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THE FIBONACCI LATTICE*

RICHARD P. STANLEY
Department of Mathematics, University of California, Berkeley, California 84720

1. DISTRIBUTIVE LATTICES

Our ohject is to investigate a certain distributive lattice £, closely related to the Fibonacci numbers. First we will
review some basic properties of distributive lattices and discuss some general combinatorial problems associated with
them. Thus this paper can be regarded as a semi-expository survey of some combinatorial aspects of distributive
lattices.

In order that the combinatarial invariants we will be considering are finite, we need to restrict ourselves to dis-
tributive lattices L satisfying the following property:

(W) L is locally finite with a unique minimal element 0, and only finitely many elements of any given rank {or
height).

By /ocally finite, we mean that every segment [x,y/ = {z)x <z<y } of L is finite. The rank k of an element
x & L is the length of the longest chain between & and x. In any distributive lattice, if the length & of the longest
chain between two elements x and y is finite, then the length of any saturated (or unrefinabie) chain between x and
y isalso k. A distributive lattice satisfying property (/) will be called a W-distributive /attice.

Recall that an order ideal of a partially ordered set P is a subset / C Psuch thatifx</andy <x, theny /. Bya
fundamental theorem of Garrett Birkhoff [2, Ch. I1i, §31, corresponding to every W-distributive lattice L is a par—
tially ordered set P, uniguely determined up to isomorphism, satisfying the following three properties:

{i} Every element of P is contained in a finite order ideal of P,
(ii) P has only finitely many order ideals of any given finite cardinality &,

(i} £ is isomorphic to the set of finite order ideals of £, ardered by inclusion.

Conversely, given any partially ordered set P satisfying (i) and (ii), the lattice of finite order ideals of P (ordered
by inclusion) is a W-distributive lattice. A partially ordered set satisfying (i) and (ii) is called a W-ordered set. The
correspondence between [/-ordered sets P and /-distributive lattices L is denoted L = J(P). Pisisomorphic to the
sub-ordered set of L consisting of all the join-irreducible elements of L. {f / is a finite order ideal of £, then the car-
dinality [/} of 7 is equal to the rank of / in J(PL

if P is a i+ordered set, then we define a P-partition of n [18] to be an order-reversing map o : P—»{O, 17,2 - i
satisfying
Eo(xl =
x<P

{In particular, only finitely many elements x of P satisfy ofx) = 0.) The statement that o is order-reversing means
that if x <y in P, then ofx) = ofy). The parts of 0 are the non-zero values ofx) (counting multiplicities). Let afm,n)
denote the number of P-partitions of n with largest part < m. Since P is a W-ordered set, it foilows easily that a(m,n)
is finite. It can be shown that afm,n) is the number of order ideals of cardinality » in the direct product P X m,
where m denotes an m-element chain,

m={1,2, m}.

*Supported by the Air Force Office of Scientific Research AF 44620-70-C-0079, at M,1.T.

215

An evaluation version of novaPDFE was used to create this PDF file.
Purchase a license to generate PDF files without this notice.


http://www.novapdf.com/

216 THE FIBONACCI LATTICE (0CT.

Furthermore, let afn) denote the total number of P-partitions of . Hence

lim afm,n) = aln),
m—>oo
and afn) is the number of order ideals of cardinality n in the partiaily ordered set PX/V, where // denotes the natural
numbers,
N={1,23-].

In particular, af7,n} is equal to the number of order ideals of cardinality # in P (equivalently, the number of ele-
ments of rank n in JIP)), since Px ] = P. In fact, there is a one-to-one correspondence 0 < /(o) between order-
reversing maps 0 : P — { g1 } satisfying

Z olx) = n,

x<P
and order ideals /(o) of P of cardinality n, viz,
I(o) ={x|0(x} = 7}.

The number a(7,n) is denoted /,(P) or simply j,. If P is finite, then the total number of order ideals of P is denoted
(P}, s0 j(P) = 1P|,

If L = J(P) is a W-distributive lattice and / < L, then define ef/) to be the number of saturated chains between 0
and /. (This number is obviousty finite.) It is not difficult to see that ef// is equal to the number of order-preserving
bijections 0 : / — k, where |/| = k. In fact, such a bijection o corresponds to the saturated chain

(1 pcaltt)co’2cwcol.

Thus a saturated chain between & and / corresponds to a permutation o1 (7}, 6-1(2), -, ¢-*(k) of the elements of /.
This provides a systematic basis for studying relationships between sequences and lattice paths which ogeur fre-
quently in combinatarial theory and probability theory,

2. EXAMPLES

By now the reader may he overwhelmed by a plethora of definitions and anxious to see the point af them. We will
give several examples, some of which will be used later, to illustrate the significance of the above concepts.

