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Image Analysis by Tchebichef Moments

R. Mukundan Senior Member, IEEES. H. Ong, and P. A. Lee

Abstract—This paper introduces a new set of orthogonal mo- The integrals in the above equation are usually approximated by
ment functions based on the discrete Tchebichef polynomials. The discrete summations, and this process not only leads to numer-
Tchebichef moments can be effectively used as pattern features inica| errors in the computed moments, but also severely affects

the analysis of two-dimensional images. The implementation of . . . . .
moments proposed in this paper does not involve any numerical the analytical properties which they were intended to satisfy,

approximation, since the basis set is orthogonal in the discrete SUch as invariance, orthogonality, etc.
domain of the image coordinate space. This property makes

Tchebichef moments superior to the conventional orthogonal B. |arge Variation in the Dynamic Range of Values
moments such as Legendre moments and Zernike moments, in

terms of preserving the analytical properties needed to ensure ~ Thekernetp,, ofteninvolves powers gf andg. For example,
information redundancy in a moment set. The paper also details geometric moments of ordép+ ¢) on an image of siz& x N
the various computational aspects of Tchebichef moments and pixels, are defined using the following kernel:

demonstrates their feature representation capability using the
method of image reconstruction.

i . Vpa(@,y) =2y%, 0<z, y<N-1L )
Inde_x Terms—Discrete orthogonal systems, image f_eature repre-
sentation, orthogonal moments, Tchebichef polynomials. Similarly, a radial moment of order and repetition; has the
kernel
|l. INTRODUCTION '
pg(r,0) = rPe??. 3)

OMENT functions have been used as shape descriptors

in a variety of applications in image analysis, like visuajjoments computed with the above schemes will therefore have
pattern recognition [1], [4], object classification [7], templatgyrge variation in the dynamic range of values for different or-
matching [6], edge detection [5], pose estimation [13], robot Viers Applications involving such moment functions will have
sion [12], and data compression [9]. In all these applicationg, aqditionally include scale normalization to maintain equal
geometric moments and their extensions in the form of radigkight for all the components in a set of feature vectors. Fur-
and complex moments have played important roles in charggar, it may also be necessary to develop methods for avoiding

terizing the image shape, and in extracting features that are iimerical instabilities when the image size is large.
variant with respect to image plane transformations. Teague [18]

introduced moments with orthogonal basis functions, with the cqordinate Space Transformation

additional property of minimal information redundancy in a mo-

ment set. In this class, Legendre and Zernike moments hav&rthogonal basis functions do not have the aforesaid problem
been extensively researched in the recent past, and several fERr9e dynamic range variation, but they generally have a do-
techniques have emerged involving orthogonal moment bad8gn which is completely different from the image coordinate

feature detectors [10], [14], [20]. space. For example, the Legendre polynomials are valid only in

In the following, we consider some of the major problemg‘|e rang€ -1, 1], while the Zernike radial polynomials are de-
ined inside the unit circle [2], [10], [11], [18]. The application

that are commonly encountered while implementing momeW? k ! . ' .
functions. of such orthogonal polynomials as basis functions in (1) will
require an appropriate transformation of the image coordinate
A. Numerical Approximation of Continuous Integrals space [15]. The elemental aréa - dy in (1) also gets scaled
y the corresponding factor, thus increasing the computational
mplexity.
The above problems motivate us to consider using discrete
orthogonal polynomials as the basis set, and to define the cor-
responding moments directly on the image coordinate space.
Wy = //%q(%y)f(%y) drdy, p,q=0,1,2,....  gjnce the implementation of discrete orthogonal moments does
ey 1) not involve any numerical approximations, the basis functions
will exactly satisfy the orthogonality property, and thus yield a
superior image reconstruction. Consider a discrete orthogonal
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TABLE | On an image coordinate spag@eyj) € [0, N — 1], the above

SOME IMPORTANT DISCRETEORTHOGONAL POLYNOMIALS AND THEIR WEIGHT moment integral has the foIIowing discrete approximation:
FUNCTIONS (p, a, ¢, &, ¥, ( ARE PARAMETERS ATTACHED TO THE RESPECTIVE

