchebichef moments, using well known properties of
Tchebichef polynomials.

A. Symmetry

The symmetry property can be used to considerably reduce
the time required for computing the Tchebichef moments. The
scaled Tchebichef polynomials have the same symmetry prop-
erty which the classical Tchebichef polynomials satisfy

(30)

This relation suggests the subdivision of the domain of an
image (where is even) into four equal parts (Fig. 2), and

performing the computation of the polynomials only in the first
quadrant where . The expression for
Tchebichef moments in (25) can be modified with the help of
(30), as follows:

(31)

In addition to reducing the computation time by a factor of four,
the symmetry property is also useful in minimizing the storage
required for the scaled Tchebichef polynomials. If an applica-
tion needs the storage of polynomials up to a maximum degree

, then a two-dimensional (2-D) array of size
would suffice. However, in this case, the application has to in-
corporate the symmetry condition in its formulation, to deter-
mine the value of when . As an example, the
reconstruction formula in (26) will have to be modified as

if

if

if

if (32)

Fig. 2. Owing to symmetry, Tchebichef polynomials need be computed only
on one quadrant image.

B. Polynomial Expansion

The scaled Tchebichef polynomial can be expressed as
a polynomial of . Using (20) and (23), we can write

(33)

where

(34)

and are the Stirling numbers of the first kind [19], which
satisfies

(35)

C. Representation Using Geometric Moments

The polynomial expansion given above is useful in writing the
Tchebichef moments (25) in terms of the geometric moments. If
the geometric moments of an image are expressed using
the discrete sum approximation as

(36)

then using (33), the Tchebichef moments of the same image may
be expressed in terms of geometric moments as follows:

(37)

where

From (37), it is seen that the Tchebichef moments depend on
the geometric moments up to the same order. The explicit ex-
pressions of the Tchebichef moments in terms of geometric mo-
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ments up to the second order (for ) are as fol-
lows:

(38)

D. Recurrence Relation with Respect to

The polynomials have the following recurrence relation
[3], with respect to the variable

(39)

The starting values for the above recursion can be obtained from
the following equations:

(40)

VI. EXPERIMENTAL RESULTS

This section presents the test data and results used to vali-
date the theoretical framework presented above, and also to es-
tablish the feature representation capability of Tchebichef mo-
ments through image reconstruction. A comparative analysis
between Tchebichef moments, Legendre moments and Zernike
moments is also given. A binary image of the letter “E” (see
Fig. 3) on a 20 20 pixel grid was used to analyze
the values of the moment functions. The Tchebichef, Legendre,
and geometric moments of the first few orders of the test image,
computed using (31), (6), and (36), respectively, are given in
Table II. In addition to the relationship between the two mo-
ments and as given in (37), the table also shows the uni-
form range of Tchebichef moments for different orders. The re-
markable similarity between the values of Tchebichef moments
and Legendre moments can be attributed to the fact [3], [17]

(41)

Equivalently

(42)

Fig. 3. Image reconstruction of letter “E”(N = 20).

TABLE II
TCHEBICHEF, LEGENDRE, AND GEOMETRICMOMENTS OF THETEST IMAGE

The sequence of reconstructed images, as the maximum order
of moments used in the reconstruction is varied from seven to
14, is shown in Fig. 3. We used the following formula to charac-
terize the error between an input binary image , and the
reconstructed image

(43)

It may be noted that the total number of moment terms from
order zero up to order , in the case of both Tchebichef and
Legendre moments is

(44)

Zernike moments also satisfy the above condition, since there
are components for anth order moment (see Section II).
Fig. 3 thus provides a comparison of the relative performances
of Tchebichef, Legendre, and Zernike moments on the same
scale.

Results of image reconstruction with a 6060 image
of a Chinese character are given in Fig. 4, with the max-

imum order of moments varied from 14 to 28. A more detailed
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Fig. 4. Image reconstruction of a Chinese character without noise(N = 60).

Fig. 5. Comparative analysis of reconstruction error without image noise.

Fig. 6. Reconstruction from noisy image of a Chinese character(N = 60).

comparison plot of the variation of reconstruction error with the
maximum order of moments is in Fig. 5. The analysis is repeated
by adding 5% salt-and-pepper noise to the input image, and the
corresponding results are given in Figs. 6 and 7. All of these re-
sults demonstrate the superior feature representation capability
of Tchebichef moments over both Legendre and Zernike mo-
ments.

VII. CONCLUSION

A new set of discrete orthogonal moment features based on
Tchebichef polynomials has been proposed in this paper. The

Fig. 7. Comparative analysis of reconstruction errors with image noise.

basis functions are orthogonal in the domain of the image co-
ordinate space, and this feature completely eliminates the need
for any discrete approximation in their numerical implementa-
tion. The coordinate space normalization required in Legendre
and Zernike moment evaluation is also eliminated. Appropriate
scale factors are introduced in the moment functions, so that the
computed moments do not exhibit large variation in the dynamic
range of values, nor any kind of numerical instabilities for large
image sizes. Important analytical properties of Tchebichef poly-
nomials and moments, together with their computational aspects
have also been discussed.

Experimental results conclusively prove the effectiveness of
Tchebichef moments as feature descriptors. Comparative anal-
ysis with Zernike and Legendre moments, shows the superior
feature representation capability of Tchebichef moments.

Feature descriptors that are invariant with respect to rotations
in the image plane, can be easily constructed using Zernike
moments. Zernike moments are however computationally more
complex than Tchebichef moments. Legendre and Tchebichef
moments fall into the same class of orthogonal moments defined
in the Cartesian coordinate space, where moment invariants
(particularly rotation invariants) are not readily available. One
method that is commonly adopted in such situations requiring
invariant pattern recognition, is to first normalize the image
to a standard image. Future work in the field of Tchebichef
moments is directed toward the identification of invariants, and
feasibility studies on the use of Tchebichef polynomials in two
variables as basis functions.
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