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THE LINEAR ALGEBRA OF THE PELL MATRIX

EMRAH KILIC AND DURSUN TASCI

Abstract. In this paper we consider the construction of the Pell and sym-
metric Pell matrices. Also we discuss the linear algebra of these matrices. As
applications, we derive some interesting relations involving the Pell numbers
by using the properties of these Pell matrices.

1. Introduction

The Pell sequence {Pn} is defined recursively by the equation

(1.1) Pn+1 = 2Pn + Pn−1

for n ≥ 2, where P1 = 1, P2 = 2. The Pell sequence is

1, 2, 5, 12, 29, 70, 169, 408, . . . .

Matrix methods are major tools in solving many problems stemming from
linear recurrence relations. As is well-known (see, e.g., [1]) the numbers of
this sequence are also generated by the matrix

M =
[
2 1
1 0

]
,

since by taking successive positive powers of M one can easily establish that

Mn =
[
Pn+1 Pn

Pn Pn−1

]
.

In [4] and [3], the authors gave several basic Pell identities as follows, for
arbitrary integers a and b,

Pn+aPn+b − PnPn+a+b = PaPb(−1)n,(1.2)

P2n+1 = P 2
n + P 2

n+1,(1.3)

Pn =
[(n−1)/2]∑

r=0

(
n

2r + 1

)
2r.(1.4)

These identities occur as Problems B-136 [8], B-155 [11] and B-161 [5], respec-
tively.

Now we define a new matrix. The n× n Pell matrix Hn = [hij] is defined as

Hn = [hij] =

{
Pi−j+1, i− j + 1 ≥ 0,

0, i− j + 1 < 0.
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For example,

H6 =


1 0 0 0 0 0
2 1 0 0 0 0
5 2 1 0 0 0
12 5 2 1 0 0
29 12 5 2 1 0
70 29 12 5 2 1

,

and the first column of H6 is the vector (1, 2, 5, 12, 29, 70)T . Thus, the matrix
Hn is useful to find the consecutive Pell numbers from the first to the nth Pell
number.

The set of all n-square matrices is denoted by An. Any matrix B ∈ An of
the form B = Ct · C, C ∈ An, may be written as B = L · Lt, where L ∈ An is a
lower triangular matrix with nonnegative diagonal entries. This factorization
is unique if C is nonsingular. This is called the Cholesky factorization of B. In
particular, a matrix B is positive definite if and only if there exists a nonsin-
gular lower triangular matrix L ∈ An with positive diagonal entries such that
B = L · Lt. If B is a real matrix, L may be taken to be real.

A matrix D ∈ An of the form

D =


D11 0 . . . 0
0 D22 . . . 0
...

...
. . .

...
0 0 . . . Dkk


in which Dii ∈ Ani

, i = 1, 2, . . . , k, and
∑k

i=1 ni = n, is called a block diago-
nal. Notationally, such a matrix is often indicated as D = D11 ⊕ D22 ⊕ . . . ⊕
Dkk or more briefly, ⊕

∑k
i=1 Dii; this is called the direct sum of the matrices

D11, D22, . . . , Dkk.

2. Pell Identities

In this section we give some identities of the Pell numbers. We start with
the following Lemma.

Lemma (2.1). If Pn is the nth Pell number, then

(2.2) 2PnPn−1 + P 2
n−1 − P 2

n = (−1)n .

Proof. We will use the induction method. If n = 1, then we have

2P1P0 + P 2
0 − P 2

1 = −1.

We suppose that the equation holds for n. Now we show that the equation
holds for n + 1. Thus

2PnPn−1 + P 2
n−1 − P 2

n = Pn−1
(
2Pn + Pn−1

)
− P 2

n

= (Pn+1 − 2Pn) Pn+1 − P 2
n

which, by definition of the Pell numbers, satisfy

2PnPn−1 + P 2
n−1 − P 2

n = −2PnPn+1 − P 2
n + P 2

n+1

= −
(
2PnPn+1 + P 2

n − P 2
n+1

)
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which also, by induction hypothesis, satisfy

2PnPn+1 + P 2
n − P 2

n+1 = (−1) (−1)n = (−1)n+1 .

Thus proof is complete.

Lemma (2.3). Let Pn be the Pell number. Then

2Pn−1Pn = P 2
n+1 − P 2

n−1 − 2PnPn+1.

