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ABSTRACT

An analog of a Wiener-Hopf factorization method is proposed for finite block
Toeplitz matrices. For an arbitrary rational matrix polynomial, notions of essential
indices and polynomials are introduced. A connection between these notions and a
Wiener-Hopf factorization of some block triangular matrix functions is studied. A
formula for a generalized (one-sided, two-sided) inversion of a block Toeplitz matrix is
found in terms of indices and essential polynomials of its symbol. Well-known
inversion formulas are obtained as special cases of this formula. © 1998 Elsevier
Science Inc.

INTRODUCTION

A method of a Wiener-Hopf factorization was first applied to a study of
convolution equations on a finite interval by M. P. Ganin [9]. In this work it
was shown that solving of these equations is equivalent to solving of a
Riemann boundary problem with a triangular 2 X 2 matrix function. Subse-
quently the method was developed in the works [22, 211, and others.

In the discrete case this idea was first used in [19]. It turned out that the
inversion of a finite scalar Toeplitz matrix can also be obtained in terms of the
Wiener-Hopf factorization of a triangular 2 X 2 matrix function. However,
for this method one requires an explicit solution of the problem of the
Wiener-Hopf factorization.
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In the present paper finite block Toeplitz matrices

“ai—j”i=0,1

with p X g blocks are considered. The goal of the work is to propose an
analog of the Wiener-Hopf factorization method and to find an explicit
method for a generalized inversion of these matrices.

We obtain a connection between a generalized (one-sided, two-sided)
inversion of such a matrix and a Wiener-Hopf factorization of an auxiliary
block triangular (p + ¢) X (p + g) matrix function

t_'"'llq 0

A(t) =
() TP _aatt "

(see Section 2). In order to find the generalized inverse G in an explicit form,
we shall need an explicit method for a construction of the Wiener-Hopf
factorization of A(¢). In the case p =g =1 there exists the effective
algorithm of G. N. Chebotarev [8] for a computation of the factorization
indices of A(t) and the factors A (). Another explicit method of the
Wiener-Hopf factorization of A(t) for this case was found in [1]. Since A(#)
is a rational matrix polynomial, in the common case there also exists an
explicit solution of the factorization problem (see, e.g., [12]). This solution use
finite block Toeplitz matrices formed from the moments of A~'(¢) with
respect to the unit circle T.

In the present paper we obtain an explicit method for a construction of a
generalized inverse of a block Toeplitz matrix directly in terms of the
sequence a@_,,,...,dg,...,4,. To do this, we study in detail a kernel
structure of a family of block Toeplitz matrices and define notions of essential
indices and polynomials (Section 3). These notions were first introduced in
connection with an explicit construction of a Wiener-Hopf factorization for
triangular 2 X 2 matrix functions [1]. In [2] the technique of indices and
essential polynomials was developed for a sequence of square matrices, and a
family of inversion formulas for block Toeplitz matrices with square blocks
was obtained. Moreover, the technique can be used for an explicit solution of
the factorization problem for meromorphic matrix functions [5]). The same
notions (characteristic numbers and polynomials) were independently intro-
duced for a scalar case in [17]. In this work the notion of indices was also
defined in the more general case of Toeplitz-like operators. The specifics of
the block Toeplitz case were discussed, not knowing about the paper [2], in
[14] and [16].



BLOCK TOEPLITZ MATRICES 87

For an application of the technique of essential polynomials one requires
an essentialness criterion, which allows one to check that the given integers
are indices and the given vector polynomials are essential polynomials of the
given sequence of matrices (Section 4). Using this criterion, we obtain a
formula for a generalized inverse G of a block Toeplitz matrix in terms of
essential indices and polynomials of the sequence a_,,, ..., a,,...,a, (Sec-
tion 5). Another method of generalized inversion in the more general case of
Hankel and Toeplitz mosaic matrices was proposed in [15]. The same
arguments as for Toeplitz operators allow us to find a formula for a generat-
ing polynomial of G (Section 6). Well-known inversion formulas and the
formula for a generalized inversion of scalar Toeplitz matrices [3, 6] are
special cases of our results (Section 7).

1. NOTATION AND USUAL DEFINITIONS

Let C?*9 be the set of complex p X g matrices. For a matrix A we shall
denote by kery A its right kernel and by ker; A its left kernel:

kery A = {x| Ax = 0},  ker, A= {y|yA = 0}.