POLYNOMIALS . n DENOTES THEDEGREE

N—-1N-1 .
2 1)(2 1 2i—N+1
Name Notation a b w(x) )\pq = % ; z_:o Pp <%)
Tehebichel ) 0 | M1 1 ==
‘ 2j—N+1 o
Krawtchouk P |0 N p"(l—p)”"‘( N) x Py <ﬁ) f(i,9)- (6)
Charfior = — The inverse moment transform which follows from the orthog-
¢, (x) 0 a ea . . . R .
3 onality of Legendre polynomials in the continuous domain, can
be similarly expressed as
Meixner m (x) 0 o« (&),
* A 2% — N+1
Tiahn P2 Y R R van @, F@i) =323 Amnbm < N_1 )
X!({)x m=0n=0
2j —N+1 o
P, |Z*——), i,j=0,1,2,...N —1.
X < N1 ) (2%
wherew(?) is the weighting function (also called the jump func- (7)

tion), andp(-) is the squared norm. The weighting functions of
some important discrete orthogonal systems [3], [16] are givéhe reconstruction of an image from a set of moments from
in Table I. The simplest among these systems is the Tchebicheder 0 to ordemn,,,x uses the truncated form of the series in
polynomial which has a unit weight, and has a domain of def?), to get a polynomial approximation ¢fs, j).
inition that is ideally suited for square images of si¥ex N The Zernike moments’,,; of ordern, and repetition are
pixels. defined using polar coordinatés, #) inside a unit circle

In this paper, we propose a new set of orthogonal moment
features based on discrete Tchebichef polynomials. The or- (n+1)
ganization of the paper is as follows. A brief outline of the Znt = 7/1
properties of continuous orthogonal moments is given in Sec-
tion Il. The equations related to Legendre and Zernike moments 7 =+v—1, ||]<n, n-—|l|iseven (8)
are presented to highlight their implementation aspects and to
use them later as a reference to compare the performancgnahis equation,,.(~) denotes the Zernike radial polynomials
Tchebichef moments. A review of discrete orthogonal SyStenEﬁvdegreen. A discrete approximation of (8) is
and the prerequisites for defining a set of moments on a
discrete coordinate space are given in Section Ill. This section

1 27 .
/ Rnl(T)e_jwf(T, O)r dr db,
=0 Jo=0

N—-1N-1

also provides the definition of Tchebichef polynomials. The Tt = 2Ant1) Z Z Ryu(rij)

scaled Tchebichef polynomials and the Tchebichef moments (N —1)? i=0 =0

are introduced in Section IV. A few important properties of .

Tchebichef polynomials, which can be effectively used in x e I f(i5), 0<r; <1 (9)

moment computation, are given in Section V. Experimental

results validating the theoretical derivations, and a comparatiy@ere the image coordinate transformation to the interior of the
analysis of performance of Tchebichef moments with Legendugit circle is given by

and Zernike moments are included in Section VI.

V2
A — g 2 4 2 —
Il. CONTINUOUS ORTHOGONAL MOMENTS rij = V(ai+ ) +(cj+e2)?, o= N1
The two most important orthogonal moments that have found 1 e+
several applications in the field of image shape representation c2 = —7, 6;; = tan™! <T> ,
are the Legendre moments and the Zernike moments. The Le- 2 C1t T c2

gendre moments of ordép + ¢) are defined as ij=01,2. N—1. (10)

N RN R |
pg = 4 The Zernike momentZ,,; of order n has (n + 1) com-

1l ponents including both positive and negative values of

X/l/le(a?)Pq(y)f(a:,y) dz dy, I, satisfying the conditions in (8). The components are

2,y € [_171]7 pq=0.12... (5) Zn,—lazn,—l-l—Qa---Zn,l—27an- If we write

whereP,,(z) is the Legendre polynomial of degree Tt = ij) — ;\ij), (5 =v-1) (11)
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then using the definition (8) and the propertiZéf)_l = uous integrals, and does not require coordinate space transfor-
Z(?% 7 , = _Z(sl) the inverse moment transform can béhations. We propose a modified version of Tchebichef polyno-
anven?einﬂy exprgssed as follows: mials as a convenient set of discrete orthogonal basis functions

with unit weight, for defining moments of the above type.
The discrete Tchebichef polynomials [3], [8] are defined as
F,0) =" 25 Roo(r) + {22 (259 costit)
n >0 to(x)=(1—=N), sF(—n,—2z,14+n;1,1— N;1),
e sm(ze)) RM(T)} n,z,y=012..N-1 (17)
where(a); is the Pochhammer symbol given by
(foo) exists only ifn is ever) . (12)