Proof. By considering the proof of the previous Lemma, the proof is clear.

Lemma (2.4). If Pn is the nth Pell number, then

(2.5) P 2
1 + P 2

2 + . . . + P 2
n =

PnPn+1

2
.

Proof. Let we take ai = PiPi+1
2 , now since

ai − ai−1 =
PiPi+1

2
− PiPi−1

2

=
Pi

(
Pi+1 − Pi−1

)
2

,

by definition of the Pell numbers, we have

ai − ai−1 =
Pi (2Pi)

2
= P 2

i .

Now, using the idea of “creative telescoping” [13], we conclude
n∑

i=2

P 2
i =

n∑
i=2

(
ai − ai−1

)
= an − a1

or equivalently (P1 = 1) ,
n∑

i=1

P 2
i = an − a1 + 1 = an =

PnPn+1

2
.

The proof is complete.

Lemma (2.6). If Pn is the nth Pell number, then

(2.7)
P1P2 + P2P3 + . . . + Pn−1Pn =

P2n+1 − 2Pn+1Pn − 1
2

=
P2n−1 + 2PnPn−1 − 1

2
.

Proof. From Lemma (2.3) we write the following equations for 1, 2, . . . , n,

2P1P2 = P 2
3 − P 2

1 − 2P2P3

2P2P3 = P 2
4 − P 2

2 − 2P3P4

2P3P4 = P 2
5 − P 2

3 − 2P4P5

...

2Pn−2Pn−1 = P 2
n − P 2

n−2 − 2Pn−1Pn

2Pn−1Pn = P 2
n+1 − P 2

n−1 − 2PnPn+1.
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By addition, we obtain

2
(
P1P2 + P2P3 + . . . + Pn−1Pn

)
= P 2

n+1 − P 2
n−1 − P 2

1 − P 2
2 − 2Pn+1Pn

−2
(
P1P2 + P2P3 + . . . + Pn−1Pn − P1P2

)
.

If we arrange this equation by P1 = 1, P2 = 5 and equation (1.3), then we have

P1P2 + P2P3 + . . . + Pn−1Pn =
P2n+1 − 2Pn+1Pn − 1

2
.

The proof is complete.

In [2], the authors gave the Cholesky factorization of the Pascal matrix. Also
in [6], the authors consider the usual Fibonacci numbers and define the Fi-
bonacci and symmetric Fibonacci matrices. Furthermore, the authors give the
factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices.
In [7], the authors consider the generalized Fibobacci numbers and discuss the
linear algebra of the k-Fibonacci matrix and the symmetric k-Fibonacci matrix.

3. Factorizations

In this section we consider construction and factorization of our Pell ma-
trix of order n by using the (0, 1, 2)−matrix, where a matrix said to be a
(0, 1, 2)−matrix if each of its entries are 0, 1 or 2.

Let In be the identity matrix of order n. Further, we define the n×n matrices
Ln, Hn and Ak by

L0 =

1 0 0
2 1 0
1 0 1

, L−1 =

1 0 0
0 1 0
0 2 1

,

and Lk = L0⊕Ik, k = 1, 2, . . . , Hn = [1]⊕Hn−1, A1 = In, A2 = In−3⊕L−1, and,
for k ≥ 3, Ak = In−k ⊕ Lk−3. Then we have the following Lemma.

Lemma (3.1). Hk · Lk−3 = Hk, k ≥ 3.

Proof. For k = 3, we have H3 · L0 = H3. From the definition of the matrix
product and familiar Pell sequence, the conclusion follows.

Considering the previous work on Pascal functional matrices, we can rewrite
L0, L−1 as follows:

L−1 = [1]⊕ P1,1 [1] , L0 = CP2,0 [1]
(
[1]⊕ P1,0 [−1]

)
in which Pn,k [x] and CPn,k [x] are Pascal k−eliminated functional matrices
[12].

From the definition of Ak, we know that An = Ln−3, A1 = In, and A2 =
In−3 ⊕ L−1. The following Theorem is an immediate consequence of Lemma
(3.1).