Example 1. Let 7=/, the natural numbers with their usual ordering. Then a P-partition of n with largest part <m
is just an ordinary partition of n with largest part <m {8, Ch. 191. As is well-known,

oo

A n m iy=1
Z almnix” = I (1-x")7" .
n=0
Similarly afn) is equal to the total number of partitions of n (usually denoted pfn)), with the corresponding gen-
erating function

-~
~

Z afnix" = ﬁ (1-x')T.
n=0 =1

To tie in with subsequent results, we state the trivial formulas

) 2. el =1, 2 eln? =1,
I7j=% |1}=k
where the sum is over all order ideals / of // of cardinality .
Example 2. Let £ be the disjoint union of two copies of 4, denoted P =/ + & = 2/. Thus J(P} is isomorphic to the
direct product /x NV =_/|_/2. Here the numbers afm,n) are not so significant (in particular,
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oo

Z alm,n)x" = ] (1-x'y? .

n=0 =

~.
~

We will rather discuss the numbers e(/), / = J(P] For any W-ordered set Pand / = J(P), let/,, 1,, -, I, he the ele-
ments of JIP) which / cavers, i.e., /; </ and no I’ < JP) satisfies /; </ < L It follows that

(3) efl] = ell) +ells) - +efl,).
For the lattice LV2 under consideration, (3) is precisely the “addition formula” for constructing Pascal's triangle.

The numbers ef/) are just the binomial coefficients, and in analogy to (2) we have the well-known formulas

D el =2% N ) = (i" ) .

[/i=k /=
More precisely, for any / < J(P) the segment /0,/] has the form

atIxb+], and e(/)r—(a;”)

Nowa + 7 X b+ 1=J(a+b) Thus from (1}, we have that

at+b
b
is equal to the number of order-preserving bijections ¢ : 2 + b — a + b. The map o is determined by the image of a
(o7 £ ), so we get the usual combinatorial interpretation of

a+b
(5"
as the number of combinations of 2 + 6 things taken 4 at a time.

The above discussion motivates defining a generafized Pascal triangle to be a [/-distributive lattice together with
the function a. The entries ef// of a generalized Pascal triangle have three features in common with the ordinary bi-
nomial coefficients:

{a) They can be obtained by an additive recursion,

{b) They can be interpreted as counting certain types of permutations or sequences.

{¢) They can be interpreted as counting certain types of lattice paths in Euclidean space, since every finite dis-
tributive lattice can be “imbedded” in a Cartesian grid of sufficiently high dimension.

To illustrate the lattice path interpretation {c), consider the weli-known problem of counting the number of lai-
tice pathsinan (n + 7) X {n + 1) array of [attice points from a fixed corner to the apposite corner, such that the path
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never goes below the diagonal. For instance, in
the 4x4 case we have as one path the following:

The total number in the 4x4 case is the number
nf maximal chains in the following distributive
lattice L-

Here L = J(2x3) In the general (n + 1) X
{n + 1) case, the appropfiate distributive lattice
is L = J(2xn). The number of maximal chains
in 4{2xn) is known to be the Catalan number

7 (2n)
n+1 n j°

®
]
]
Many other known lattice path problems can
be formulated in a similar context. We give a
further example, arising from a lattice path
problem considered by Frankel [6]. Here if we
take P to look like
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then the generalized Pascal triangle corresponding
to JIP} looks like

The entries e(/) are all Fibonacci numbers.

Example 3. Let # = J/>. Then the lattice J(P)} is dencated 7 and is called Young’s fattice (cf. Kreweras [11]). T can
also be regarded as the lattice of ali decreasing sequences A = (A,, \,, - ) {with \, =), > - >0/ of non-negative
integers A;, ali but finitely many equal to 0, ordered coordinatewise. Hence A\ may be regarded as a partition of |A| =
ZAp. Thusif A=, N, ~)eTandu=fu, i, ~-)7T, then A< pifandonly if N; < pyforalli=172..
From this it follows that jx(T/ = pfkJ, the number of partitions of k. The lattice 7 is intimately connected with the
theory of plane partitions and the representation theory of the symmetric group (cf. Stanley [19], and the refer-
ences cited there). We will merely state some of the remarkable properties of the lattice 7.

