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POISSON-CHARLIER AND POLY-CAUCHY MIXED TYPE
POLYNOMIALS

BY
DAE SAN KIM AND TAEKYUN KIM

ABSTRACT. In this paper, we consider Poisson-Charlier and poly-Cauchy mixed
type polynomials and give various identities of those polynomials which are
derived from umbral calculus.

1. INTRODUCTION AND PRELIMINARIES

For r € Z>¢, the Cauchy numbers of the first kind with order r are defined by
the generating function to be

t ks o0 tn
vy i
(1.1) <1Og(1+t)) > Cf —» (see[3,10,11,12)).

In particular, when r = 1, (C,(zl) = (C, are called Cauchy numbers of the first
kind.
The Cauchy numbers of the second kind with order r are defined by

(1.2) ((1+t) 1§g(1+t)) :ZO@;”%, (see[3,10,11,12)).

When r =1, C,(zl) = C,, are called the Cauchy numbers of the second kind.
As is well known, the generating function for the Poisson-Charlier polynomials
is given by

(1.3) et (1 + 2) = Z Cyp(x:a) %n!, (a #0), (see [14, 15]).

Recently, Komatsu has considered the poly-Cauchy polynomials of the first kind
as follows :

1
- (k)
(1.4) (R = Lify, (log (1 +t)) g )
where
o0 tn
1.5 Lif, () =y ————. (see [10, 11]).
(1.5) k (£) nizom(nﬂ)k (see | )

He also introduced the poly-Cauchy polynomials of the second kind by

(1.6) (14 1)" Lifg (—log (1 + 1)) ZOW —, (see [10, 11]).
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In this paper, we consider Poisson-Charlier and poly-Cauchy of the first kind
mixed type polynomials as follows :

(1.7) e tLify, (log (1 + 2)) (1 + 2)z = i PC® (1 :a) ;_nl’ (a #£0).
n=0 ’

The Poisson-Charlier and poly-Cauchy of the second kind mixed type polyno-
mials are defined by the generating function to be

t t x o0 R tn
i _ hd Z) = (B) (1 q) —
(1.8) e 'Lify, ( log <1+a)> <1+a> ,;:OPCH (z:a) ok (a#0).
It is known that the Frobenius-Euler polynomials of order r are given by

1-A\" zt = (r) t
(1.9) (et_Q ¢ zgﬂ (21) . (see [1,4,7,9]).
where r € Z>g, and A € C with X # 1.
The Bernoulli polynomials of order r are also defined by the generating function
to be

t " zt __ = (r) "
(1.10) <et—1) e 77;)3,1 () 5 (see [2, 5,9, 10, 13]).

The Stirling number of the first kind is given by

n

(1.11) (), =(@)(r—1)---(r—n+1) = ZSl (n, 1) ', (see [14, 15]),

1=0
and by (LII)), we get
(1.12) (log (1+1))™ =m! Y _ Si (I, m) a7 (see [8, 9, 14, 15])
l=m ’
From (LI, we note that
(113) 2 = (1" (=), = Y (<" i (n, D

=0

where (™) =z (z +1)---(z +n — 1), (see [1-15]).
Let C be the complex number field and let F be the set of all formal power series

in the variable ¢ :
(1.14) ]::{f(t)zz%tk ake(C}.
k=0 "

Let P = C [x] and let P* be the vector space of all linear functionals on P.

(L|p (z)) is the action of the linear functional L on the polynomial p(x), and
we recall that the vector space operations on P* are defined by (L + M|p (z)) =
(Llp (x)) + (M|p (z)), {cLlp(z)) = c(L|p(z)), where ¢ is complex constant in C.
For f (t) € F, let us define the linear functional on P by setting

(1.15) (f @) |z") = an, (n 2 0).
Thus, by ([I4) and (IH), we get
(1.16) (tF|lz™y = nl 6n g, (n, k> 0), (see [4, 8, 14]),

where §,,  is the Kronecker’s symbol.

oo k
Let fr, (t) = Z <L|—z>tk. Then, by (LIH), we see that (fr (t)|z™) = (L|z™).