Theorem (3.2). The Pell matrix Hn can be factored by the Ak ’s as follows:

Hn = A1A2 . . . An.
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For example

H5 = A1A2A3A4A5 = I5(I2 ⊕ L−1)(I2 ⊕ L0) ([1]⊕ L1) L2

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ·


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 2 1

 ·


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 2 1 0
0 0 1 0 1



·


1 0 0 0 0
0 1 0 0 0
0 2 1 0 0
0 1 0 1 0
0 0 0 0 1

 ·


1 0 0 0 0
2 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1



=


1 0 0 0 0
2 1 0 0 0
5 2 1 0 0
12 5 2 1 0
29 12 5 2 1

.

We give another factorization of Hn. Let Tn =
[
tij

]
be n× n matrix as

tij =

 Pi, j = 1,
1, i = j,
0, otherwise

, i.e., Tn =


P1 0 . . . 0
P2 1 . . . 0
...

...
. . .

...
Pn 0 . . . 1

 .

The next Theorem follows by a simple calculation.

Theorem (3.3). For n≥2, Hn =Tn

(
I1 ⊕ Tn−1

) (
I2 ⊕ Tn−2

)
. . .
(
In−2 ⊕ T2

)
.

We can readily find the inverse of the Pell matrix Hn. We know that

L−1
0 =

 1 0 0
−2 1 0
−1 0 1

 , L−1
−1 =

 1 0 0
0 1 0
0 −2 1

 , and L−1
k = L−1

0 ⊕ Ik.

Define Jk = A−1
k . Then

J1 = A−1
1 = In, J2 = A−1

2 = In−3 ⊕L−1
1 = In−2 ⊕

[
1 0

−2 1

]
, and Jn = L−1

n−3.

Also, we know that

T−1
n =


P1 0 0 . . . 0

−P2 1 0 . . . 0
−P3 0 1 . . . 0

...
...

...
...

−Pn 0 0 . . . 1

 and
(
Ik ⊕ Tn−k

)−1
= Ik ⊕ T−1

n−k.

Thus the following Corollary holds.
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Corollary (3.4).

H−1
n = A−1

n A−1
n−1 . . . A−1

2 A−1
1 = JnJn−1 . . . J2J1

= (In−2 ⊕ T2)−1 . . . (I1 ⊕ Tn−1)−1T−1
n .

From Corollary (3.4), we have

(3.5) H−1
n =



1 0 0 0 . . . 0
−2 1 0 0 . . . 0
−1 −2 1 0 . . . 0
0 −1 −2 1 . . . 0
...

...
...

. . .
. . .

...
...

...
...

0 . . . . . . −1 −2 1


.

We define a symmetric Pell matrix Qn = [qij] as, for i, j = 1, 2, . . . , n,

qij = qji =


i∑

k=1
P 2

k , i = j,

qi,j−2 + 2qi,j−1, i + 1 ≤ j,

in which q1,0 = 0. Then we have q1j = qj1 = Pj and q2j = qj2 = Pj+1.
For example,

Q7 =



1 2 5 12 29 70 169
2 5 12 29 70 169 408
5 12 30 72 174 420 1014
12 29 72 174 420 1014 2448
29 70 174 420 1015 2450 5915
70 169 420 1014 2450 5915 14280
169 408 1014 2448 5915 14280 34476


.

From the definition of Qn, we arrive at the following Lemma.

Lemma (3.6). For j ≥ 3, q3j = P4

(
Pj−3 +

Pj−2P3

2

)
.

Proof. By Lemma (2.4), we have that q3,3 = P 2
1 + P 2

2 + P 2
3 =

P3P4

2
; hence

q3,3 =
P3P4

2
=P4

(
P0 +

P1P3

2

)
for P0 =0.

By induction, q3,j = P4

(
Pj−3 +

Pj−2P3

2

)
.

We know that q3,1 = q1,3 = P3 and q3,2 = q2,3 = P4. Also we have that
q4,1 = q1,4, q4,2 = q2,4 and q4,3 = q3,4. By similar argument, we have the
following Lemma.

Lemma (3.7). For j ≥ 4, q4,j = P4

(
Pj−4 + Pj−4P3 +

Pj−3P5

2

)
.

From Lemmas (3.6) and (3.7), we obtain q5,1, q5,2, q5,3 and q5,4. From these
results and the definition of Qn, we arrive at the following Lemma.
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Lemma (3.8). For j ≥ 5, q5,j = Pj−5P4 (1 + P3 + P5) +
Pj−4P5P6

2
.