By [A]j ([ AY) denote the jth row (the jth column) of the matrix A. Let A
be a block matrix with blocks in C?*9, and let A has the block size
(n + 1) X (m + 1). We partition the column R € kery A into m + 1 blocks
(the size of the blocks is g X 1):

and for R we define its generating vector polynomial in the variable ¢ to be
the polynomial

R(t) =rg +rit+ - +r ™.

m

Similarly, for a row in ker, A we define the generating vector polynomial in
L
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Let a_,,...,a4,...,4a, (n>0, m>0; n,m are not zero simultane-
ously) be a finite sequence of complex p X g matrices. Let us denote by
a(t) = L7 _,a;t/ the generating matrix polynomial in ¢ and ¢' of this
sequence. Using the terminology of the work [12], we shall call a(t) a rational
matrix polynomial. Let us form the block Toeplitz matrix

a, a_, a_,,
T = a4 ) @ m+1
a .

a, a,_, Ay

consisting from the elements of the sequence. We note that an arbitrary
matrix A can be considered as a block Toeplitz matrix with rectangular
blocks. To do this, we can partition A into rows (m = 0) or into columns
(n=0).

In the sequel we shall consider T, as the matrix of a finite section of a
Toeplitz operator T,. Recall (see, e.g., [10]) that the infinite Toeplitz matrix

defines the Toeplitz operator T, acting from the vector space I}, into [},
(1 < s € »). Here {a } - _ is an infinite sequence of complex p X g matri-
ces such that Z“’:Amla | <o (]-] is a matrix norm on the set of p X g
matrices). The matnx functlon a(t) = Zj’_ —wa;t! , [t] =1, is called a symbol
of the operator T,. Denote by P, the pro]ector onto the first i coordinates
from the Banach space [, and by Q, the complementary projector. It is
easily seen that

Po=1-Tul-y, Q= Tl

Here [ is the identity operator and I is the j X j identity matrix. Then the
block Toeplitz matrix T, is the matrix of the operator P, I ,P,  Im P, ,

n+1
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In complete analogy with the theory of Toeplitz operators, we shall say that
the matrix polynomial a(t) is the symbol of the block Toeplitz matrix T,.
By W, ., denote the Banach space of all p X q matrix functions of the
form a(t) = Z;i,m at! |t] =1, {a}.}f= e l;xq, by W p)(q [W ] denote
the subspace of W, consisting of all matrix functions of the form a(t) =
hIs 0a t/ [a(t) = 2;’_ ey t/]. If p = g, then Wy, isa Banach algebra and

=
W L are 1ts subalgebras. For brevity, we shall use the designation W = W, |,

pxp
+= W) X1

It is easily seen that there is the following partial multiplicativity of the
mapping a — T

T, =TT T, .,=T, T (L.1)

ad a“ay’ a_a a a

for any a(t) € W, ,, a,(t) € W', ,, a_(t) € W . By virtue of this prop-
erty the basic method in the theory of Toeplitz operators with invertible
symbols is a Winer-Hopf factorization of symbols.

Let a(t) be an invertible element of W, . The representation of a(t) in

Xp*
the form

a(t) = a_(t)d(t)a. (1)

is called a right Wiener-Hopf factorization of a(t) with respect to the unit
circle T. Here a,(t) are invertible elements of W]L,Jr and d(t) =
diag[t”, ..., t*r]. The integers p,,..., p, are called the right factorization
indices of a(t) They are uniquely determlned by a(t). It is known that all
invertible elements of W, admit a Wiener-Hopf factorization.

We shall also need the following definition (see, e.g., [11]). A linear
bounded operator A acting in a Banach space is called generalized invertible
if there exists a linear bounded operator G (a generalized inverse of A) such
that AGA = A. In matrix theory G is also called a (1)-inverse [7]. We shall
say that a generalized invertible operator A is strictly generalized invertible if
A is not one-sided invertible.

As we shall see in the following sections, it is natural to include the matrix
T, in the family of block Toeplitz matrices

n Is
{Tiradie - s where T+, = “ai—_;”i=k,k+1
J=0.1.....m+k

For brevity, we shall use the designation T, = T,-«,.
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GENERALIZED INVERSION OF BLOCK TOEPLITZ MATRICES
AND WIENER-HOPF FACTORIZATION OF BLOCK
TRIANGULAR MATRIX FUNCTIONS

In this section we establish a connection between a generalized inversion

of the finite block Toeplitz matrix

Ta =”ai—j”1’=0,l ..... n
j=0,1,..., m

and the Wiener-Hopf factorization of the block triangular (p + ¢) X (p + ¢)

matrix function

£, 0 )
A(t) = .

k 1
Lio_aatt "M

Let

A(t) =A_(1)D(t) A, (1) @2.1)

be a right Wiener-Hopf factorization of A(t) with respect to the unit circle T.
We partition the matrix functions A | (t) and D(¢) into blocks:

d(t) 0
| Dm:(o dz(t))’

[ag() ai(t)
Ai(t)—(ai(t) ass(t)

where ai(¢) and d,(t) have size ¢ X g. In a similar manner we represent
AN

o [BE@) b
Ai(t)‘(bzil(t) bziz(t)).

