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Abstract. Let F be a totally real number field of degree n over Q with ring of integers O
and narrow class number one. Let S2k(Γ) be the vector space of cuspidal Hilbert modular
forms of parallel weight 2k for Γ = SL2(O) and let B2k be an orthogonal Hecke eigenbasis
for this space. For any fixed Hecke eigenform f ∈ S2k(Γ) and any ε > 0 we prove that

#{g ∈ B2k : L(f × g, 1
2 ) 6= 0} � kn−ε

where L(f × g, s) is the Rankin-Selberg L–function of f and g.

1. Introduction and statement of results

There is great interest in determining whether an automorphic L–function L(π, s) is nonva-
nishing at the central point s = 1/2. To study this problem, one often uses analytic methods
to study L(π, s) as π varies in a family F . A typical approach is to establish lower and up-
per bounds for the first and second moments, respectively, and combine these with Cauchy’s
inequality to deduce a lower bound for the number of π in F such that L(π, 1/2) 6= 0. In
recent years, various novel methods based on period formulas have been used with spectac-
ular success to obtain estimates of this type; see for example the excellent survey article of
Michel and Venkatesh [MV]. In particular, the period formula approach can provide a very
flexible and direct way to study the nonvanishing problem when more classical methods are
difficult to apply.

In this note we continue this theme by studying the nonvanishing problem for the family
of Rankin-Selberg L–functions L(f × g, s) where f is a fixed cuspidal Hilbert modular form
of parallel weight 2k and g varies over an orthogonal Hecke eigenbasis for the vector space
of such forms. We will evaluate the first moment using a Petersson trace formula for Hilbert
modular forms due to Luo [Lu], which in particular allows us to handle difficulties arising
from the presence of infinitely many units in totally real fields. To estimate the second
moment using a classical approach via the approximate functional equation, trace formulae,
Voronoi summation, etc. would be very difficult; see for example the discussion following [B,
Corollary 1]. Here we will instead adapt a beautiful idea of Blomer [B] to establish an upper
bound for the second moment using the period integral representation of the L–function
L(f × g, s).

In order to state our main result we fix the following notation and assumptions. Let F
be a totally real number field of degree n over Q with narrow class number one. Let O
be the ring of integers, U be the unit group, O∗ be the nonzero elements in O, D be the
discriminant, RF be the regulator, and WF be the number of roots of unity. For ν ∈ F , let
ν(i) := σi(ν) where σ1, σ2, · · · , σn are the embeddings of F . Let Γ = SL2(O) be the Hilbert
modular group, which acts on the n-fold product Hn of the complex upper half-plane H.
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For an integer k ≥ 2, let S2k(Γ) be the space of cuspidal Hilbert modular forms of weight
(2k, · · · , 2k) (see [Ga]). This is the space of holomorphic functions f(z) on Hn which vanish
in the cusps of Γ and satisfy

f(γz) = N(cz + d)2kf(z) for γ =

(
a b
c d

)
∈ Γ,

where for z = (z1, · · · , zn) ∈ Hn we have

N(cz + d) =
n∏
i=1

(σi(c)zi + σi(d)).

It was shown by Shimizu [Sh] that

dim(S2k(Γ)) ∼ vol(Γ\Hn)
(2k − 1)n

(4π)n

as k →∞.
The Petersson inner-product of two forms f, g ∈ S2k(Γ) is defined by

〈f, g〉 =

∫
Γ\Hn

f(z)g(z)dµ(z),

where for z = x+ iy = (x1 + iy1, . . . , xn + iyn) we have

dµ(z) =
n∏
i=1

y2k
i dxidyi
y2
i

.

Let B2k be an orthogonal basis for S2k(Γ) consisting of arithmetically normalized Hecke
eigenforms.

The Rankin-Selberg L-function L(f × g, s) of two forms f, g ∈ S2k(Γ) has an analytic
continuation to C and satisfies a functional equation under s 7→ 1− s. We will establish the
following nonvanishing theorem for the central values of these Rankin-Selberg L-functions.

Theorem 1.1. For any fixed Hecke eigenform f ∈ S2k(Γ) and any ε > 0 we have

#{g ∈ B2k : L(f × g, 1
2
) 6= 0} � kn−ε.