(a)y =ala+1)(a+2)...(a+k—-1) (18)
The above formula can be used to reconstruct an image from its _ _ _ _
Zernike moments computed up to a maximum order. and; F»(-) is the generalized hypergeometric function
ll. DISCRETEORTHOGONAL MOMENTS slo(ar, az,a3;b1,b2; 2)
oo k
The following well-known theorem on orthogonal functions = (a1)r(a2)r(as)k 2° (19)
provides the mathematical basis for arriving at a definition for o (b K

discrete orthogonal moments of an image intensity distribution
flz,y): If {t,.(z)} is a set of discrete orthogonal polynomialdVith the above definitions, (17) can also be written as
with unit weight, satisfying the condition

oS () () ()

z::o tm(2)tn(x) = p( N)Smns = (20)

The Tchebichef polynomials satisfy the property of orthogo-

then any bounded functiof(x, ), 0 < {z,y} < N—1,hasthe nality (13), with

following polynomial representation in terms of the functions
(@) g poly p o, ) = N(NZ —1)(N? —2%)...(N%2 - n?)
™ ’ 2n+1
N—-1N-1 N+n
— ) — i
Faw) = 3 Tuntm(@)taly) (14) = (2n)! <2n+ 1) >, n=01....N-1
m=0 n=0 (21)

where the coefficient¥},, are given by
and have the following recurrence relation:

1 N-1N-1
Ty= — Y @)ty () (0 + Dtasa () — (20 -+ 120 — N+ Dt (2)
P(p, N)p(a, N) #=0 y=0 + n(N2 — n2)tn_1 (z)=0, n=1,2...,N—1.

p,gq=0,1,2,...N—-1. (15) 22)

The above theorem can be generalized for orthogonal POlyRgsis et of polynomials is, however, not suitable for defining
mials with weightw(z), by replacing each orthogonal funCt'onmoments, as it can be easily verified that the value,df:)

tn(2) by the functiont,, () /w(x) in (13)-(15). grows asN", and the value of the momerk,, given in
Equation (15) is easily obtained by subsituting fitr,v) (15) grows asN~-(+9). We therefore introduce thecaled

. . A N—1 —N—1
using (14) in the expressiol,_ >-,—o t»(¥)t4(¥)./(2.¥),  Tchebichef polynomials, and analyze the properties of the
and noting that corresponding moment functions.

N-1
IV. TCHEBICHEFMOMENTS
p(p,N) =Y {tp (@)} (16)
=0 We define the scaled Tchebichef polynomials as
Conversely, (14) follows from (15). In the context of image mo- ~ _ ta(w) 23
ments, it means that if we define a discrete orthogonal moment tnlz) = B(n,N) (23)

function as in (15) with{¢,,(x)} as the basis set, then the image

may be reconstructed from the moments, using (14) as the wheret,,(x) is the discrete Tchebichef polynomial of degree
verse moment transform. The moment definition as given in (1§)ven by (17), andi(n, V) is a suitable constant which is inde-
completely eliminates the need for any approximation of contipendent of:. Under the above transformation, the squared-norm
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Scaled Tchebichef Polynomials

—&~—n=0
—8B—n=1
—A—n=2
—¥—n=3
—¥—n=4
—8—n=5

X

Fig. 1. Plot of scaled Tchebichef polynomials for = 20.

of the scaled polynomials gets modified according to the foin which case, we have the following recurrence formula for

mula £, () as shown at the bottom of the page, whife:) = 1 and

R p(?’L,N) tl(l’) = (2.T+1—N)/N and

p(n, N) = 5. (24)

o) N ) (1= ) (- 58)
We now define the Tchebichef moments as p(n,N) = 1 ,
N—-1N-1
1 o n=0,1,...,N—1. (29)
Tpg = P NN 30 @) (e, y),
’ 7 ==0 y=0 A plot of the polynomial values foN = 20, obtained from

p,g=0,1,2,... N—1. (25) (28)is givenin Fig. 1. Other possible choicesih, V) are as
This equation also leads to the following inverse moment trarf8!lowWs-

form: 1) B(n,N) = (N — 1)(N = 2)...(N — n). With this
NelN—1 §cale factor, the scaled pglynomials satisfy the condition
fz,y) = Tt () En (1), t.(0) = 1if nis even, and,(0) = —1if n is odd.
g g 2) B(n,N) = \/(NZ—1%)(N2 — 2%) .- (N2 — n?). This
z,y=0,1,...N —1. (26) choice off3 leads to the equatiop(n, N) = (N/(2n +

h e f . callv a function of ¥ which 1)), which is equal to the corresponding squared-norm of
The scale factofi(n, V) is typically a function of V' whic the Legendre polynomials in the discrete domain.