First, we have the beautiful formulas, originally dus to MacMahon [13, Sect. 495],

S almai™ = 1 (1 -x/yminlim) R = T (1 -k
0 =1 s i=1
1f A< T and | = £, then the number ef)) is traditionally denoted ™ and is equal to the degree of the irreducible

representation of the symmetric group Sk corresponding to the partition A. By either group-theoretic or combina-
torial means, the following formulas can be proved:

) STeN =, Y enNP -
A=k IAl=k
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Here 71 is the number of elements 7w €8 satisfying 72 = 7. It is most easily computed from the recursion
tg=ty =1, ter7 = tg +hig-y, k=1

The generalized Pascal triangle associated with 7 looks as follnws:

| 5 016

Let us consider the problem of computing the
individual ef\)’s, A € T. The element X = {A,,
A, -} of T is represented schematically asan
array of left-justified squares, with A, squares in
the /' row. This array is called the graph of A
For instance, if A = (4,3,2,2,0,0, ---), then the
graph of N is

A maximal ¢hain from 0 te A in 7 corresponds
to filling in the squares of the gragh of A with
theintegers 1, 2, -, [A|, such that these integers 2

are increasing in every row and column. Such an

array is called a Younyg tableau of shape \. For © 9
instance, one of the Young tableaux of shape

4,3,2,2)is T 1
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With each square S of the graph of a partition
A, we associate an integer S), defined to be the
number of squares directly to the right or di-
rectly below S, counting § itself exactly once.
This number A4S} is called the hook length of S.
The hook lengths for A = (4,3,2,2) are given by

N Ao

NN

A basic result of Frame, Robinson, and Thrall [5] states that
efN = ki/h(S,In(S, ) h(S¢),
where [A| = k and §y, -, Sy are the squares in the graph of X
Formulas {4) can be stated in terms of Young tableaux as follows:
(i) The number of Young tableaux with & squares is 7 .
{it} The number of ordered pairs of Young tableaux of the same shape and with & squares is &/
123 12 13 1

For instance, when &k = 5, we have the follow- 3 2 2
ing t3 =4 Young tableaux: 3
123 1232 12 12 12 13 ¢t 13 12 13 13
We also have the following 3!= 6 pairs: 3 3 3 2 22 2 3 2 2
33

In view of (i) and (i), it is natural to ask for an explicit one-to-one correspondence 7— (P, 0/ hetween permuta-
tions wof 1, 2, --, k and ordered pairs {P,2) of Young tableaux of the same shape and with k squares, such that if
7~ {P.Q), then w1 (Q,F) {so that 7> = 1 if and only if w— (PP} for some PL Such a correspondence was discov—
ered in a rather vague form by Robinson [14] and later more explicitly by Schensted [16]. Further aspects of this
correspondence were considered by Schiitzenberger [17] and Knuth [9], [10, §5.2.4]. We refer the reader to these
sources for the details.

it is natural to try to extend the results about 7 = JIV*/ to the lattices JI¥), r > 2. Unfortunately, all the “ex-
pected”” results turn out to be false, and very little is known about the numbers afm,n/ and eff).

Example 4. Qur final example in this section is when P is the universal binary tree T,. This partially ordered set is
characterized by the property that it is a /fordered set with 0 such that every element is covered by two elements,
and every element except 0 covers one element. @
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A finite order ideal of 7, (or an element of J(T,)) is a plane binary tree. The number ji of order ideals of T, of
cardinality k is the Catalan number
1 ( 2k )
k+1 \ kK |

We thus have two order-theoretic interpretations of the Catalan numbers: (a) as the number of maximal chains in
JI2 x kJ, and (b) as the number of elements of rank & in J(T, ). We state a third interpretation, viz., {c)

7 (2k
k+1 \ k
is the tatal number of elements in J{S{k — 1)), where S{P) denotes the set of segments (or intervals) of £, ordered

by inclusion®. Thus the Hasse diagram for Sfk— 7) looks like the “top half” of the distributive lattice k—7 X k—1.
For instance, when & = 4 we have $(3/) and J(S(3)) as follows:

AN

S(3)

J(S(3))

We leave as an exercise for the reader the result that the number of maximal chains in J(S(k )} is
k+1 ) ,
2 )

(Zk — T2k - 3)2(2k — 5)° ... 3K~ T 1k

There is an interesting way to see that the number of maximal chains in J(2 X &/ is equal to the number of order
ideals of Sfk —_7). Draw the Hasse diagram of J(2 x &), pick a maximal chain £, and rotate the Hasse diagram 90°
so there is one vertex on top and & — 7 on the bottom. Remove the “bottom zigzag” of this rotated Hasse diagram.
Then the resulting diagram # is the Hasse diagrams of S(k — 7). Let / be the smallest order ideal of # which con-
tains all the elements in the intersection £ N A. It is easily seen that this correspandence £ — / between maximal
chains £ in J(2 x k) and arder ideals / of # = S(k — 1/ as a hijection. As an example, we take k = 5 and £ as shown
at the top of the following page (indicated by wiggly lines).

