THE LINEAR ALGEBRA OF THE PELL MATRIX

EMRAH KILIC AND DURSUN TASCI

Abstract

In this paper we consider the construction of the Pell and symmetric Pell matrices. Also we discuss the linear algebra of these matrices. As applications, we derive some interesting relations involving the Pell numbers by using the properties of these Pell matrices.

1. Introduction

The Pell sequence $\left\{P_{n}\right\}$ is defined recursively by the equation

$$
\begin{equation*}
P_{n+1}=2 P_{n}+P_{n-1} \tag{1.1}
\end{equation*}
$$

for $n \geq 2$, where $P_{1}=1, P_{2}=2$. The Pell sequence is

$$
1,2,5,12,29,70,169,408, \ldots .
$$

Matrix methods are major tools in solving many problems stemming from linear recurrence relations. As is well-known (see, e.g., [1]) the numbers of this sequence are also generated by the matrix

$$
M=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right],
$$

since by taking successive positive powers of M one can easily establish that

$$
M^{n}=\left[\begin{array}{cc}
P_{n+1} & P_{n} \\
P_{n} & P_{n-1}
\end{array}\right] .
$$

In [4] and [3], the authors gave several basic Pell identities as follows, for arbitrary integers a and b,

$$
\begin{align*}
P_{n+a} P_{n+b}-P_{n} P_{n+a+b} & =P_{a} P_{b}(-1)^{n}, \tag{1.2}\\
P_{2 n+1} & =P_{n}^{2}+P_{n+1}^{2}, \tag{1.3}\\
P_{n} & =\sum_{r=0}^{[(n-1) / 2]}\binom{n}{2 r+1} 2^{r} . \tag{1.4}
\end{align*}
$$

These identities occur as Problems B-136 [8], B-155 [11] and B-161 [5], respectively.

Now we define a new matrix. The $n \times n$ Pell matrix $H_{n}=\left[h_{i j}\right]$ is defined as

$$
H_{n}=\left[h_{i j}\right]= \begin{cases}P_{i-j+1}, & i-j+1 \geq 0, \\ 0, & i-j+1<0 .\end{cases}
$$

[^0]Keywords and phrases: Pell matrix, symmetric Pell matrix, majorization.

For example,

$$
H_{6}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 & 0 \\
5 & 2 & 1 & 0 & 0 & 0 \\
12 & 5 & 2 & 1 & 0 & 0 \\
29 & 12 & 5 & 2 & 1 & 0 \\
70 & 29 & 12 & 5 & 2 & 1
\end{array}\right],
$$

and the first column of H_{6} is the vector $(1,2,5,12,29,70)^{T}$. Thus, the matrix H_{n} is useful to find the consecutive Pell numbers from the first to the nth Pell number.

The set of all n-square matrices is denoted by A_{n}. Any matrix $B \in A_{n}$ of the form $B=C^{t} \cdot C, C \in A_{n}$, may be written as $B=L \cdot L^{t}$, where $L \in A_{n}$ is a lower triangular matrix with nonnegative diagonal entries. This factorization is unique if C is nonsingular. This is called the Cholesky factorization of B. In particular, a matrix B is positive definite if and only if there exists a nonsingular lower triangular matrix $L \in A_{n}$ with positive diagonal entries such that $B=L \cdot L^{t}$. If B is a real matrix, L may be taken to be real.

A matrix $D \in A_{n}$ of the form

$$
D=\left[\begin{array}{cccc}
D_{11} & 0 & \ldots & 0 \\
0 & D_{22} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & D_{k k}
\end{array}\right]
$$

in which $D_{i i} \in A_{n_{i}}, i=1,2, \ldots, k$, and $\sum_{i=1}^{k} n_{i}=n$, is called a block diagonal. Notationally, such a matrix is often indicated as $D=D_{11} \oplus D_{22} \oplus \ldots \oplus$ $D_{k k}$ or more briefly, $\oplus \sum_{i=1}^{k} D_{i i}$; this is called the direct sum of the matrices $D_{11}, D_{22}, \ldots, D_{k k}$.

2. Pell Identities

In this section we give some identities of the Pell numbers. We start with the following Lemma.

Lemma (2.1). If P_{n} is the nth Pell number, then

$$
\begin{equation*}
2 P_{n} P_{n-1}+P_{n-1}^{2}-P_{n}^{2}=(-1)^{n} . \tag{2.2}
\end{equation*}
$$