Proof. Since q5,5 =
P5P6

2
we have, by induction, q5j = Pj−5P4 (1 + P3 + P5)+

Pj−4P5P6

2
.

From the definition of Qn together with Lemmas (3.6), (3.7) and (3.8) we
have the following Lemma by induction on i.

Lemma (3.9). For j ≥ i ≥ 6,

qij = Pj−iP4(1+P3+P5)+Pj−iP5P6+Pj−iP6P7+. . .+Pj−iPi−1Pi+
Pj−i+1PiPi+1

2
.

Considering the above lemmas, we obtain the following result.

Theorem (3.10). For n ≥ 1 a positive integer, JnJn−1 . . . J2J1Qn = HT
n and

the Cholesky factorization of Qn is given by Qn = HnHT
n .

Proof. By Corollary (3.4), JnJn−1 . . . J2J1 = H−1
n . So, if we have H−1

n Qn =
HT

n , then the proof is immediately seen.
Let V =

[
vij

]
= H−1

n Qn. Then, by (3.5), we have following:

vij =

 Pj , if i = 1,
Pj−1, if i = 2,
−qi−2,j − 2qi−1,j + qij , otherwise.

Now we consider the case i ≥ 3. Since Qn is a symmetric matrix, −qi−2,j −
2qi−1,j + qij = −qj,i−2 − 2qj,i−1 + qji. Hence, by the definition of Qn, vij = 0 for
j + 1 ≤ i. Thus, we will prove that −qi−2,j − 2qi−1,j + qij = Pj−i+1 for j ≥ i. In
the case in which i ≤ 5, we have vij = Pj−i+1 by Lemmas (3.6), (3.7) and (3.8).
Now we suppose that j ≥ i ≥ 6. Then by Lemma (3.9) we have

vij = −qi−2,j − 2qi−1,j + qij

= (Pj−i−2Pj−i+1 − Pj−i+2)P4(1 + P3 + P5) + (Pj−i − 2Pj−i+1 − Pj−i+2)P5P6

+ · · ·+ (Pj−i − 2Pj−i+1 − Pj−i+2)Pi−3Pi−2

+
(

Pj−i − 2Pj−i+1 −
Pj−i+3

2

)
Pi−2Pi−1 +

(
Pj−i − Pj−i+2

)
Pi−1Pi

+ Pj−i+1
PiPi+1

2
.

Since Pj−i−2Pj−i+1−Pj−i+2 = −4Pj−i+1, Pj−i−2Pj−i+1−
Pj−i+3

2
= − 9

2 Pj−i+1

and Pj−i − Pj−i+2 = −2Pj−i+1, we obtain

vij = Pj−i+1

 −4P4 − 4
(
P3P4 + P4P5 + . . . + Pi−3Pi−2

)
−

1
2 Pi−2Pi−1 − 2Pi−1Pi + PiPi+1

2 .

.
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Since P4 = 12, using Lemma (2.6) we get

vij = Pj−i+1

 −48− 4
(

P2(i−1)+1−2Pi−1Pi−1
4

)
− 12−

Pi−2Pi−1
2 − 2Pi−1Pi + PiPi+1

2


= Pj−i+1

(
−P2i−1 + 1− Pi−2Pi−1

2
+

PiPi+1

2

)
.

Using equation (1.3) and the definition of the Pell numbers we obtain

vij = Pj−i+1
[
−2P 2

i−1 − 2P 2
i + 2− Pi−2Pi−1 + Pi

(
2Pi + Pi−1

)]
= Pj−i+1.

Therefore, H−1
n Qn = HT

n , i.e., the Cholesky factorizaton of Qn is given by
Qn = HnHT

n . The proof is complete.

In particular, since Q−1
n =

(
HT

n

)−1
H−1

n =
(
H−1

n

)T
H−1

n , we have

(3.11) Q−1
n =



6 0 −1 0 . . . . . . 0

0 6 0 −1
...

−1 0 6 0
...

0 −1 0 6 . . . . . . 0
...

...
...

. . . 6 0 −1
0 5 −2

0 . . . 0 . . . −1 −2 1


.

From Theorem (3.10), we have the following Corollary.

Corollary (3.12). If Pn is the nth Pell number and k is an odd number,
then

PnPn−k + . . . + Pk+1P1 =


(

PnPn−(k−1) − Pk

)
/2, if n is odd,(

PnPn−(k−1)

)
/2, if n is even.