k!
k=0

The map L — fr, (t) is a vector space isomorphism from P* onto F. Henceforth,
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F denotes both the algebra of formal power series in ¢ and the vector space of all
linear functionals on P, and so an element f (¢) of F will be thought of as both a
formal power series and a linear functional. We call F the umbral algebra and the
umbral calculus is the study of umbral algebra. The order O (f (t)) of a power series
f(t) (# 0) is the smallest integer k for which the coefficient of t* does not vanish.
If O(f(t)) = 1, then f(t) is called a delta series; if O (f (t)) = 0, then f(¢) is
called an invertible series. For f (t), ¢ (¢t) € F with O (f (t)) =1 and O (g (t)) = 0,
there exists a unique sequence s, (x) such that <g t) f (t)k’ Sp (2) ) = nloy g, for

n, k > 0. The sequence s, (x) is called the sheffer sequence for (g (¢), f (¢)) which
is denoted by s, () ~ (g (t), f(t)) (see [8, 10, 14, 15]).
Let f(t), g(t) € F and p(x) € P. Then we see that

(1.17) (f@Wg@lp )= {fBlg@)p ) ={gOf(H)p (),

and
a1 BT ITLAEE SR
k=0 k=0
By (LI8), we get

k X
(1.19) thp (z) = p® (z) = %i), and e¥'p (z) = p(z+y), (see [14]).

For s, (z) ~ (g9(t), f(t)), we have the generating function of s, () as follows :
1 3 - tn
2f) = (z) =, forall z € C
— ¢ $p () —, for all © :
T =T
where f (t) is the compositional inverse of f (t) with f (f (t)) = t.
Let sp, () ~ (g (t), f(t)). Then we have the following equations (see [8, 14, 15]):

(1.20)

121 7 (050 () = nsns 0). (020), 2 (0) =3 () (F @] ") s o)

=0

‘ zn>xj, (f ()| zp(x)) = (3 f t)|p(2)),

(1.23) (x+y) = Z n) x) Pn—j (y), where p,, () = g (t) sn ().

For p,, () ~ (1, f (1)), gn (x) (1, g (¢)), it is well known that

g
=
)
3
—
8]
N
Z
—~
S
A
=
ha
~—
-
~—
~—
3
3
—
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—
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—
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—
~
~—
~—
—
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-+
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)
&
)
921
:
)
-
=
o
[

= Z Crmrn (), (n>0).

Then we have

1 /h(f) ~ m
(1.25) Crnm = oo < P 27 (t);l (f (@)

In this paper, we investigate some identities of Poisson-Charlier and poly-Cauchy
mixed type polynomials arising from umbral calculus. That is, we give various

x”>, (see [8, 10, 14]).
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identities of the Poisson-Charlier and poly-Cauchy polynomials of the first and
second kind mixed type polynomials which are derived from umbral calculus.

2. P0O1sSON-CHARLIER AND POLY-CAUCHY MIXED TYPE POLYNOMIALS

From (L6), (I7) and (I20), we note that

(2.1) PCW) (z:a) ~ (e“(et_l)m, ae™t - 1)) ,
and
(2.2) PCW) (2 :a) ~ <ea(etl)m, a(e' - 1)) .

Now, we observe that

(2.3) PCW) (y: a)

= <ZPCl(k) (y:a) %

: 2 () () )

n _ n—I1
S0 (9) g () (e 2" = C$“<y>(7)£—l?——
=0

Therefore, by ([23), we obtain the following theorem.

3

Theorem 1. For n > 0, we have

n n—I1
Pop @0 =3¢ @) (1) S0

=0

where a # 0.

Alternatively,

(2.4) PCH (y:a) = <Lifk <log <1 + 2))
1

Therefore, by (2.4), we obtain the following proposition.
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Proposition 2. Forn >0, a # 0, we have

Y ~(k)
()
PCW® (z:a) = Z -~ —Ci(—x:a).

anfl
=0

Remark. By the same method as (Z3) and (24), we get

(71 n—l1 (Tl)
A " 1) .
(2.5) PCH (w:a)=>" Tc}“ (z),
=0
and
ny\ Ak
N ()
(2.6) PCW (1 :a) = Z TC"_I (x:a).
=0

It is not difficult to show that

n

(2.7) (—l)nx(”) = a_"z (=1)" Sy (n, k) z* ~ (1,a(e"=1)),

a

=

and

(2.8) a " (x), =a " ki)sl (n, k)a* ~ (1, a (e —1)).
By (1), we get

(2.9) e“(etﬂmpcﬁ) (@:a)~ (1, a(et—1)).

From (), @3), we have

(2.10) e“(etﬂmpdﬁ (:a) = <é)nz<">.