To prove Theorem 1.1 we will use the asymptotic formula for the first moment in Theorem
3.1, the upper bound for the second moment in Theorem 4.1, and Cauchy’s inequality.

2. Preliminaries

2.1. The Petersson trace formula. For each Hecke eigenform f ∈ S2k(Γ) one has the
Fourier expansion

f(z) =
∑
ν∈O
ν�0

λf (ν)N(ν)
2k−1

2 e2πiTr(νδ−1z),

where d = (δ) with δ � 0 is the different of F and

Tr(νδ−1z) =
n∑
i=1

σi(νδ
−1z).
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Note that the Fourier coefficient λf (ν) depend only on the ideal m = (ν). The Ramanujan
conjecture asserts that (see e.g. Blasius [B])

λf (m)� NF (m)ε,(2.1)

where NF (m) is the norm of m.
We will need the following Petersson trace formula due to Luo [Lu].

Proposition 2.1. For any ν � 0 and µ� 0 in O,∑
f∈B2k

w−1
f λf (ν)λf (µ) =

χν(µ) +
(2π)n(−1)nk

D1/2

∑
ε∈U

∑
c∈O∗/U

S(ν, µε2; c)

|N(c)|

n∏
i=1

J2k−1

(
4π
√
ν(i)µ(i)|ε(i)|
|c(i)|

)
,

where

wf =
(4π)n(2k−1)

Γn(2k − 1)D2k−1/2
‖f‖2,

χν is the characteristic function of the set {νε2 : ε ∈ U}, and

S(ν, µ; c) =
∑∗

a (mod c)

e

(
Tr(

νa+ µa

c
)

)
is the generalized Kloosterman sum.

2.2. Eisenstein series. Define the Eisenstein series

E(z, s) =
∑

(c,d)∈O2/U
(c,d)=1

N(y)s

|N(cz + d)|2s
for Re(s) > 1.

Let
ζ∗F (s) := π−

ns
2 Ds/2Γn(

s

2
)ζF (s)

be the completed Dedekind zeta function of F . Then the completed Eisentein series

E∗(z, s) := ζ∗F (2s)E(z, s)

satisfies the functional equation E∗(z, s) = E∗(z, 1 − s) and has the Fourier expansion (see
[vG, Proposition 6.9])

E∗(z, s) = ζ∗F (2s)N(y)s + ζ∗F (2s− 1)N(y)1−s+

2nN(y)1/2
∑

ν∈d−1/U
ν 6=0

NF ((ν)d)s−1/2σ1−2s((ν)d)
n∏
i=1

Ks−1/2(2π|ν(i)|yi)e2πiTr(νx),

where

σr(a) =
∑
b|a

NF (b)r.

Moreover, E∗(z, s) has meromorphic continuation to all s ∈ C, with only simple poles at

s = 0 and s = 1 with residue 2n−1RF

WF
. From the Fourier expansion, we have

E∗(z, 1
2
)� N(y)1/2+ε(2.2)
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for any z in the Siegel domain of Γ.

2.3. Rankin-Selberg L-functions. For two forms f, g ∈ S2k(Γ), the Rankin-Selberg L-
function is defined by

L(f × g, s) = ζF (2s)
∑
m⊂O
m 6=(0)

λf (m)λg(m)

NF (m)s
for Re(s) > 1.

The completed L-function

Λ(f × g, s) := (2π)−2n(s+2k−1)D2(s+2k−1)Γn(s)Γn(s+ 2k − 1)L(f × g, s)
satisfies the functional equation Λ(f × g, s) = Λ(f × g, 1− s). Moreover, it has the integral
representation

(2.3) D−2k+3/2πn(2k−1)Λ(f × g, s) =

∫
Γ\Hn

E∗(z, s)f(z)g(z)dµ(z).

3. Asymptotic formula for the first moment

In this section we will establish the following asymptotic formula for the first moment of
the Rankin-Selberg L-functions.

Theorem 3.1. For any fixed Hecke eigenform f ∈ S2k(Γ) and any ε > 0 we have∑
g∈B2k

ω−1
g L(f × g, 1

2
) = 2γF + κF

(
n

Γ′(1
2
)

Γ(1
2
)

+ n
Γ′(2k − 1

2
)

Γ(2k − 1
2
)
− log

((2π)n

D2

))
+O

(
k−

n
2

+ε
)
,

where κF and γF are the residue and constant term in the Laurent expansion of ζF (s) at
s = 1, respectively.