Proof. We will use the induction method. If $n=1$, then we have

$$
2 P_{1} P_{0}+P_{0}^{2}-P_{1}^{2}=-1 .
$$

We suppose that the equation holds for n. Now we show that the equation holds for $n+1$. Thus

$$
\begin{aligned}
2 P_{n} P_{n-1}+P_{n-1}^{2}-P_{n}^{2} & =P_{n-1}\left(2 P_{n}+P_{n-1}\right)-P_{n}^{2} \\
& =\left(P_{n+1}-2 P_{n}\right) P_{n+1}-P_{n}^{2}
\end{aligned}
$$

which, by definition of the Pell numbers, satisfy

$$
\begin{aligned}
2 P_{n} P_{n-1}+P_{n-1}^{2}-P_{n}^{2} & =-2 P_{n} P_{n+1}-P_{n}^{2}+P_{n+1}^{2} \\
& =-\left(2 P_{n} P_{n+1}+P_{n}^{2}-P_{n+1}^{2}\right)
\end{aligned}
$$

which also, by induction hypothesis, satisfy

$$
2 P_{n} P_{n+1}+P_{n}^{2}-P_{n+1}^{2}=(-1)(-1)^{n}=(-1)^{n+1}
$$

Thus proof is complete.
Lemma (2.3). Let P_{n} be the Pell number. Then

$$
2 P_{n-1} P_{n}=P_{n+1}^{2}-P_{n-1}^{2}-2 P_{n} P_{n+1}
$$

Proof. By considering the proof of the previous Lemma, the proof is clear.

Lemma (2.4). If P_{n} is the $n t h$ Pell number, then

$$
\begin{equation*}
P_{1}^{2}+P_{2}^{2}+\ldots+P_{n}^{2}=\frac{P_{n} P_{n+1}}{2} \tag{2.5}
\end{equation*}
$$

Proof. Let we take $a_{i}=\frac{P_{i} P_{i+1}}{2}$, now since

$$
\begin{aligned}
a_{i}-a_{i-1} & =\frac{P_{i} P_{i+1}}{2}-\frac{P_{i} P_{i-1}}{2} \\
& =\frac{P_{i}\left(P_{i+1}-P_{i-1}\right)}{2}
\end{aligned}
$$

by definition of the Pell numbers, we have

$$
a_{i}-a_{i-1}=\frac{P_{i}\left(2 P_{i}\right)}{2}=P_{i}^{2}
$$

Now, using the idea of "creative telescoping" [13], we conclude

$$
\sum_{i=2}^{n} P_{i}^{2}=\sum_{i=2}^{n}\left(a_{i}-a_{i-1}\right)=a_{n}-a_{1}
$$

or equivalently $\left(P_{1}=1\right)$,

$$
\sum_{i=1}^{n} P_{i}^{2}=a_{n}-a_{1}+1=a_{n}=\frac{P_{n} P_{n+1}}{2}
$$

The proof is complete.
Lemma (2.6). If P_{n} is the nth Pell number, then

$$
\begin{align*}
P_{1} P_{2}+P_{2} P_{3}+\ldots+P_{n-1} P_{n} & =\frac{P_{2 n+1}-2 P_{n+1} P_{n}-1}{2} \tag{2.7}\\
& =\frac{P_{2 n-1}+2 P_{n} P_{n-1}-1}{2}
\end{align*}
$$

Proof. From Lemma (2.3) we write the following equations for $1,2, \ldots, n$,

$$
\begin{aligned}
2 P_{1} P_{2}= & P_{3}^{2}-P_{1}^{2}-2 P_{2} P_{3} \\
2 P_{2} P_{3}= & P_{4}^{2}-P_{2}^{2}-2 P_{3} P_{4} \\
2 P_{3} P_{4}= & P_{5}^{2}-P_{3}^{2}-2 P_{4} P_{5} \\
& \vdots \\
2 P_{n-2} P_{n-1}= & P_{n}^{2}-P_{n-2}^{2}-2 P_{n-1} P_{n} \\
2 P_{n-1} P_{n}= & P_{n+1}^{2}-P_{n-1}^{2}-2 P_{n} P_{n+1}
\end{aligned}
$$

By addition, we obtain

$$
\begin{aligned}
2\left(P_{1} P_{2}+P_{2} P_{3}+\ldots+P_{n-1} P_{n}\right)= & P_{n+1}^{2}-P_{n-1}^{2}-P_{1}^{2}-P_{2}^{2}-2 P_{n+1} P_{n} \\
& -2\left(P_{1} P_{2}+P_{2} P_{3}+\ldots+P_{n-1} P_{n}-P_{1} P_{2}\right)
\end{aligned}
$$

If we arrange this equation by $P_{1}=1, P_{2}=5$ and equation (1.3), then we have

$$
P_{1} P_{2}+P_{2} P_{3}+\ldots+P_{n-1} P_{n}=\frac{P_{2 n+1}-2 P_{n+1} P_{n}-1}{2}
$$

The proof is complete.
In [2], the authors gave the Cholesky factorization of the Pascal matrix. Also in [6], the authors consider the usual Fibonacci numbers and define the Fibonacci and symmetric Fibonacci matrices. Furthermore, the authors give the factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices. In [7], the authors consider the generalized Fibobacci numbers and discuss the linear algebra of the k-Fibonacci matrix and the symmetric k-Fibonacci matrix.