Thus, by (ZI0) we get

(2.11) PCW (z:a) = Lify (—t)e (e =) (—l)nxw

o~

1 n n 1
<—> Lify, (—t) a_' (1- eft)l ™,
a
=0

By (LI3), we see that 2™ ~ (1, 1 — e~?). From (L2I) and (ZII), we have

(1 — e_t)l ™ = (n), (=D,
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1=0
_ _l RN al n = _q\yn—l-m n—1m - (71)7“ Tpm
_( a ; (l)mz_:o( b Sin =t )T;w(rﬂ)’“t

o { o S 0 (1) (5) s o ’">}

Therefore, by (Z12), we obtain the following theorem.

Theorem 3. Forn >0, k € Z and a # 0, we have

3
e
=
&

n n n—m l
=q " lﬂ( )(m) ai_ksl(n—l,m) .
=0 —0 J (m*]Jrl)

3

Remark. By [22) and (2Z.8)), we get

(2.13) PCW (z:a) = Lify (—t)e (¢ "Yg ()

a”"Lify, (—t) I (e" — 1)l (@), -

By the same method as (Z12)), we get

PCW) (z: a)
n n n—m l
NSNS l+m+]( ) (m) ai,k&(n—l, m) bl
=0 | m=j =0 I/ (m—=j+1)
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From ([22) and (2], we note that
(2.14)

PCW) (1 :a)

:lzn;% <e‘tLifk (log (1 + 2)) (—1og (1 + é)y x”> 2
:g (—“1)1 "z_:‘:) — zl;!arﬂ Sy (r—+1,1) <e‘tLifk (log (1 + 2))

n n—l1 l
SER (1))

_ zn: {n_l ((;f (:f) Sy (n—mr 1) PC® (0 a)} 2.

Therefore, by (Z14), we obtain the following theorem.

tr+nxn> ZCZ

Theorem 4. Forn >0, k € Z and a # 0, we have

n n—I
PCH (z:a) =) {Z (afi): <”> Sy (n—r, ) PCH (0 a)} 2.

=0 \r=0

Remark. From (L22) and (Z2), we can also derive the following equation.

n n—l "
(2.15) PCW) (z:a) = Z Z (T) Si(n—mr1) PC‘T(k) (0:a) p .

anfr

By (21)), we easily see that

—t 1
2.1 o)~ pCW (z:a)~ (1, a (e 1 " (1 t).
(2.16) e Tt () Cl (z:a)~ (1, al(e ), =z (1, 1)
Thus, by (L24) and ([ZTI4), for n > 1 we get
a(eftfl) 1 (k) .
(2.17) e iy (=) PCY (x: a)

fietg) ()

_ (*ail)nx;B,(_n) (;j) 1

_ (7a71)"x§B(n) (TL - 1) (71>T :Cnfrfl
N " Tl
r=0

n—1
—1\" n T -1 n—r
() B (7 ) e
r=0

where BM™ = B (0) are called the Bernoulli numbers of order n.
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From (2.I7), we have

(2.18) PO (z:a)

_ (7a_1)n (n 1> B(")Llfk fa(e*tfl)xn—r

= (—a_l)n ( 1> B(")Llfk l)l "
r=0 l:O

L nnf 1 ) n r lnfrfl

= ( ) Z B Z 2(G+ 1 1)

x (=1 Lify (—t) t]’“x"*r} :

where S5 (n, k) is the stirling number of the second kind.
Now, we observe that

(2.19) Lify, (—t) 7+ gn="
=(n —r),,, Lifs (—t) gnri

= (_1)m t n—r—j—
B S S s A

m=0 m' (m+1)k
n—r—j—I m
(=D , el
=n-r), ——(n—r—j =1, "I,
g = ml(m+1)F

Therefore, by (Z18) and (2I9), we obtain the following theorem.

Theorem 5. Forn > 1, k € Z and a # 0, we have

. l .
X<n_r_j_l) aS?(]+lal) ka(wn) ™.
n—r—j—1l—-m+1)

Remark. We note that

a(et—1 1 A . t n
(2.20) e )mpc,@ (@:a)~ (La(e 1)), a"~(1,1).

Thus, for n > 1 we have

n—1
¢ 1 n—1
2.21 ale *1)7 (k) _ ,—n n) 2l
(2.21) e Tify (1) PCW (z:a)=a ZEZO
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From (2.21)), for n > 1 we can derive

(2.22)

n—

3

k

l (n— 1> <n—r>
=0

n—r—j—1l—-m+1)

()

m=0 | r=0 [ 7=0

—r—j—1 : n m
x(” Tm] )a152(3+1,1)35>}]x .
By ([23), (1) and (22), we get

n

; PC](k) (z:a) (—a_l)nﬁ y=)
0

(2.23) POV (z4y:a) =

M=

<.
Il

PCT(lk) (z:a) (—a_l)j y(j)

—J

I
-

<
Il
o

and

I
NIE

. n\ A (i
(2.24) PC® (z+y:a) ( .)PC’J@ (z:a)a” "D (Y);

o \J

<.
Il

I

Il
=)

(1) Pett, ) ).