The corresponding order ideal of 5(4) con-
sists of the labeled elements on the right.

f e C a

*There are two other lattices associated with the Catalan numbers, due to D. Tamari [21] (first published in [7])
and G. Kreweras [12], but since these lattices are not distributive we will not discuss them here.
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The above correspondence between order ideals and maximal chains generalizes

straightforwardly to show that if L = J{P} is any finite planar distributive lattice 28 9 3
(equivalently, P has no antichains of cardinality > 3}, then the number of maximal

chains in L is equal to the number of order ideals in the partially ordered set obtained 14 5 2
by rotating the Hasse diagram of L 90° and removing the “bottom zigzag." We state

without proof one amusing consequence of this observation, based on a problem of 5 2
Berlekamp [22, p. 341, problem 3] (see also Carlitz, Roselle, and Scovilfe [4]).

Write down the graph of some partition A. Let S he a square of this graph with coor- 2

dinates (ij) (i.e., S is in the /™ row and jth column). Then the squares /*,/°) satisfying

i" = j and j* > j form the graph of a partition 1 (S) In the square S write the number
of elements v of the Young lattice T satisfying » <. For example, ifA=(3,3,21), | 28
then we get the array shown above right. The entry 9, for instance, corresponds to

u = (2,2,1) with the nine partitions v < u given by {2,2,1), (2,1,1), {22), (1,1,1).] 14
(2,1), (2), (1,1), (1), . Now “border” the bottom and right of this array with a rook=

wise connected line of squares containing the integer 1. Thus for the above array, we

N o | ©
n

get the array shown in the fower right. For any entry in this new array, consider the
largest square of which it is the upper left-hand corner. For instance, the entries 5 2 1 1
(either one), 9, and 28 give the square arrays ‘

5 2 9 3 1 28 9 3 ] 1
2 1 5 2 1 4 5 2
2 11 5 2 1
Then we have the following result: The determinant of each of these square arrays is
equal to one.
We now return to the partially ordered set 7,. Here no simple expression for the generating function

co

Z afnx"”

n=0
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is known. On the other hand, it is easy to show {we will not do so here) that

Z efl) =

=k

The numbers (/) can be evaluated in a manner analogous to /M), A& T. In fact, if P is any finite rooted tree (con-
sidered as a partially ordered set) and x € P, define ] ]

hix) = card{y|y eP y=x }
Then an easy induction argument shows
elP) = kifhix Jhlx,) - hixg ),

where P = | k| and the x;'s are the elementsof A,
For example, see the array on the right. So for this
partially ordered set P,

efP) = 91/9-4.4.3.2.1.1.1.1 = 420,

A discussion of these and related results may be
found in [18, §22].

The lattice J(T,) is closely connected with the
well-known problem of parenthesizing a string of £
letters (say x's). A bibliography of this problem is
given by Brown [3], though the following lattice-theoretic interpretation appears to be new. We define an order re-
lation A, on all finite parenthesized strings of x's (excluding the void string) as follows: Given two strings §, and S,
then §, < &, if and only if S, can be obtained from S, by substituting for each occurrence of x in §; some paren-
thesized string § (which depends on the particular x in S, being substituted for). For instance, if S, = (xx){(x(xx)}
and S, = clex))((xx)x )xx)), then §, <&, since we have substituted for the five x's in S, the strings x, xx, {xxJx,
X, X. The order relation A, looks as follows:

B x

The basic result about A, is that it is a distributive lattice issmorphic to J(T, ) In fact, the join-irreducible ele-
ments of A, are elements like x({{xxJx)x) which are build up from x by multiplying successively by x either on the
left or on the right. Thus for instance the following order ideal of 7, corresponds to the elements

a, = a,a; = (a,8,Ma,a,) = (Lec)ixlex) I xxHixx ki) of A,
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W04 050g

In contrast to the difficulties invelved in extending results about JIV?) to JIN' ), aur results on J(T, / easily gen-
eralize to J(T J, where T _is the universal r-ary treg (whose definition is evident). For instance,

o= g (%) |/§ (1) = T-r-(2r— 1)3r— 2) (k= 1)r— (k= 2)).
.