3. Factorizations

In this section we consider construction and factorization of our Pell matrix of order n by using the $(0,1,2)$-matrix, where a matrix said to be a $(0,1,2)$-matrix if each of its entries are 0,1 or 2 .

Let I_{n} be the identity matrix of order n. Further, we define the $n \times n$ matrices $L_{n}, \overline{H_{n}}$ and A_{k} by

$$
L_{0}=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], \quad L_{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right],
$$

and $L_{k}=L_{0} \oplus I_{k}, k=1,2, \ldots, \overline{H_{n}}=[1] \oplus H_{n-1}, A_{1}=I_{n}, A_{2}=I_{n-3} \oplus L_{-1}$, and, for $k \geq 3, A_{k}=I_{n-k} \oplus L_{k-3}$. Then we have the following Lemma.

Lemma (3.1). $\overline{H_{k}} \cdot L_{k-3}=H_{k}, k \geq 3$.
Proof. For $k=3$, we have $\overline{H_{3}} \cdot L_{0}=H_{3}$. From the definition of the matrix product and familiar Pell sequence, the conclusion follows.

Considering the previous work on Pascal functional matrices, we can rewrite L_{0}, L_{-1} as follows:

$$
L_{-1}=[1] \oplus P_{1,1}[1], L_{0}=C P_{2,0}[1]\left([1] \oplus P_{1,0}[-1]\right)
$$

in which $P_{n, k}[x]$ and $C P_{n, k}[x]$ are Pascal k-eliminated functional matrices [12].

From the definition of A_{k}, we know that $A_{n}=L_{n-3}, A_{1}=I_{n}$, and $A_{2}=$ $I_{n-3} \oplus L_{-1}$. The following Theorem is an immediate consequence of Lemma (3.1).

Theorem (3.2). The Pell matrix H_{n} can be factored by the A_{k} 's as follows:

$$
H_{n}=A_{1} A_{2} \ldots A_{n}
$$

For example

$$
\begin{aligned}
H_{5} & =A_{1} A_{2} A_{3} A_{4} A_{5}=I_{5}\left(I_{2} \oplus L_{-1}\right)\left(I_{2} \oplus L_{0}\right)\left([1] \oplus L_{1}\right) L_{2} \\
& =\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2 & 1
\end{array}\right] \cdot\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 \\
0 & 1 & 0 & 0 \\
0 \\
0 & 0 & 1 & 0 \\
0 \\
0 & 0 & 2 & 1 \\
0 \\
0 & 0 & 1 & 0 \\
1
\end{array}\right] \\
& \cdot\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 \\
5 & 2 & 1 & 0 & 0 \\
12 & 5 & 2 & 1 & 0 \\
29 & 12 & 5 & 2 & 1
\end{array}\right] .
\end{aligned}
$$

We give another factorization of H_{n}. Let $T_{n}=\left[t_{i j}\right]$ be $n \times n$ matrix as

$$
t_{i j}=\left\{\begin{array}{cc}
P_{i}, & j=1, \\
1, & i=j, \\
0, & \text { otherwise }
\end{array}, \quad \text { i.e., } \quad T_{n}=\left[\begin{array}{cccc}
P_{1} & 0 & \ldots & 0 \\
P_{2} & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
P_{n} & 0 & \ldots & 1
\end{array}\right] .\right.
$$

The next Theorem follows by a simple calculation.
Theorem (3.3). For $n \geq 2, H_{n}=T_{n}\left(I_{1} \oplus T_{n-1}\right)\left(I_{2} \oplus T_{n-2}\right) \ldots\left(I_{n-2} \oplus T_{2}\right)$.
We can readily find the inverse of the Pell matrix H_{n}. We know that

$$
L_{0}^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right], \quad L_{-1}^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right], \quad \text { and } \quad L_{k}^{-1}=L_{0}^{-1} \oplus I_{k} .
$$

Define $J_{k}=A_{k}^{-1}$. Then
$J_{1}=A_{1}^{-1}=I_{n}, J_{2}=A_{2}^{-1}=I_{n-3} \oplus L_{1}^{-1}=I_{n-2} \oplus\left[\begin{array}{rr}1 & 0 \\ -2 & 1\end{array}\right]$, and $J_{n}=L_{n-3}^{-1}$.
Also, we know that

$$
T_{n}^{-1}=\left[\begin{array}{rcccc}
P_{1} & 0 & 0 & \ldots & 0 \\
-P_{2} & 1 & 0 & \ldots & 0 \\
-P_{3} & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
-P_{n} & 0 & 0 & \ldots & 1
\end{array}\right] \quad \text { and } \quad\left(I_{k} \oplus T_{n-k}\right)^{-1}=I_{k} \oplus T_{n-k}^{-1} .
$$

Thus the following Corollary holds.