For the proof we will need the following approximate functional equation.

Proposition 3.2. Let G(u) be an even, holomorphic function which satisfies G(0) = 1 and
decays rapidly as |Im(u)| → ∞. Then we have

L(f × g, 1
2
) = 2

∑
m⊂O
m6=(0)

λf (m)λg(m)

NF (m)1/2
V (NF (m)),

where

V (y) =
1

2πi

∫
(3)

y−u
γ(1

2
+ u)

γ(1
2
)

ζF (1 + 2u)G(u)
du

u

and
γ(s) = (2π)−2n(s+k−1)D2(s+k−1)Γn(s)Γn(s+ 2k − 1).

Moreover,

(3.1) yaV (a)(y)� (1 +
y

kn
)−A

and

(3.2) V (y) =
1

2

{
2γF + κF

(
n

Γ′(1
2
)

Γ(1
2
)

+ n
Γ′(2k − 1

2
)

Γ(2k − 1
2
)
− log

((2π)ny

D2

))}
+O

(( y
kn
)1/2−ε

)
.
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Proof. This follows from [IK, Theorem 5.3 and Proposition 5.4], where for the estimate (3.2)
we shift the contour to (−1

2
+ ε) and pass a double pole at u = 0. �

Proof of Theorem 3.1. By Propositions 3.2 and 2.1 we have∑
g∈B2k

w−1
g L(f × g, 1

2
) = 2

∑
m=(ν)⊂O
m6=(0)

λf (m)

NF (m)1/2
V (NF (m))

∑
g∈B2k

w−1
g λg(m) = 2V (1) + E,

where

E := 2
(2π)n(−1)nk

D1/2

∑
m=(ν)⊂O
m6=(0)

λf (m)

NF (m)1/2
V (NF (m))

∑
ε∈U

∑
c∈O∗/U

S(ν, ε2; c)

|N(c)|

n∏
i=1

J2k−1

(
4π
√
ν(i)|ε(i)|
|c(i)|

)
.

By (3.2), the diagonal term 2V (1) contributes

2γF + κF

(
n

Γ′(1
2
)

Γ(1
2
)

+ n
Γ′(2k − 1

2
)

Γ(2k − 1
2
)
− log

((2π)n

D2

))
+O

(
k−

n
2

+ε
)
.

Using the estimate (3.1), we may truncate the off-diagonal term E at NF (m) ≤ kn+ε with
a very small error. We denote the truncated sum by E1. In order to estimate E1, we first
recall some estimates for J-Bessel functions. For all x > 0, we have J2k−1(x)� 1. Moreover,
from the integral representation (see [GR, 8.411.10])

J2k−1(x) =
1

Γ(2k + 1
2
)Γ(1

2
)

(x
2

)2k−1
∫ 1

−1

eixt(1− t2)2k−1/2dt

and Stirling’s formula, we find that

J2k−1(x)�
(ex

4k

)2k−1

.

Hence

J2k−1(x)� min

{
1,
(ex

4k

)2k−1
}
�
(ex

4k

)2k−1−η
for 0 ≤ η < 1.

For x =
4π
√
ν(i)|ε(i)|
|c(i)|

, we choose η = 0 if |ε(i)| ≤ 1 and 0 < η < 1 if |ε(i)| > 1 to deduce that

n∏
i=1

J2k−1

(
4π
√
ν(i)|ε(i)|
|c(i)|

)
�

(
(eπ)n

√
N(ν)

kn|N(c)|

)2k−1

|N(c)|η
∏
|ε(i)|>1

|ε(i)|−η.(3.3)

Then using (2.1), (3.3), and the trivial bound

|S(ν, ε2; c)| ≤ |N(c)|,
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we have

E1 �
∑

m=(ν)⊂O
m6=(0)

NF (m)≤kn+ε

1

NF (m)1/2−ε

∑
ε∈U

∑
c∈O∗/U

(
(eπ)n

√
N(ν)

kn|N(c)|

)2k−1

|N(c)|η
∏
|ε(i)|>1

|ε(i)|−η

�
∑

m=(ν)⊂O
m6=(0)

NF (m)≤kn+ε

1

NF (m)1/2−εNF (m)
∑

c∈O∗/U

1

|N(c)|2
|N(c)|η

(
(eπ)n

√
N(ν)

kn|N(c)|

)2k−3∑
ε∈U

∏
|ε(i)|>1

|ε(i)|−η

� e−k,

where for the last inequality we used (see [Lu, p. 136])∑
ε∈U

∏
|ε(i)|>1

|ε(i)|−η <∞

and

(eπ)n
√
N(ν)

kn|N(c)|
� k−

n
2

+ε.