Moreover, the numbers f/) can be computed for J(T,/ in exactly the same way as for J(T, J, since / is a rooted tree.
Finally if A, denotes the set of all finite strings of x's parenthesized in accordance with an rary operation and
ordered analogously to A,, then 4,=J(T )

3. COVER CHARACTERIZATIONS

Most of the distributive lattices we have been considering have an interesting property which we call a “cover char-
acterization.” A W-distributive lattice L is said to have a cover characterization if there exists a function f{k,n/ such
that if an element x of L of rank & covers n elements, then x is covered by f{k n) elements. If f{k,n) is independent
of k {in which case we simply write /(nJ), then we say that L hasa strong cover characterization. The function f(kn)
{or {n)} is called the cover function of L.

It is easy to see (by inductively building £ from the bottom up) that there can be at mast one distributive lattice L
{up to isomorphism) with a given cover function ffk,n/ it is not difficult to verify that the following lattices have

the indicated cover function. / flkn)
N = Sl r

JINF)T = S n+r

20 = Jri) -n+r

HT ) = JsT,) fr—1)k+s

On the ether hand, the lattices /"), r > 2, do not have a cover characterization.

An interesting problem is to determine which functions 74,1/} can be the cover functions of a distributive lattice.
For instance, given a function afn), for what functions b(k/ is f(n,k) = afn) + b(k} a cover function? The following
proposition is useful in ruling out various functions. The proof is left to the reader.

Propesition 1. Let L be a Wi-distributive lattice such that ufi/) elements of rank 7 cover exactly j elements, and
v(i,j) elements of rank 7 are covered by exactly / elements, Then forall iz /> g

3 uin (£)- iv(i—/,k)( “).

k=0 k=0
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(Each sum has only finitely many non-zere terms.) &1

Thus, for instance, using Proposition 1, it can be shown that if L is a W distributive lattice with the cover function
fin)=an +b, then uf5,1) = —(b/3)(a + 1}{2a° — 2a*> — 3). Hence u(5,7) <0 if 1a1 > 2, so in this case L does not ex-
ist. We in fact conjecture that if L has a strong cover characterization with a non-decreasing cover function #/n) (i.e.,
i + 1} = f{i})), with #(0) > 0, then f{n} =a or f{n) =n +a.

One positive result is the determination of all finite distributive lattices with a strong cover characterization.

Proposition 2, If L is a finite distributive lattice with a strong cover characterization, then L is a baolean algebra 2",

Bfoof.' Suppose L is a finite distributive lattice with a cover function ffn). Let r be the number of elements cover-
ed by the top element 1 of L. Then #r) = 0. Let / be the meet of all elements covered by the top element 1 of L.
Then / is covered by r elements. Suppose / covers s elements, so f(s) = r. Under the assumption s> 0, we will show
that there is an element /” > / such that /* covers s elements. Then /" must be covered by r elements, which is impos-
sible since the join of these r elements would lie above 1. Hence s =0, and L is a boolean algebra.

Assume s > 0. Let L = JfPL If M is the set of maximal elements of P, then / is the arder ideal P — M. Sinces > 0,
/ # ¢. Let x =/ Then there is some x, <M satisfyingx, >x. Letx,, -, x, be the remaining elements of M (inany
order). Define /=M U {xl, Xy, o, X } Then each /¢ is an order ideal of £, and the number of maximal elements
of /¢ is at most one more than the number of maximal elements of /4_7. Since /, has < s maximal elements and /,
has r maximal elements, some /; has s maximal elements. This / is the desired /, and the proof follows. [J

Using Proposition 1, one can determine the number /i of elements of rank & of a W-distributive lattice £ with a
cover function f{k,n), without explicitly determining L. Is there a method for computing

®
Seft) and ) efi)?
i I .
There is some evidence for believing that these numbers
will have a relatively simple form. {n particular, if Ak.n/
= g(k) (independent of n), then it is trivial that

S~ elt) = glolg(1) - glk - 1)
=«
4, THE FIBONACCI LATTICE

Let K, denote the set of ordered pairs (m,n) of inte-
gers 7 < m, 0<n < 1, under the order relation (m,n) <
{m’,n’) if and only if n = @ and m <m”, Thus K, looks
as is shown on the right.

The lattice JfK,) of finite order ideals of K, is called
the Fibonacci lattice and is denoted £,. Thus we have
the generalized Pascal triangle at the fop of the next
page.

Propasition 3. The number 7x of elements of £, of
rank & is the k% Fibonacci number (£, = £, = 7, fx =
foeq + fro if k= 2)

Proof. We will give three different proofs, reflecting
three different properties of the Fibonacei numbers.