Corollary (3.4).

$$
\begin{aligned}
H_{n}^{-1} & =A_{n}^{-1} A_{n-1}^{-1} \ldots A_{2}^{-1} A_{1}^{-1}=J_{n} J_{n-1} \ldots J_{2} J_{1} \\
& =\left(I_{n-2} \oplus T_{2}\right)^{-1} \ldots\left(I_{1} \oplus T_{n-1}\right)^{-1} T_{n}^{-1}
\end{aligned}
$$

From Corollary (3.4), we have

$$
H_{n}^{-1}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & \ldots & 0 \tag{3.5}\\
-2 & 1 & 0 & 0 & \ldots & 0 \\
-1 & -2 & 1 & 0 & \ldots & 0 \\
0 & -1 & -2 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\vdots & & & \vdots & \vdots & \\
0 & \ldots & \ldots & -1 & -2 & 1
\end{array}\right] .
$$

We define a symmetric Pell matrix $Q_{n}=\left[q_{i j}\right]$ as, for $i, j=1,2, \ldots, n$,

$$
q_{i j}=q_{j i}= \begin{cases}\sum_{k=1}^{i} P_{k}^{2}, & i=j \\ q_{i, j-2}+2 q_{i, j-1}, & i+1 \leq j\end{cases}
$$

in which $q_{1,0}=0$. Then we have $q_{1 j}=q_{j 1}=P_{j}$ and $q_{2 j}=q_{j 2}=P_{j+1}$.
For example,

$$
Q_{7}=\left[\begin{array}{ccccccc}
1 & 2 & 5 & 12 & 29 & 70 & 169 \\
2 & 5 & 12 & 29 & 70 & 169 & 408 \\
5 & 12 & 30 & 72 & 174 & 420 & 1014 \\
12 & 29 & 72 & 174 & 420 & 1014 & 2448 \\
29 & 70 & 174 & 420 & 1015 & 2450 & 5915 \\
70 & 169 & 420 & 1014 & 2450 & 5915 & 14280 \\
169 & 408 & 1014 & 2448 & 5915 & 14280 & 34476
\end{array}\right]
$$

From the definition of Q_{n}, we arrive at the following Lemma.
Lemma (3.6). For $j \geq 3, q_{3 j}=P_{4}\left(P_{j-3}+\frac{P_{j-2} P_{3}}{2}\right)$.
Proof. By Lemma (2.4), we have that $q_{3,3}=P_{1}^{2}+P_{2}^{2}+P_{3}^{2}=\frac{P_{3} P_{4}}{2}$; hence $q_{3,3}=\frac{P_{3} P_{4}}{2}=P_{4}\left(P_{0}+\frac{P_{1} P_{3}}{2}\right)$ for $P_{0}=0$.

By induction, $q_{3, j}=P_{4}\left(P_{j-3}+\frac{P_{j-2} P_{3}}{2}\right)$.
We know that $q_{3,1}=q_{1,3}=P_{3}$ and $q_{3,2}=q_{2,3}=P_{4}$. Also we have that $q_{4,1}=q_{1,4}, q_{4,2}=q_{2,4}$ and $q_{4,3}=q_{3,4}$. By similar argument, we have the following Lemma.

Lemma (3.7). For $j \geq 4, q_{4, j}=P_{4}\left(P_{j-4}+P_{j-4} P_{3}+\frac{P_{j-3} P_{5}}{2}\right)$.
From Lemmas (3.6) and (3.7), we obtain $q_{5,1}, q_{5,2}, q_{5,3}$ and $q_{5,4}$. From these results and the definition of Q_{n}, we arrive at the following Lemma.

Lemma (3.8). For $j \geq 5, q_{5, j}=P_{j-5} P_{4}\left(1+P_{3}+P_{5}\right)+\frac{P_{j-4} P_{5} P_{6}}{2}$.
Proof. Since $q_{5,5}=\frac{P_{5} P_{6}}{2}$ we have, by induction, $q_{5 j}=P_{j-5} P_{4}\left(1+P_{3}+P_{5}\right)+$ $\frac{P_{j-4} P_{5} P_{6}}{2}$.

From the definition of Q_{n} together with Lemmas (3.6), (3.7) and (3.8) we have the following Lemma by induction on i.

Lemma (3.9). For $j \geq i \geq 6$,
$q_{i j}=P_{j-i} P_{4}\left(1+P_{3}+P_{5}\right)+P_{j-i} P_{5} P_{6}+P_{j-i} P_{6} P_{7}+\ldots+P_{j-i} P_{i-1} P_{i}+\frac{P_{j-i+1} P_{i} P_{i+1}}{2}$.
Considering the above lemmas, we obtain the following result.
Theorem (3.10). For $n \geq 1$ a positive integer, $J_{n} J_{n-1} \ldots J_{2} J_{1} Q_{n}=H_{n}^{T}$ and the Cholesky factorization of Q_{n} is given by $Q_{n}=H_{n} H_{n}^{T}$.