If k is an even number, then

PnPn−k + . . . + Pk+1P1 =


(

PnPn−(k−1)

)
/2, if n is odd,(

PnPn−(k−1) − Pk

)
/2, if n is even.

For the case when we multiply the ith row of Hn and the ith column of HT
n ,

we obtain the formula (2.5). Also, formula (2.5) is the case when k = 0 in
Corollary (3.12).

4. Eigenvalues of Qn

In this section we consider the eigenvalues of Qn.
Let B = {x=(x1, x2, . . . , xn) ∈ Rn; x1 ≥ x2 ≥ . . . ≥ xn} . For x, y ∈ B, x ≺ y

if
k∑

i=1
xi ≤

k∑
i=1

yi, k = 1, 2, . . . , n and if k = n, then equality holds. When x ≺ y,
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x is said to be majorized by y, or y is said to be majorize x. The condition for

majorization can be written as follows: for x, y ∈ B, x ≺ y if
k∑

i=0
xn−i ≥

k∑
i=0

yn−i,

k = 0, 1, . . . n− 2, and if k = n− 1, then equality holds.
The following is an interesting simple fact:

(x, x, . . . , x) ≺ (x1, x2, . . . , xn) , where x =

n∑
i=1

xi

n
.

More interesting facts about majorizations can be found in [9] and [10].
An n×n matrix P =

[
pij

]
is doubly stochastic if pij ≥ 0 for i, j = 1, 2, . . . , n,

n∑
i=1

Pij = 1, j = 1, 2, . . . , n, and
n∑

j=1
Pij = 1, i = 1, 2, . . . , n. In 1929, Hardy,

Littlewood and Polya proved that a necessary and sufficient condition that
x ≺ y is that there exist a doubly stochastic matrix P such that x = yP.

We know that both the eigenvalues and the main diagonal elements of real
symmetric matrix are real numbers. The precise relationship between the
main diagonal elements and the eigenvalues is given by the notion of majoriza-
tion as follows: the vector of eigenvalues of a symmetric matrix is majorized
by the diagonal elements of the matrix.

Note that det Hn = 1 and det Qn = 1. Let λ1, λ2, . . . , λn be the eigenvalues

of Qn. Since Qn = Hn ·HT
n and

k∑
i=1

P 2
i =

Pk+1Pk

2
, the eigenvalues of Qn are all

positive and (
Pn+1Pn

2
,
PnPn−1

2
, . . . ,

P2P1

2

)
≺ (λ1, λ2, . . . , λn) .

In [4], we find the combinatorial property, Pn =
[(n−1)/2]∑

r=0

(
n

2r+1

)
2r. Therefore

we have following Corollaries.

Corollary (4.1). Let λ1, λ2, . . . , λn be the eigenvalues of Qn. Then

λ1 + λ2 + . . . + λn =



([n/2]∑
r=0

(
n+1
2r+1

)
2r

)2

− 1

 /4

, if n is odd,

([n/2]∑
r=0

(
n+1
2r+1

)
2r

)2
 /4

, if n is even.

Proof. Since
(

Pn+1Pn

2 , PnPn−1
2 , . . . , P2P1

2

)
≺ (λ1, λ2, . . . , λn) , and from Corollary

(3.12),

λ1 + λ2 + . . . + λn =

{
(Pn+1)2−P1

4 , if n is odd,
P 2

n+1
4 , if n is even.

By formula 1.4, the proof is immediately seen.
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Corollary (4.2). If n is an odd number, then

4nλn ≤

[n/2]∑
r=0

(
n + 1
2r + 1

)
2r

2

− 1 ≤ 4nλ1.

If n is an even number, then

4nλn ≤

[n/2]∑
r=0

(
n + 1
2r + 1

)
2r

2

≤ 4nλ1.

Proof. Let Sn = λ1 + λ2 + . . . + λn. Since(
Sn

n
,
Sn

n
, . . . ,

Sn

n

)
≺ (λ1, λ2, . . . , λn) ,

we have λn ≤ Sn

n ≤ λ1. Therefore, the proof is readily seen.

From equation (3.11), we have

(4.3) (6, 6, . . . , 6, 5, 1) ≺
(

1
λn

,
1

λn−1
, . . . ,

1
λ1

)
.