First proof. Clearly f, = f, = 7. Let / be an order ideal of K, of cardinality £ > 1. If the minimal element 0 is re-
moved from K, there results an isolated pointx and an isomorphic copy K; of K. If / contains x, then / — { O.x
is an order ideal of K7 of cardinality k — 2 If / doesn’t contain x, then / ~ {0 isan order ideal of K7 of cardinal-
ity k — 1. Conversely if /”is any order ideal of K7, then /" U {D} and /' U { U,X} are order ideals of K,. Hence f =
Ti-1+ fic-2.

Second proef. Define x; = ({,0) € K,. Let / be an order ideal of K, of cardinality & Let / be the least integer such
that xx-; €/ Thenx, x,, -, X¢; are in /, and the remaining 7 elements of / are of the form (mj, 1,j=12 i
where the m;s are an arbitrary i-subset of 7, 2, -, k — i Hence
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This sum is a well-known expression for the Fibonacci numbers.

Third proof. There is a one-to-one correspondence between order
ideals / of K, of cardinality k and ordered partitions {or composi-
tions} k, + k, + -+ k, = k of k into parts k; = 1 or 2, as follows:
ki=1if(i0)eibut (i, 1) &1, ki =218 (i, 1) €/ The number :of such
ordered partitions is well-known fo be the k™ Fibonacci number fr.

We will denote order ideals / of K, (or elements of £, ) by the no-
tation k, k, - kp, where k, + -+ k, is the ordered partition defined
above. Thus for instance the order ideal 122112 € £, is given an the
right.

By modifying the second proof of Propasition 3, one can estabiish
the following result.

Propesition 4. The number of elements of £, of rank & which cover exactly / elements is

k—i—1 k—i
( i-1 ) ’ (i— 1 )
{with a binomial coefficient equaling 0 if any entry is negative). The number of elements of £, of rank k which are
covered by exactly / elements is 0 if kK — 7 is even, while if k ~ 7 is odd this number is

fk+i—1)/2
((k«-i+7}/2 ) g
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We now consider the problem of evaluating the sums

D6l and Y el
J#i=k |7]=k
Surprisingly, these sums turn out to be the same as for the Young lattice 7! Although ceincidences in mathematics
are suspect, | can offer no other explanation for this phenomenon. The evaluation of these sums for £, is much
easier than for 7.
Proposition 5. We have

3 ell)=t  and 3 el = H,
|r =k |#}=k
where the sums are over all order ideals / of K, of cardinality £, and where #; is the number of elements min the
symmetric group Sg satisfying 7% = 1.
Proof. Let

hie = z_{ all) and gk = z efl)? .
i |=k ||k

Let x be the unigue maxima! element of K, which covers 8. We divide all order-preserving bijections o : /— k (/ an
arder ideal of K, } into two classes: {a} x £/, and (b) x /. Since K, —4 Ox ¢ is isomorphic to K, the number of ¢
of type (a) is hgs. I x &/, then ofx/ can be any of 2, 3, .-, &, so the number of o of type (b) is fk — 7)Ao, Hence
hy = hy—q + (k — T)hg_2. Moreover, by inspection i, = h, = 1, $0 hy = t.

Similarly the number of pairs (0,7} of order-preserving bijections of / on-
to &, for all / with x &1, is gg-7. If x &/, then there are (kK — 7)* ways of
specifying ofx) and 7(x ), so there are fk — 7)2g,_ o pairs in this case. Hence
Gk = gk-1+ (k — 1)7gy_o. Since g, =g, = 1, we have g, = k. [

in analogy with the definition of a Young tableau, we define a Fibonacci
tableau (l,0) to be a finite order ideal / of K, together with an order-
preserving bijection o : / — k, where |/| = k& The order ideal / is called the
shape of the tableau, and & is called the size of (/,0l Thus for example,
the tableau on the right is a Fibonacci tableau of shape 212211 and size 9.

Proposition 5 can then be restated as follows: The number of Fibonacci
tableaux of size & is #, and the number of ordered pairs of Fibonacci tab-
leaux of size k and of the same shape is k/. Thert isa very simple aifernative
proof that the number of Fibonacci tableaux of size k is f, — we construct
a one-to-one correspondence 2 : (/,0/ — = between Fibenacci tableaux (/,6) of size k and elements 7 € Sy satisfying
7* = 1. Namely, we define 7 by the condition (7} = j for/ > if and only if some maximal element z of K, satisfies
ofz} = i and the unique element y covered by z satisfies ofy) = j. Thus for the Fibonacci tableau illustrated above,
= (18){2)(34)(57}(6){8). It is easily seen that this construction establishes the desired one-to-one correspondence.