THEOREM 2.1.  The block Toeplitz matrix T, is invertible (left invertible,
right invertible) if and only if the right factorization indices of A(t) are equal
to zero (nonnegative, nonpositive). If A(t) has both positive and negative

factorization indices, then T, is strictly generalized invertible.
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The matrix of the operator

G = Pm+l(-[]—hf'lplrl+l‘|]—df1Prz+lTr)f.z + —H_hflpnz+l—ﬂ_(lglpn+l-[r

b2

)Pn+IIIm Pn+l

(2.2)
is a generalized (one-sided, two-sided) inverse of T,.

Proof. 1t is easily seen that for any matrix functions a _(¢) with entries
in the algebra W, we have

p . T P =P

m+ 1 a, "m+1 m+1-a,>

P I, P.,=T,P.,.

n+la_*n+1
Hence

G= Pm+ I(Tbﬁ—ﬂ_lfl—ﬂ—h{z + -[]—hl*.z-[]—(lg IThgz)Prl+l|In] Pn+]'

¢

Recall that we consider T, as the matrix of a finite section of the Toeplitz
operator T, that is, T, = P, T, P, lm P, . Let us find the operator

a a

A=P,  TGT/P,,, Taking into account the partial multiplicativity of

Toeplitz operators (1.1) and the definition of the operators P, |, P, , |, we
obtain
A= Pn+l(‘[]—ahﬁ—|]_(/fl-[]_bf2(l + —I]—ahl*zlﬂdg‘ I')iza)Perl

- Pn+1(-[rab,ﬁ]]—d;‘-ﬂ—r"“b;z + -[rnbfz_l]—dz’]—l]—t”*'h;.z)—l]_t*“’](l P,

- Pn+ l—U_t'"+ 'a(Tt*""lbﬁ—ﬂ—d;‘Th;ﬁa + Tf*’“ ”hrz—[r(lg'—lrbma)Pm+1

+ P T 1 (Timy Ty Ty + T TONFRTN FRET L IEVEIIY S

Now we transform the first term A;. It follows from the factorizations
AWA'(@) =A_ (D)D) and AN A(t) = D(t) A (¢) that

a(t)b(t) = a5 (1)d\(t) —t""'b3\(t),

a(t)biy(t) = an(t)dy(t) — " h(1)
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and
byp(t)a(t) = d\(t)af(t) =t 'by(t),
bay(t)a(t) = dy(t)az () —t™" by (t).

Taking into account the relations P, \T,u+ =0 Ty Py =0,
-[I—(I_I]—I ! d; = d; (] =1, 2) we have A =P +111—112|(l|a,,+02211202|Pm+]
But 1t follows from the fa(,torlzatlon A(#) = A_()D(t) A_(¢) that

an(t)d\(£)af\(t) + ag(t)dy(t)ag () = a(t).

Hence A] = Pn+]—u‘aPm+l'

Since t"* b ,(t) = dy()ay(t) and 1" 'by,(t) = dy(t)asy(t), we have for
the second term A,

A2 = _Pn+l—[]-(12‘,(1]a|*2+a§2(lza{_u_ afm+1 =

WPast = =P iTurty Tonei, P
Here we use the equality

ay () d\(t)ajy(t) + ag(t)dy(t)as(t) =" 'L,

which follows at once from the factorization of A(#).

Similarly, we can obtain A; = A, =0. Thus A=P, T P,.,, that is,
T,GT, = T,. This means that G is a generalized inverse of T,. If all factoriza-
tion indices of A(t) are nonnegative (nonpositive), then in the same manner
one can prove that GT, = T, (T,G = T,). In particular, if all factorization
indices are equal to zero, then G is the inverse of T,. The theorem is proved.

For p =¢qg =1 and zero factorization indices of A(¢) we arrive at
Theorem 1 of [19]. If we denote

b
(1) = (bi(t)  bis(1)), _%):( “)).

by (1)
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then (2.2) can be rewritten in the following form:

G=P,,T,P T, P, TP lImP,, (2.3)

m+1

Now in order to obtain the generalized inverse G in an explicit form we
require an explicit method for a construction of the Wiener-Hopf factoriza-
tion of A(t) or an explicit method for the construction of #(t), #(¢), and
D(¢) = diag[t*, ..., ¢t#r+«] in terms of the sequence a _,,,, ...