grows asN™. The above framework for computing the scaled 3) B(n,N) = - : L
. . . ) = /p(n,N). Obviously, this selection is
Tchebichef polynomials and the associated moments, then guar- helpful in making the scaled polynomial set orthonormal,

antees that there will not be large variations in the dynamic range with the propertyp(n, N) = 1.

of values of moments, nor any numerical instabilties for Iarg]ehe recurrence formulae for the above cases can be obtained

values of. The simplest choice fqs(n, V) is in a compact form. It is also interesting to note that the recon-
B(n,N)=N" (27) structed image intensity function obtained from the inverse mo-

2
fo(z) = ., n=23,..N—1 (28)
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ment transform, is independent of the choiced6h, N). This
can be easily verified using (23)—(26).

V. PROPERTIES OFT CHEBICHEF MOMENTS

In this section, we analyze some of the computational as-
pects of Tchebichef moments, using well known properties of
Tchebichef polynomials.

A. Symmetry

The symmetry property can be used to considerably reduce | e Atn)
the time required for computing the Tchebichef moments. The
scaled Tchebichef polynomials have the same symmetry prop-
erty which the classical Tchebichef polynomials satisfy

A= I—x, N=-1-9)

Tl

N N Fig. 2. Owing to symmetry, Tchebichef polynomials need be computed only
to(N—1—2)=(—1)"t,(x). (30) on one quadrant image.

This relation suggests the subdivision of the domain aVar  B. Polynomial Expansion

N imag_e (whereV is eve_n) into four equal Parts (Fig' 2), a_nd The scaled Tchebichef polynomig)(z) can be expressed as
performing the computation of the polynomials only in the firsf polynomial ofz. Using (20) and (23), we can write
quadrant wher@® < z,y < (N/2 — 1). The expression for '

Tchebichef moments in (25) can be modified with the help of . 1 i K G) i
(30), as follows: tn(x) = Bln, N) > G, N)Y sz (33)
’ k=0 i=0
To— 1 where
Pg — = ~
p(p, N)p(g, N) o (N—1—k +k
(N/2)=1(N/2)-1 Cr(n, N) = (-1)" 3 < n—k ) <n n ) Y
X Z Z tp(x)tq(y) ) - . . .
*=0  y=0 ands,’ are the Stirling numbers of the first kind [19], which
f@, ) + (1P (N = 1= ,y) satisfies
x{ (D1, N—1—y) (31) r ko
+(=1)PTf(N—-1—2,N—1—1y) — = ng)xz. (35)

(x— k)

1=0
In addition to reducing the computation time by a factor of four,
the symmetry property is also useful in minimizing the storage Representation Using Geometric Moments

required for the scaled Tchebichef polynomials. If an applica- ) . . . . .
The polynomial expansion given above is useful in writing the

tion needs the storage of polynomials up to a maximum degree' "= ! X :
M, then a two-dimensional (2-D) array of sizd x (N/2) Tchebichef moments (25) in terms of the geometric moments. If

the geometric moments of an imafiec, i) are expressed using

would suffice. However, in this case, the application has to i - X ;
{he discrete sum approximation as

corporate the symmetry condition in its formulation, to dete

mine the value of,,(x) whenz > (N/2). As an example, the N-1N-1
reconstruction formula in (26) will have to be modified as Mpg = Z Z Py f(z,y) (36)
z=0 y=0
N—1N-1
- - then using (33), the Tchebichef moments of the same image ma
[ =Y Tunbu(@)i(y). 9(33) ge may

be expressed in terms of geometric moments as follows:

m=0 n=0

if 2,y < (N/2), r 2
N—-1N—-1 1y = APAqZCk(paN)ZCl(QaN)
= 3 Y () Do (N = 1 = @)y, = =0
k l
m=0 n=0 i .
ify<(N/2); @2 (V/2) DIPIE L (37)
N—1N-1 t=0 j=0
=33 (=) Tt (@) (N = 1= y), where
m=0 n=0 1
if 2 < (N/2); y> (N/2), Ap=—— .
ixs (NF2): w2 (NF2) *= Bl Mo N)
=3 3 ()T b (N — 1 — ) From (37), it is seen that the Tchebichef moments depend on
m=0 n=0 the geometric moments up to the same order. The explicit ex-