Similarly one would like to prove the second formula of Proposition 5 by constructing a one-to-one carrespond-
ence Y : (1,g7) — m between ordered pairs ({10}, (1,7)) of Fibonacci tableaux of size k and of the same shape /, and
elements 7 < S. The correspondence ¥ should satisfy the following two properties: {a} If Y(/,07/)= 7, then Y(/ 7,0}
=1 and (b) ¥fl,00)= (] 0). This correspondence would he a “Fibonacci analogue’” of Schensted’s correspond-
ence for Young tableaux (see Example 3). Such a correspondence was found by E. Bender {private communication),
as follows: Let x = (m,n) </, and define x” = (m, 7~ n} Then 7 is defined hy the conditions

. _ ) ot it xTET
n{olx}) X i xel
We next consider the problem of evaluating the numbers ef// themselves, where / is the shape of a Fibonacci tab-
feau. A finite order ideal / of K, isa rooted tree, so from (5) we have
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efl) = k1/ IL hix),
7 xel
where |/| = &, and filx) = card { y|y €/, y > x}. it s easily seen that the above expression for ef/) is equal to the
productn, -n, -1, where the n;'s are those integers such thatk>n, >0, >-~>n,>0and (k- n;— i+ 1,7) /.
It follows that no two of the ;'s can be consecutive integers. Conversely, given a set of integersk >n, >n, > >
n, > 0, no two consecutive, there is a unique order ideal / of K, of cardinality & such that (m,7) =/ if and only it m
has the form & — n; — j/ + 1. We therefore obtain the following result:
Proposition 8. The set of numbers ef/), including multiplicities, as / ranges over all order ideals of X, of cardinality
k is equal to the set of numbers
I n,
nsS
where S ranges over all subsets of -g 1,2, k=1 } containing no two consecutive integers. [J
Forinstance, when k=5 we have the eight sets S given by ¢, { 1 i { 2 }, { 3 } { 4} . { 1.3 } {1,4 } , { 2,4 }‘.HEHCE
the numberse(/), |/|= 5, are givenby 1, 1,2, 3, 4,3, 4, 8. '
Combining Propositions 5 and B, we obtain the formulas

%:ngsn=tk, %:Hn"=k!,

nes

where both sums are over all subsetsSof 41,2, -, k—7 S containing no two consecutive integers. Both these for-
mulas can be easily proved directly by induction on & ’

Let us now turn to the problem of counting the number afm,n) of K, -partitions of 7 with largest part <m. A K, -
partition is called a protruded partition [18, $24]. For instance, there are six protruded partitions of 3, as follows:

I
‘l@ﬂ
. o\
A2 2 2

Proposition 7. Let afm,n) be the number of protruded partitions of # with largest pair <m. Then

oo . o . .
2 alma" = T (1—x'=x™T _x™*2_ . x2%)
n=0 =1

Hoof. A protruded partition of n with largest part < m can be regarded as two sequencesa,, a,, ~-and b,, b,, -
of non-negative integers satisfying
Zaj+ Zbj = n, mz=a, za, =2a, =, ai = bj.
Let &; be the number of a;'s which are equal to i If some a; =, then b; canbeany of 6, 1, 2, -, /, so 4; + by is one of
Li+1,i+2 -, 20 Thus

oo o

Z a(m,n)x” =

n=0

. ki i . . -1
Z (){/+XI+7+---+X21} = Z (7—XI-XI+1—"""X2I/ O
k= =1

=3

I

On the following page, we give a table of afm,n} for m,n < 10.
Many features of the theory of ordinary partitions carry over to protruded partitions. We state one such result here.
Fora proof, see [18, §24). A classical identity in the theory of ordinary partitions is
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n ™1 2 3 4 5 6 7 8 9 10
i 1 1 i i 1 i i i i 1
2 2 3 3 3 3 3 3 3 3 3
3 3 5 6 6 6 6 6 8 6 6
4 5 10 12 i3 13 13 i3 i3 13 i3
5 8 17 22 24 25 25 25 25 25 25
6 13 31 a2 47 49 50 50 50 50 50
7 21 53 75 8 91 93 94 94 o4 94
8 34 92 135 159 170 175 177 178 178 178
9 55 156 238 285 309 320 325 327 328 328
i0 89 265 416 509 558 582 583 598 600 601
Z g” = E (71— qxi)'7 .
g (1—xHT1—x2}A1—x"} =0
The corresponding identity for protruded partitions is
3 -
o (T—x=x? W1 =x? = x> —x*) e (1= x" = x™T = x20)
= Z (71— qxi)'7 2 : Xj(i+”t]j i
-0 im0 (1=x)1=x2) AT =X YT = x = X2 )T = x = x2) (1= x = £/}

By inspection, the Fibenacci lattice £, does not have a cover characterization. It does possess, however, a different
type of property, viz., it is an extremal distributive fattice [20]. This means that if L is any locally finite distributive
lattice with 0 having the same number rg of join-irreducibles of rank kas £, (namely,r, = 1, r, =r, = .= 2}, then
JilL) < ji(F, ). Infact, F, is precisely the distributive lattice L(1, 2, 2, 2, -} constructed in [20].