From (L21), 1) and 22), we have

(2.25) PC® (z—1:a)— PCP (z:a) = a_lnPCgi)l (x:a),
and
(2.26) PCW (2 +1:a)—PCW® (x:a) = cflrLPC',(Zk_)1 (x:a).

For s, (z) ~ (g(t), f (t)), we note that recurrence formula for s, (x) is given by

=|x— g L sn (x
220 o (0= (2= 35) 7 )
Thus, by 1), (Z2) and (Z217), we get
(2.28)

PC,(fgl (x:a)

=-— leC,(lk) (x+1:a)—PCP (z:a)
a

e S S e (3) () g ot e

m—j+2)
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and
(2.29) PC® (2 :a)
zleCn (x—1:a)—PCW (z:a)
a
q—(n+D) i i n_zm l+m+J < > <m>
7=0 | m=35 =0 J
. ( ) f@—1)
X—=S1(n—I,m z—1).
(m—j+2)"
Note that

: Jo) = o (2)) (2)
)
< )

()
NG

x"_1> .

Now, we observe that

(2.31)  &;Lif, (1og (1 + 2))
ST 110g 5 {Lifk_l (log (1 n 2)) _ Lif, (log (1 n 2)) } .
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From (2.31]), we have

o (e (o (1)) (0) )

1< o Life_1 (log (14 £)) — Lify, (log (1 + 1)) (1+ t)—y

a ( )1og(1+ )

a

a

LS 9{ E i) - PO, o)}
n 1) al n=l A '

xn—1>

Therefore, by (230) and ([232), we obtain the following theorem.

Theorem 6. Forn >0, k € Z and a # 0, we have

1
PCW® (z:q) = —PC(k_)l(x:a)—ExPC,(f_)l (x+1:a)

n—1 A
1
+ - (7) Ql {PC(k 2 (x:a)— PCS?I (x: a)}.
=0

n

Remark. Note that

(2.33)

<€_t (Lifkl (log (14 1))

— Lify, (log (1 + g)))

t
a

AL
X (1+—)
a

Q|

n—1
log (1+£)" >

Ju

e
_<et (Lifk_l (log (1+ 1))

X

t_ s OOg (L+ 5))> (1 + 2) e
TS (n 1 1) n 17 lill <€_t (Lifk—l (log (1 + 2))
(e () () )
z <7>
s o1+ ) - (1)) ()

(7) { pc Y (y+1:a)*Pszk—)l(y+1:a)}'

2(::L.nfl
n—1

xn—l>

Ju

n—

3|>—‘

=0
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By (230) and 233), we also get the following equation :

(2.34) PC® (z:a)

n—1

1 k
(x:a)— azPC’i_)l (x+1:a)

n—1
1 n\ G (k=1) . (k) .
Jrnl,O (l) p {PCn—l (x+1:a) PCn_l(erl.a)}.

By the same method as Theorem [ we see that

(2.35) PCW) (1 : a)
(

=—PC,’ (z:a)+ —xPC',gk)l (x—1:a)
a
n—1
1 "\ G f pat-1) A(R)
+ﬁ (Z)E{PCn_l (x—1:a)—PC,”, (x—1 a)}

Here, we compute

(e () (o )

in two different ways.
On the one hand,

?)

= m! n e t el
7l:O al+m<l+m>S1(l+m,m)<e Lify, <log<1+a)> x >
N (o YOy

= 2 T (l N m> S1(l+m,m)PC,~,_ . (0:a)

On the other hand,
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It is easy to show that

- ¢ -1 ¢ m—1 -
(2.39) L1f;c —log 14— log |14 — T
a a

— n—1 *) .
Z (l+m1)51(l+m Lm—1)PC",_ (~1:a)

JN
30

M<n1)51 (n=1=1,m—1)PC" (~1:a).

an—1i-1 l

~

=0

Thus, by ([Z38) and (Z39), we get

(2.40) <€‘tLifk (‘ log (1 + 2)) (bg (1 * 2))’”

x">
n—m-—1 '
m

! -1 N
- Z anl1(nl )Sl(”_l—l,m)PCl(k)(O:a)

=0
_1 n—m
(50
v )&

(nl1>51 (n—l—l,mfl)PC‘l(k) (—=1:a)

m!
an—l

n—m
m!