Xto(N —1—7), ifx,y>(N/2). (32) pressions of the Tchebichef moments in terms of geometric mo-
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ments up to the second order (f6(n, N) = N") are as fol- | Original Image Reconstructed Images
lows: "
T — ™moo
00 = "2 Reen Emor: 64 26 14 3 2 2 0 0
6m 10+ 3(1 _ N)mOO Using Tchebichef Moments
Tiog =
0 N(N?—1)
1. - Gmo+ 3(1 = N)mgo ) . : .
oL = N(N2—1) Reen. Error: 50 31 25 6 7 3 1 1
Using Legendre Mom
o — 30ma0+30(1 = N)mio +5(1 = N)(2 = N)moo g Legendre Moments
v (V2 ~1)(N?2 —22)
T02 = 3077102 + 30(1 — N)m01 + 0(1 _ N) (2 — N)moo Recn. Error: 64 68 4 N 11 2
(N2 — 1)(N2 — 22) Using Zernike Moments
Tll - 367’77,11 + 18(1 — N)(mlo + mOl) + 9(1 — N)2m00 . Maximum - - - - - - PS -
(N2 _ 1)2 Order of 7 8 9 10 11 12 13 14
(38) Moments

Fig. 3. Image reconstruction of letter “EIN = 20).

D. Recurrence Relation with Respectito

The polynomials,, () have the followi lati IABLE 1l
e polynomials,, () have the following recurrence relation ., cq cier | EGENDRE AND GEOMETRIC MOMENTS OF THETEST IMAGE

[3], with respect to the variable

- Order of Moment | Tchebichef Legendre Geometric
aj(N — a:)tn(a:) p q Tpg Apg Mpg
_(_ _ _ SN 1) — N (e 0 0 03525 0.3525 141.0
=(-n(n+1) - (22 1)(37 N=1) = a)ta(e = 1) 0 1 |-0.0530075 | 00556579 |1269.0
+ ((z — Dz — N —1))tp(x —2). (39) 1 0 |-0.1342105 | 0.1409210 | 1161.0
0 2 [-0.2914483 | —0.2261427 | 14539.0
The starting values for the above recursion can be obtained from 1 1 0.0201820 | 0.0222507 | 10449.0
; e 2 0 | -0.4539758 | -0.4039820 |11631.0
the following equations: 0 3 [-0.0221763 | —0.0447540 | 186975.0
. (1-N), 1 2 0.1877272_| 0.1785993 | 121059.0
t(0) = S 2 1 0.0682670_| 0.0637866_| 104679.0
Aln, N) 3 0 02141892 | 0.1910559 | 132111.0
. - n(n+1) 0 4 | 0.3144268 | -0.3091446 | 2555671.0
tn(1) = £ (0) <1 t9 N (40) 1 3100190416 | 0.0146005 | 1575855.0
2 2 0.3236577 | 0.1972807 | 1221269.0
3 1 |-0.0322089 |-0.0301667 | 1188999.0
4 0 1-0.1482432 | —0.1969217 | 1618203.0

VI. EXPERIMENTAL RESULTS

This section presents the test data and results used to v_? i- ¢ ructed | th . d
date the theoretical framework presented above, and also to < sequence of reconstructed Images, as the maximum order
tablish the feature representation capability of Tchebichef mo- mome”ts gseq in the reconstruction 'S varied from seven to
ments through image reconstruction. A comparative analy é is shown in Fig. 3. We used the following formula to charac-

between Tchebichef moments, Legendre moments and Zernike“© the error between an input binary imaffe, ), and the

moments is also given. A binary image of the letter “E” (Se%econstructed imagé(z, y)

Fig. 3) on a 20x 20 pixel grid(/N = 20) was used to analyze N-1N-1 .
the values of the moment functions. The Tchebichef, Legendre, e= > |f(zy) - fay)l. (43)
and geometric moments of the first few orders of the testimage, =0 y=0

computed using (31), (6), and (36), respectively, are given {imay he noted that the total number of moment terms from