Proof. By Corollary (3.4), $J_{n} J_{n-1} \ldots J_{2} J_{1}=H_{n}^{-1}$. So, if we have $H_{n}^{-1} Q_{n}=$ H_{n}^{T}, then the proof is immediately seen.

Let $V=\left[v_{i j}\right]=H_{n}^{-1} Q_{n}$. Then, by (3.5), we have following:

$$
v_{i j}= \begin{cases}P_{j}, & \text { if } i=1, \\ P_{j-1}, & \text { if } i=2, \\ -q_{i-2, j}-2 q_{i-1, j}+q_{i j}, & \text { otherwise }\end{cases}
$$

Now we consider the case $i \geq 3$. Since Q_{n} is a symmetric matrix, $-q_{i-2, j}-$ $2 q_{i-1, j}+q_{i j}=-q_{j, i-2}-2 q_{j, i-1}+q_{j i}$. Hence, by the definition of $Q_{n}, \mathrm{v}_{i j}=0$ for $j+1 \leq i$. Thus, we will prove that $-q_{i-2, j}-2 q_{i-1, j}+q_{i j}=P_{j-i+1}$ for $j \geq i$. In the case in which $i \leq 5$, we have $v_{i j}=P_{j-i+1}$ by Lemmas (3.6), (3.7) and (3.8). Now we suppose that $j \geq i \geq 6$. Then by Lemma (3.9) we have

$$
\begin{aligned}
v_{i j}= & -q_{i-2, j}-2 q_{i-1, j}+q_{i j} \\
= & \left(P_{j-i}-2 P_{j-i+1}-P_{j-i+2}\right) P_{4}\left(1+P_{3}+P_{5}\right)+\left(P_{j-i}-2 P_{j-i+1}-P_{j-i+2}\right) P_{5} P_{6} \\
& +\cdots+\left(P_{j-i}-2 P_{j-i+1}-P_{j-i+2}\right) P_{i-3} P_{i-2} \\
& +\left(P_{j-i}-2 P_{j-i+1}-\frac{P_{j-i+3}}{2}\right) P_{i-2} P_{i-1}+\left(P_{j-i}-P_{j-i+2}\right) P_{i-1} P_{i} \\
& +P_{j-i+1} \frac{P_{i} P_{i+1}}{2} .
\end{aligned}
$$

Since $P_{j-i}-2 P_{j-i+1}-P_{j-i+2}=-4 P_{j-i+1}, P_{j-i}-2 P_{j-i+1}-\frac{P_{j-i+3}}{2}=-\frac{9}{2} P_{j-i+1}$ and $P_{j-i}-P_{j-i+2}=-2 P_{j-i+1}$, we obtain

$$
v_{i j}=P_{j-i+1}\left[\begin{array}{l}
-4 P_{4}-4\left(P_{3} P_{4}+P_{4} P_{5}+\ldots+P_{i-3} P_{i-2}\right)- \\
\frac{1}{2} P_{i-2} P_{i-1}-2 P_{i-1} P_{i}+\frac{P_{i} P_{i+1}}{2} .
\end{array}\right] .
$$

Since $P_{4}=12$, using Lemma (2.6) we get

$$
\begin{aligned}
v_{i j} & =P_{j-i+1}\left[\begin{array}{l}
-48-4\left(\frac{P_{2 i-1)+1}-2 P_{i-1} P_{i}-1}{4}\right)-12- \\
\frac{P_{i-2} P_{i-1}}{2}-2 P_{i-1} P_{i}+\frac{P_{i} P_{i+1}}{2}
\end{array}\right] \\
& =P_{j-i+1}\left(-P_{2 i-1}+1-\frac{P_{i-2} P_{i-1}}{2}+\frac{P_{i} P_{i+1}}{2}\right) .
\end{aligned}
$$

Using equation (1.3) and the definition of the Pell numbers we obtain

$$
\begin{aligned}
v_{i j} & =P_{j-i+1}\left[-2 P_{i-1}^{2}-2 P_{i}^{2}+2-P_{i-2} P_{i-1}+P_{i}\left(2 P_{i}+P_{i-1}\right)\right] \\
& =P_{j-i+1} .
\end{aligned}
$$

Therefore, $H_{n}^{-1} Q_{n}=H_{n}^{T}$, i.e., the Cholesky factorizaton of Q_{n} is given by $Q_{n}=H_{n} H_{n}^{T}$. The proof is complete.