Thus there exists a doubly stochastic matrix G = [gij] such that

(6, 6, . . . , 6, 5, 1) =
(

1
λn

,
1

λn−1
, . . . ,

1
λ1

)
g11 g12 . . . g1n

g21 g22 . . . g2n

...
...

...
gn1 gn2 . . . gnn

.

That is, we obtain 1
λn

g1n + 1
λn−1

g2n + . . .+ 1
λ1

gnn = 1 and g1n +g2n + . . .+gnn = 1.

Lemma (4.4). For each i = 1, 2, . . . , n, gn−(i−1),n ≤
λi

n− 1
.

Proof. Suppose that gn−(i−1),n >
λi

n− 1
. Then

g1n + g2n + . . . + gnn >
λ1

n− 1
+

λ2

n− 1
+ . . . +

λn

n− 1

=
1

n− 1
(λ1 + λ2 + . . . + λn) .

Since g1n + g2n + . . . + gnn = 1 and
n∑

i=1
λi ≥ n, this yields a contradiction, so

gn−(i−1),n ≤
λi

n− 1
.

From Lemma (4.4), we have 1−(n− 1) 1
λi

gn−(i−1),n ≥ 0. Let γ = Sn−(n− 1) .

Therefore, we have the following Theorem.

Theorem (4.5). For (γ, 1, 1, . . . , 1) ∈ B, (γ, 1, 1, . . . , 1) ≺ (λ1, λ2, . . . , λn) .
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Proof. A necessary and sufficient condition that (γ, 1, 1, . . . , 1) ≺ (λ1, λ2, . . . ,
λn) is that there exist a doubly stochastic matrix C such that (γ, 1, 1, . . . , 1) =
(λ1, λ2, . . . , λn) C.

We define an n× n matrix C = [cij] as follows:

C =


c11 c12 . . . c12

c21 c22 . . . c22
...

...
...

cn1 cn2 . . . cn2

,

where ci2 = 1
λi

gn−(i−1),n and ci1 = 1 − (n− 1) ci2, i = 1, 2, . . . , n. Since G is
doubly stochastic and λi > 0 and ci2 ≥ 0, i = 1, 2, . . . , n. By Lemma (4.4),
ci1 ≥ 0, i = 1, 2, . . . , n. Then

c12 + c22 + . . . + cn2 =
gnn

λ1
+

gn−1,n

λ2
+ . . . +

g1n

λn
= 1

ci1 + (n− 1) ci2 = 1− (n− 1) ci2 + (n− 1) ci2 = 1,

and

c11 + c21 + . . . + cn1 = 1− (n− 1) c12 + 1− (n− 1) c22 + . . . + 1− (n− 1) cn2

= n− n (c12 + c22 + . . . + cn2) + c12 + c22 + . . . + cn2 = 1.

Thus, G is a doubly stochastic matrix. Furthermore,

λ1c12 + λ2c22 + . . . + λncn2 = λ1
gnn

λ1
+ λ2

gn−1,n

λ2
+ . . . + λn

g1n

λn

= gnn + gn−1,n + . . . + g1n = 1

and

λ1c11 + λ2c21 + . . . + λncn1 = λ1 (1− (n− 1) c12) + . . . + λn (1− (n− 1) cn2)
= λ1 + λ2 + . . . + λn −

(n− 1) (λ1c12 + λ2c22 + . . . + λncn2)
= λ1 + λ2 + . . . + λn − (n− 1) = γ.

Thus, (γ, 1, 1, . . . , 1) = (λ1, λ2, . . . , λn) C, so (γ, 1, 1, . . . , 1) ≺ (λ1, λ2, . . . , λn) .

From equation (4.3), we arrive at the following Lemma.

Lemma (4.6). For k = 2, 3, . . . , n, λk ≥
1

6
(
k − 1

) .

Proof. From equation (4.3), for k ≥ 2,

1
λ1

+
1
λ2

+ . . . +
1
λk

≤ 1 + 5 + 6 + + . . . + 6︸ ︷︷ ︸
k

= 6(k − 1).

Thus,
1
λk

≤ 6
(
k − 1

)
−
(

1
λ1

+
1
λ2

+ . . . +
1

λk−1

)
≤ 6(k − 1).

Therefore, for k = 2, 3, . . . , n, λk ≥
1

6
(
k − 1

) . So the proof is complete.
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