This completes the proof. �

4. Upper bound for the Second moment

In this section we will establish the following upper bound for the second moment of the
Rankin-Selberg L–functions by adapting a method of Blomer [Bl].

Theorem 4.1. For any fixed Hecke eigenform f ∈ S2k(Γ) and any ε > 0 we have∑
g∈B2k

|L(f × g, 1
2
)|2 � kn+ε.

Proof. By (2.3), for f ∈ B2k we have

‖f‖2 =

∫
Γ\Hn

|f(z)|2dµ(z)

=
WF

2n−1RF

Res
s=1

∫
Γ\Hn

|f(z)|2E∗(z, s)dµ(z)

=
WFD

2k+3/2Γn(2k)

RFπn(2k+1)2n(4k+1)−1
Res
s=1

L(f × f, s)

�F
D2kΓn(2k)

π2nk24nk
kε,(4.1)

where for the last inequality we used (see [Li])

Res
s=1

L(f × f, s)� kε.
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By Parseval’s identity and (2.3), we have for Re(s) > 1,

‖fE∗(·, s)‖2 =
∑
g∈B2k

1

‖g‖2
| 〈fE∗(·, s), g〉 |2

=
∑
g∈B2k

1

‖g‖2
|D−2k+3/2πn(2k−1)Λ(f × g, s)|2.

By analytic continuation, this holds for all s ∈ C. Take s = 1/2 and use (4.1) to obtain

‖fE∗(·, 1
2
)‖2 =

∑
g∈B2k

1

‖g‖2
|D2k+1/2π−2nk2−2n(2k−1/2)Γn(1

2
)Γn(2k − 1

2
)L(f × g, 1

2
)|2

�F k
−εΓ2n(2k − 1

2
)D2k

Γn(2k)24nkπ2nk

∑
g∈B2k

|L(f × g, 1
2
)|2.(4.2)

On the other hand, by (2.2) and (2.3) we have

‖fE∗(·, 1
2
)‖2 =

∫
Γ\Hn

|f(z)|2|E∗(z, 1
2
)|2dµ(z)

�
∫

Γ\Hn

|f(z)|2N(y)1+εdµ(z)

�
∫

Γ\Hn

|f(z)|2E(z, 1 + ε)dµ(z)

=
D−2k+3/2πn(2k−1)

ζ∗F (1 + ε)
Λ(f × f, 1 + ε)

�F 2−4nkD2kπ−2nkΓn(2k + ε)kε,(4.3)

where for the last inequality we used (see [Li])

L(f × f, 1 + ε)� kε.

Using (4.2), (4.3), and Stirling’s formula, we complete the proof. �

5. Proof of Theorem 1.1

By (2.3), Stirling’s formula, and the bound (see [HL])

Res
s=1

L(f × f, s)� k−ε,

we have

wg =
(4π)n(2k−1)

Γn(2k − 1)D2k−1/2
‖g‖2

�F
Γn(2k)

Γn(2k − 1)
Res
s=1

L(f × f, s)

�F k
n−ε.

Then it follows from the bound∑
g∈B2k

w−1
g L(f × g, 1

2
)�F k

−n+ε
∑
g∈B2k

|L(f × g, 1
2
)|
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and Theorem 3.1 that ∑
g∈B2k

|L(f × g, 1
2
)| �F k

n−ε.(5.1)

On the other hand, by Cauchy’s inequality and Theorem 4.1, we have∑
g∈B2k

|L(f × g, 1
2
)| ≤

( ∑
g∈B2k

L(f×g,1/2)6=0

1
)1/2( ∑

g∈B2k

|L(f × g, 1
2
)|2
)1/2

�F

( ∑
g∈B2k

L(f×g,1/2)6=0

1
)1/2

(kn+ε)1/2.(5.2)

Using (5.1) and (5.2), we complete the proof. �
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