1 n—1 ~A(k—1
Elfo = < )Sl(nll,ml)PC’l( )(—1:(1).

Therefore, by (237) and (2.40), we obtain the following theorem.
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Theorem 7. Forn, m >0 withn—m >0, k € Z and a # 0, we have

nin (z_) Sy (n—1,m) PC* (0: a)
+ n_im msl (n—1—1,m)PC™ (0: a)

anflfl

(1%) i Qs& (n—1—1,m—1)PC* (~1:a)

(n ] 1>
Si(n—1-1,m-— 1)PC‘l(k) (—1:a).
Remark. From the computation of

(o) (o 2) )

in two different ways, we can also derive the following equation :

(2.41) nin G)

k
o S1(n—1,m) PC’Z( ) (0:a)
1=0

(")
n—1l—-m
+ ) le(n—Z—Lm)Pc;’“)(o:a)

anflfl

an—!

<n1>

- (1 1\~ ! S (k) (1.

=(1- 1in—=1=1I,m—-1)PC;" (1:a)
m

(")
ALV (n—1—1Lm—-1)PC* ™ (1:a).

1
m an—!
By (CZI), 1) and (22), we easily see that
d n—1 ( 1)1 ()
ZPO®) (p:a)=(—1)" 7 R (e
(2.42) —PCY (22 0) = (1) n!;(ni )“anszCz (z:a),

and

n—1 -1
(2.43) %PC’TS’C) (x:a)=(-1)"n! Z ((LP Al(k) (x:a).
=0

n—1)llan!
For
¢ 1 —t
P (k) . ~ ale™"—1 e —1)
O s a) o~ () (@ #0)
and
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let us assume that
(2.44) PCW (z:a) =Y CpmBY (z).
From (I.25), we note that
(2.45)

Cn,m
_ (="

T oml

t A L )
Ly (1 14— 14— —
X <e 1k(og( +a)) ( +a) <1og(1+§)>
Now, we observe that
A\\" , = m! (n .
(2.46) (1og (1+a)) x Z a”l(l)sl (n—1,m)x".

By ([245) and (2.46]), we get
(247)  Cam

1 ZZ’:” o (7) Si(n—1,m)

= <—1>’"nfi ws (n—1,m)C PCY (s a).

Therefore, by (2:44) and ([2:47), we obtain the following theorem.
Theorem 8. Forn >0, k € Z and a # 0, we have
PCP) (z: a)
L (1))
Sy S S AN 1y €9 P (s a) b BY ().

an— l+z
m=0 =0 =0



16 BY DAE SAN KIM AND TAEKYUN KIM

Remark. By the same method as Theorem [§] we get

(2.48)  PCW (z:a)

For

and

HS (2]A) ~ ((elt_;‘)t) , (s € Zso),

let us assume that

(2.49) PCP (x:a) =Y ComHS (z])).

m=0

From (I.20), we have

(2.50)
Cn,m
__(=D"
m! (1 —\)°

e (1)) (08 (o2 2) (0 2)) )

| (1=N""(=N'S (n—1,m) PC¥) (s: a).

Therefore, by ([2.49) and (2.50), we obtain the following theorem.

Theorem 9. Forn >0, k € Z and a # 0, we have

PCY (x: a)
n\ (1
:(1—1)\)‘9;1:0 ( 1)’"21:0 <12n<zl)ﬂ(l)l
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By the same method as Theorem [ we get
(2.51)

N S ) —
:#Z Z S L (NS (n—1L,m) PCR (i a) y HS (@] N).

(1= m=0 | 1=0 i=0 an=!
For
—t 1
P (k) . ~ a(e 171)7 -t 1
Cy (x:a) <e Tify (=) ale )
™ = z(x+1)-(z4+n-1)~(1,1—e"),
let us assume that
(2.52) PCW®) (x:a) = Z Crmz™.
m=0

From (I.20), we have

(2.53) Coom = Wia)m<e—tmk <1og <1+2)>‘t%">
- e (2) (s (- ) )
_ #@)Pcﬁ_’m (0:a).

Therefore, by ([252) and ([2.53), we obtain the following theorem.

Theorem 10. Forn >0, k € Z and a # 0, we have

PO® (2a)= 3 (@m

where (™ =z (x +1)---(z4+m —1).

PC,(Ik,)m (0:a) x(m),

m=0
Remark. By the same method as Theorem [0 we get

PC® (z:a) = Z @PG@ (0:a)(x),,,

where (), =z(x—1)---(z—m+1).

m
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