In particular, since $Q_{n}^{-1}=\left(H_{n}^{T}\right)^{-1} H_{n}^{-1}=\left(H_{n}^{-1}\right)^{T} H_{n}^{-1}$, we have

$$
Q_{n}^{-1}=\left[\begin{array}{rrrrrrrr}
6 & 0 & -1 & 0 & \ldots & & \ldots & 0 \tag{3.11}\\
0 & 6 & 0 & -1 & & & & \vdots \\
-1 & 0 & 6 & 0 & & \vdots & & \\
0 & -1 & 0 & 6 & \ldots & & \ldots & 0 \\
\vdots & & & \vdots & & & & \vdots \\
& & & & \ddots & 6 & 0 & -1 \\
& & & & & 0 & 5 & -2 \\
0 & \ldots & & 0 & \ldots & -1 & -2 & 1
\end{array}\right] .
$$

From Theorem (3.10), we have the following Corollary.
Corollary (3.12). If P_{n} is the nth Pell number and k is an odd number, then

$$
P_{n} P_{n-k}+\ldots+P_{k+1} P_{1}= \begin{cases}\left(P_{n} P_{n-(k-1)}-P_{k}\right) / 2, & \text { if } n \text { is odd }, \\ \left(P_{n} P_{n-(k-1)}\right) / 2, & \text { if } n \text { is even } .\end{cases}
$$

If k is an even number, then

$$
P_{n} P_{n-k}+\ldots+P_{k+1} P_{1}= \begin{cases}\left(P_{n} P_{n-(k-1)}\right) / 2, & \text { if } n \text { is odd }, \\ \left(P_{n} P_{n-(k-1)}-P_{k}\right) / 2, & \text { if } n \text { is even } .\end{cases}
$$

For the case when we multiply the i th row of H_{n} and the i th column of H_{n}^{T}, we obtain the formula (2.5). Also, formula (2.5) is the case when $k=0$ in Corollary (3.12).

4. Eigenvalues of Q_{n}

In this section we consider the eigenvalues of Q_{n}.
Let $\mathfrak{B}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n} ; x_{1} \geq x_{2} \geq \ldots \geq x_{n}\right\}$. For $x, y \in \mathfrak{B}, x \prec y$ if $\sum_{i=1}^{k} x_{i} \leq \sum_{i=1}^{k} y_{i}, k=1,2, \ldots, n$ and if $k=n$, then equality holds. When $x \prec y$,
x is said to be majorized by y, or y is said to be majorize x. The condition for majorization can be written as follows: for $x, y \in \mathfrak{B}, x \prec y$ if $\sum_{i=0}^{k} x_{n-i} \geq \sum_{i=0}^{k} y_{n-i}$, $k=0,1, \ldots n-2$, and if $k=n-1$, then equality holds.

The following is an interesting simple fact:

$$
(\bar{x}, \bar{x}, \ldots, \bar{x}) \prec\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text {, where } \bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n} .
$$

More interesting facts about majorizations can be found in [9] and [10].
An $n \times n$ matrix $P=\left[p_{i j}\right]$ is doubly stochastic if $p_{i j} \geq 0$ for $i, j=1,2, \ldots, n$, $\sum_{i=1}^{n} P_{i j}=1, j=1,2, \ldots, n$, and $\sum_{j=1}^{n} P_{i j}=1, i=1,2, \ldots, n$. In 1929, Hardy, Littlewood and Polya proved that a necessary and sufficient condition that $x \prec y$ is that there exist a doubly stochastic matrix P such that $x=y P$.

We know that both the eigenvalues and the main diagonal elements of real symmetric matrix are real numbers. The precise relationship between the main diagonal elements and the eigenvalues is given by the notion of majorization as follows: the vector of eigenvalues of a symmetric matrix is majorized by the diagonal elements of the matrix.

Note that $\operatorname{det} H_{n}=1$ and $\operatorname{det} Q_{n}=1$. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of Q_{n}. Since $Q_{n}=H_{n} \cdot H_{n}^{T}$ and $\sum_{i=1}^{k} P_{i}^{2}=\frac{P_{k+1} P_{k}}{2}$, the eigenvalues of Q_{n} are all positive and

$$
\left(\frac{P_{n+1} P_{n}}{2}, \frac{P_{n} P_{n-1}}{2}, \ldots, \frac{P_{2} P_{1}}{2}\right) \prec\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) .
$$

In [4], we find the combinatorial property, $P_{n}=\sum_{r=0}^{[(n-1) / 2]}\binom{n}{2 r+1} 2^{r}$. Therefore we have following Corollaries.

Corollary (4.1). Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of Q_{n}. Then

$$
\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}= \begin{cases}{\left[\left(\left(\left(\sum_{r=0}^{[n / 2]}\binom{n+1}{2 r+1} 2^{r}\right)^{2}-1\right) / 4\right],\right.} & \text { if } n \text { is odd }, \\ {\left[\left(\left(\left(\sum_{r=0}^{[n / 2]}\binom{n+1}{2 r+1} 2^{r}\right)^{2}\right) / 4\right],\right.} & \text { if } n \text { is even. }\end{cases}
$$

Proof. Since $\left(\frac{P_{n+1} P_{n}}{2}, \frac{P_{n} P_{n-1}}{2}, \ldots, \frac{P_{2} P_{1}}{2}\right) \prec\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, and from Corollary (3.12),

$$
\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}= \begin{cases}\frac{\left(P_{n+1}\right)^{2}-P_{1}}{4}, & \text { if } n \text { is odd } \\ \frac{P_{n+1}^{2}}{4}, & \text { if } n \text { is even } .\end{cases}
$$

By formula 1.4, the proof is immediately seen.