Recall the result A, =~ J(T, ) discussed in Example 4, where A, is the lattice of parenthesized strings. Consider the
related problem of parenthesizing a string of & x's subject to the commutative law {but not of course the associative
law). For instance, when &k = 6 there are § distinct strings, viz.,, x(x{x-x3)), x(x? x> |, x3{x-x? }, x 2ox? -x2, x(x(x*-x*)),
and x?-x* {an expression such as x* has an unambiguous meaning since x(xx/ = (xxJx by commutativity). The
prablem of counting the number V% of such strings was first considered by Wedderburn [23], who obtained a recur-
sion for V. it is unlikely that a simple expression for N exists. For an historical survey of this problem, see Becker
(1.

Let £, be the partially ordered set of strings of x's subject to commutativity, ordered in the same way asin 4,. lt
has been conjectured {e.g., by myself and by E. Bender) that £, ~J(F, ). The reason for this conjecture is the fol-
fowing: it is not hard to see that the sub-ordered set P of £, consisting of those elements which cover exactly one
element is isomorphic to F,. Hence if £, were a distributive lattice, we would have £, = J(F, ) Unfortunately,it
turns out that £, is not even a lattice. In particular, the elements y = (x-x3)(x® (x-x3)) and z = (x{x-x>))(x? -x3} lie
above exactly the same set of elements of . If £, were 3 lattice, the elements of P would be the join-irreducibles, so
y and z would lie above the same set of join-irreducibies, which is impossible.

In conclusion we mention the problem of extending the lattice £, = JfK,/ to a sequence of lattices £, = J(K,)L
There are several possible definitions of K. The one which seems to work best is the following: K is the unigue
locally finite partially ordered set with @ such that when 0 is removed from K, there results a partially ordered set
isomorphic to a disjoint union of 7_and &,. For example, see the following page for what £, and X, look like.

Most of the resuits we have obtained for £, generalize straightforwardly to £, = J(K,). For instance,

{6) Z almnkx" = _m ( 7—x' <'r+i>x >-1 .

n=0 =1
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where

(),

( k ) - (1-ka__xk-’;...(7_Xk—/+7,
T x (1=x Y1 =xPT)(1=x)

denotes the Gaussian coefficient,

Similarly the numbers

E efl) and E efl)
lrf=« I/ [=«
satisfy simple recurrence relations, but they seem difficult to evaluate explicitly.
The limiting case K_ (where K with 0 removed is isomorphic to a disjoint union of K and /) seems of some
interest. The distributive lattice F_ = J(K_/ is isomorphic to the set of all sequences (n,, n,, -/ of non-negative

integers such that all but finitely many n; are equal to 0 and such that 7; = 0 =»n ;+7 = 0, ordered coordinatewise.
The following formulas can be verified:

" ) -7
7 =21 k>o Z almnix" = 1 ( 7~ x! - )
s =1 (1—x)1—x2)(1~x")

2oellh =By, D el =y

|f1=k 1=k

Here By is a Bell number, (also called an exponential number) defined by

k oo
X
B, =1 Brsr = z (f)ﬁ, or by Z Brx* skt = 6 77
(4] o
[15]. Similarly Cy is defined by

k

2 el "_‘~_T——'_-
Co =1, Crer= 9. (f‘ ) ¢, orby D Crxkrkr = 12l (2% ) - 1),
[4] g
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where

liz) = Y. 2% /2%
g

is the 0%-arder modified Bessel function.

Proposition 7 and Egs. (6} and (7) are actually special cases of the following general result. Suppose P and Q are
W-ordered sets such that P has a O which when removed results in a partially ordered set isomorphic to a disjoint
union of P and Q. Let afm,n) (resp. b{m,n)} be the number of P-partitions (resp. d-partitions) of nwith largest part

<m. Then
— , m . -7
Y almnk" = T (1-x'v;60r 7,
n=0 =1

where

Unix) = z blmak" .
n=0
The proof is left to the reader.
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