Table I1. In addition to the relationship between the two mQs.qer zero up to orden, in the case of both Tchebichef and
mentsl,,, andm,, as givenin (37), the table also shows the u”tegendre moments is '

form range of Tchebichef moments for different orders. The re-

markable similarity between the values of Tchebichef moments 0= (n+1)(n+2) ' (44)
and Legendre moments can be attributed to the fact [3], [17] 2
_ te(zN) Zernike moments also satisfy the above condition, since there
A}E}éo Ne Po(2z - 1), are(n+1) components for anth order moment (see Section Il).
ze0,1], n=01,2.... (41) Fig. 3 thus provides a comparison of the relative performances
of Tchebichef, Legendre, and Zernike moments on the same
Equivalently scale.

N p L Results of image reconstruction with a 8060 image(/N =
Algréo tnl) = Pu(a), 4=0,1,...N —1, 60) of a Chinese character are given in Fig. 4, with the max-

' =(2¢— N)/N. (42) imum order of moments varied from 14 to 28. A more detailed
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Original Image Reconstructed Images 900
or ke jhe i.T rt.- r.g. doke 3k 800 -
Tith |BE I i GG GG GE BE s oo
w
Roon, Brror - 698 552 435 362 288 261 249 207 e 600 1
Using Tchebichef Moments % 500 Tchebichef
< 400  Neooo e Legendre
- 17
,&.z_leﬁmf‘flfumfu
Reen. Error 702 71 440 371 298 279 257 & 200
Using Legendre Moments 100
Maximum a A - - - a a PN 0 . - -
Order of 14 16 18 20 22 24 26 28 10 15 20 25 30 35 40
Moments

Maximum Order of

Fig. 4. Image reconstruction of a Chinese character without i§dise- 60). Moments

Fig. 7. Comparative analysis of reconstruction errors with image noise.

1000
» 900

§ 800 basis functions are orthogonal in the domain of the image co-
= 288 1 ordinate space, and this feature completely eliminates the need

T s00 Tchebichef‘ fpr any dlscrete_ approximation in thew_numerpal |rr_1plementa-
B ! N0 |l Legendre tion. The coordinate space normalization required in Legendre
g 300 | and Zernike moment evaluation is also eliminated. Appropriate
S 200 scale factors are introduced in the moment functions, so that the
® 100 computed moments do not exhibit large variation in the dynamic

0 — range of values, nor any kind of numerical instabilities for large

10 15 20 25 30 35 40 image sizes. Important analytical properties of Tchebichef poly-
Maximum Order of nomials and moments, together with their computational aspects

Moments have also been discussed.

Experimental results conclusively prove the effectiveness of
Tchebichef moments as feature descriptors. Comparative anal-
ysis with Zernike and Legendre moments, shows the superior
feature representation capability of Tchebichef moments.

Feature descriptors that are invariant with respect to rotations
in the image plane, can be easily constructed using Zernike

- moments. Zernike moments are however computationally more
EN -L ﬁ g complex than Tchebichef moments. Legendre and Tchebichef
Reen Eror: 614 552 493 420 331 301 290 262 moments fall into the same class of orthogonal moments defined
Using Tehebichef Moments in the Cartesian coordinate space, where moment invariants

- s articularly rotation invariants) are not readily available. One
l’ﬂ xa;ﬂ Itjll Iljlf ‘}Ti ‘Fl !i}fg l L Eﬁethod tha):t is commonly adogted in such sit)tljations requiring

Fig. 5. Comparative analysis of reconstruction error without image noise.

Original Image Original Image With Noise

=

Reconstructed Images

l‘ﬂ l’" lj" l’lf i

Reen.Error: 640 576 537 457 417 378 366 361 invariant pattern recognition, is to first normalize the image
Using Legendre Moments to a standard image. Future work in the field of Tchebichef

Maximum = = Y = ~ = = 2 moments is directed toward the identification of invariants, and

I\?{gﬁ;:é 14 l6 18 20 22 24 26 28 feasibility studies on the use of Tchebichef polynomials in two

variables as basis functions.

Fig. 6. Reconstruction from noisy image of a Chinese charééfer 60).
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