Corollary (4.2). If n is an odd number, then

$$
4 n \lambda_{n} \leq\left(\sum_{r=0}^{[n / 2]}\binom{n+1}{2 r+1} 2^{r}\right)^{2}-1 \leq 4 n \lambda_{1} .
$$

If n is an even number, then

$$
4 n \lambda_{n} \leq\left(\sum_{r=0}^{[n / 2]}\binom{n+1}{2 r+1} 2^{r}\right)^{2} \leq 4 n \lambda_{1}
$$

Proof. Let $S_{n}=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}$. Since

$$
\left(\frac{S_{n}}{n}, \frac{S_{n}}{n}, \ldots, \frac{S_{n}}{n}\right) \prec\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right),
$$

we have $\lambda_{n} \leq \frac{S_{n}}{n} \leq \lambda_{1}$. Therefore, the proof is readily seen.
From equation (3.11), we have

$$
\begin{equation*}
(6,6, \ldots, 6,5,1) \prec\left(\frac{1}{\lambda_{n}}, \frac{1}{\lambda_{n-1}}, \ldots, \frac{1}{\lambda_{1}}\right) . \tag{4.3}
\end{equation*}
$$

Thus there exists a doubly stochastic matrix $G=\left[g_{i j}\right]$ such that

$$
(6,6, \ldots, 6,5,1)=\left(\frac{1}{\lambda_{n}}, \frac{1}{\lambda_{n-1}}, \ldots, \frac{1}{\lambda_{1}}\right)\left[\begin{array}{cccc}
g_{11} & g_{12} & \ldots & g_{1 n} \\
g_{21} & g_{22} & \ldots & g_{2 n} \\
\vdots & \vdots & & \vdots \\
g_{n 1} & g_{n 2} & \ldots & g_{n n}
\end{array}\right] .
$$

That is, we obtain $\frac{1}{\lambda_{n}} g_{1 n}+\frac{1}{\lambda_{n-1}} g_{2 n}+\ldots+\frac{1}{\lambda_{1}} g_{n n}=1$ and $g_{1 n}+g_{2 n}+\ldots+g_{n n}=1$.
Lemma (4.4). For each $i=1,2, \ldots, n, g_{n-(i-1), n} \leq \frac{\lambda_{i}}{n-1}$.
Proof. Suppose that $g_{n-(i-1), n}>\frac{\lambda_{i}}{n-1}$. Then

$$
\begin{aligned}
g_{1 n}+g_{2 n}+\ldots+g_{n n} & >\frac{\lambda_{1}}{n-1}+\frac{\lambda_{2}}{n-1}+\ldots+\frac{\lambda_{n}}{n-1} \\
& =\frac{1}{n-1}\left(\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}\right) .
\end{aligned}
$$

Since $g_{1 n}+g_{2 n}+\ldots+g_{n n}=1$ and $\sum_{i=1}^{n} \lambda_{i} \geq n$, this yields a contradiction, so $g_{n-(i-1), n} \leq \frac{\lambda_{i}}{n-1}$.

From Lemma (4.4), we have $1-(n-1) \frac{1}{\lambda_{i}} g_{n-(i-1), n} \geq 0$. Let $\gamma=S_{n}-(n-1)$. Therefore, we have the following Theorem.

Theorem (4.5). For $(\gamma, 1,1, \ldots, 1) \in \mathfrak{B},(\gamma, 1,1, \ldots, 1) \prec\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$.

Proof. A necessary and sufficient condition that $(\gamma, 1,1, \ldots, 1) \prec\left(\lambda_{1}, \lambda_{2}, \ldots\right.$, $\left.\lambda_{n}\right)$ is that there exist a doubly stochastic matrix C such that $(\gamma, 1,1, \ldots, 1)=$ $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) C$.

We define an $n \times n$ matrix $C=\left[c_{i j}\right]$ as follows:

$$
C=\left[\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{12} \\
c_{21} & c_{22} & \ldots & c_{22} \\
\vdots & \vdots & & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n 2}
\end{array}\right]
$$

where $c_{i 2}=\frac{1}{\lambda_{i}} g_{n-(i-1), n}$ and $c_{i 1}=1-(n-1) c_{i 2}, i=1,2, \ldots, n$. Since G is doubly stochastic and $\lambda_{i}>0$ and $c_{i 2} \geq 0, i=1,2, \ldots, n$. By Lemma (4.4), $c_{i 1} \geq 0, i=1,2, \ldots, n$. Then

$$
\begin{gathered}
c_{12}+c_{22}+\ldots+c_{n 2}=\frac{g_{n n}}{\lambda_{1}}+\frac{g_{n-1, n}}{\lambda_{2}}+\ldots+\frac{g_{1 n}}{\lambda_{n}}=1 \\
c_{i 1}+(n-1) c_{i 2}=1-(n-1) c_{i 2}+(n-1) c_{i 2}=1
\end{gathered}
$$

and

$$
\begin{aligned}
c_{11}+c_{21}+\ldots+c_{n 1} & =1-(n-1) c_{12}+1-(n-1) c_{22}+\ldots+1-(n-1) c_{n 2} \\
& =n-n\left(c_{12}+c_{22}+\ldots+c_{n 2}\right)+c_{12}+c_{22}+\ldots+c_{n 2}=1
\end{aligned}
$$

Thus, G is a doubly stochastic matrix. Furthermore,

$$
\begin{aligned}
\lambda_{1} c_{12}+\lambda_{2} c_{22}+\ldots+\lambda_{n} c_{n 2} & =\lambda_{1} \frac{g_{n n}}{\lambda_{1}}+\lambda_{2} \frac{g_{n-1, n}}{\lambda_{2}}+\ldots+\lambda_{n} \frac{g_{1 n}}{\lambda_{n}} \\
& =g_{n n}+g_{n-1, n}+\ldots+g_{1 n}=1
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda_{1} c_{11}+\lambda_{2} c_{21}+\ldots+\lambda_{n} c_{n 1}= & \lambda_{1}\left(1-(n-1) c_{12}\right)+\ldots+\lambda_{n}\left(1-(n-1) c_{n 2}\right) \\
= & \lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}- \\
& (n-1)\left(\lambda_{1} c_{12}+\lambda_{2} c_{22}+\ldots+\lambda_{n} c_{n 2}\right) \\
= & \lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}-(n-1)=\gamma
\end{aligned}
$$

Thus, $(\gamma, 1,1, \ldots, 1)=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) C$, so $(\gamma, 1,1, \ldots, 1) \prec\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$.
From equation (4.3), we arrive at the following Lemma.
LEMMA (4.6). For $k=2,3, \ldots, n, \lambda_{k} \geq \frac{1}{6(k-1)}$.
Proof. From equation (4.3), for $k \geq 2$,

$$
\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\ldots+\frac{1}{\lambda_{k}} \leq \underbrace{1+5+6++\ldots+6}_{k}=6(k-1)
$$

Thus,

$$
\frac{1}{\lambda_{k}} \leq 6(k-1)-\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\ldots+\frac{1}{\lambda_{k-1}}\right) \leq 6(k-1)
$$

Therefore, for $k=2,3, \ldots, n, \lambda_{k} \geq \frac{1}{6(k-1)}$. So the proof is complete.

Acknowledgement

We wish to thank the annonymous reviewer for his/her many valuable comments, suggestions and constructive critism.

Received November 19, 2004

Final version received July 18, 2005

```
Department of Mathematics
Gazi University
06500 TeknikokULLAR
ANkara,
Turkey
emkilic@gazi.edu.tr (corresponding author)
dtasci@gazi.edu.tr
```


References

[1] N. Bicknell, A primer on the Pell sequence and related sequence, Fibonacci Quart. 13 (4), (1975), 345-349.
[2] R. Brawer \& M. Pirovino, The linear algebra of the Pascal matrix, Linear Algebra Appl. 174 (1992), 13-23.
[3] J. Ercolano, Matrix generator of Pell sequence, Fibonacci Quart. 17 (1), (1979), 71-77.
[4] A. F. Horadam, Pell identities, Fibonacci Quart. 9 (3), (1971), 245-252, 263.
[5] J. Ivie, Problem B-161, Fibonacci Quart. 8 (1), (1970), 107-108.
[6] G. Y. Lee, J. S. Kim, and S. G. Lee, Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quart. 40 (3), (2002), 203-211.
[7] G. Y. Lee and J. S. Kim, The linear algebra of the k-Fibonacci matrix, Linear Algebra Appl. 373, (2003), 75-87.
[8] P. Mana, Problems B-136, B-137, Fibonacci Quart. 7 (1), (1969), 108-109.
[9] A. W. Marshall \& I. Olkin, İnequalities: Theory of Majorization and Its Applications, Academic Press, New York, 1979.
[10] D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
[11] M. N. S. Swamy and C. A. Vespe, Problem B-155, Fibonacci Quart. 7 (5), (1969), 547.
[12] H. Teimoori and M. Bayat, Pascal k-eliminated functional matrix and Eulerian numbers, Linear Multilinear Algebra 49 (3), (2001), 183-194.
[13] D. Zeilberger, The method of creative telescoping, J. Symbolic Comput. Vol. 11, (1991), 195-204.

[^0]: 2000 Mathematics Subject Classification: 05A19, 11B37, 15A18, 15A42.