We shall need the following lemma, which can be proved by standard
methods (see, e.g., [10, Chapter VIII]).

LEmMa 2.1.  Let A(t) = A_(¢)D(¢t) A, (t) be the Wiener-Hopf factoriza-
tion of A(t). Then

(1) —-m-1< pp<n+tl j=12..p+gq,

(@) [A;'(®)Y is a vector polynomial in t of degree at most m + B+ 1
3)[A- 1(t)] is a vector polynomial in t ~! of degree at most n — m + 1.
In particular, R/(t) = [V (L) = [F(D]), j=12,..., p+q,is

a vector polynomial in ¢ (¢t™!) of degree at most m + wt 1 (n — w1
Let us denote

ro(t) = (aa(t) an(t)).  L(t) = (ba(t) bi(1)).
Then it follows from the factorization A(t) AT'(¢) = A_(¢)D(¢) that
a(t)#(t) =r_()D(t) —t"" ' (t),
or
a(t)R;(t) = trr; (t) —t" 11 (1), (2.4)
where r(¢) = [r (OP, I} () = (1. (Y, j = L.2.....p +q.

LEMMA 2.2.  Let a () be the multiplicity of —m — 1 (n + 1) as the
factorization index of A(t). Then

a =dimkerg, T, ® = dimker; T,
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Proof. 1t follows from (2.4) that a_,,R; = -+ =a,R; = 0and r; (¢) =
lf(t) =0,j=12,..., a Since

U (CHORO) O R (CORA0)
we have

[A;l(t)]j=(1;j), j=12,..., a.

Hence R,,..., R, are linearly independent vectors in kerp T_,,. Thus the
dimension of this space is not less than «a.

Conversely, let R,,..., R, be a basis of kery T_, . We form the matrix
(R, - R,) and extend it to an invertible g X g matrix C,,. Let us define
=\ 4
P
Then

C'A(t)C =

T, 0
a(t)Cy "L |

Since a(t)Cyy = (0,,, (1)), the matrix C™'A(+)C has the following struc-
ture:

AL § 0 0
0 T, 0
0 a,(t) "

This means that « is not less than d. Hence d = a. In an analogous manner
we can obtain the second part of the lemma. ]

Letnowj = 1,2,..., p + ¢ — w. It follows from the expansion (2.4) that
the coefficient of ¢* in the vector polynomial a(t)Rj(t) is equal to zero for
k= w1 B+ 2,..., n, that is, the coefficients of the vector polynomial
Rj(t) satisfy the system of equations

n—,u,j+1

]

a,_;Rl =0, k=p+1,p+2,..., 0
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In other words, the column formed from the coefficients of the column
polynomial R(t) is the element of the space kery T, ., (j=1,2,....p + ¢
— ). Similarly, if we denote

ap () bi(t)
+(t) = + ’ I = - ’
r+(0) (aZI(t)) () (hZI(t))
then from the factorization A~'(#) A(t) = D(t) A, (¢) we have

ZL(t)a(t) = D(t)r, (t) —t " U_(¢),
Li(t)a(t) = thrr(t) —t7" U (¢), (2.5)

where r;r(t) = [r+(t)]j, l]f(t) = [l,(t)]j. From this expansion it follows that
the row formed from the coefficients of the row polynomial Lj(t) is the
element of the space ker, T, (j=a+l at2,....,p+q)

These considerations show that we shall need a detailed study of a
structure of the right and left kernels for block Toeplitz matrices of the family

{T}¢- _,.- This will be done in the following section.

3. DEFINITION OF INDICES AND ESSENTIAL POLYNOMIALS

In the following two sections we develop a technique that we shall use in
the sequel. The main results were obtained in 1985 [2] for p = g.

Our nearest aim is to describe a structure of the right and left kernels of
T,.

Since it is more convenient to deal not with vectors but with generating
vector polynomials, we pass from the spaces kerp T, and ker, T, to the
isomorphic spaces of generating vector polynomials in ¢ orin ¢ ~'. To do this,
we introduce operators o and o,. For p = g = 1 the operator o = 0 s
the Stieltjes functional used in the theory of orthogonal polynomials.

We define on the space of rational matrix polynomials of the form
R(t) =X it r, € C9*!, the operator oy into the space C”*' accord-

-
ing to the formula

op{R(t)} = i a_;r;- (3.1)

j=-n
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(We use the notation o for all [ > 1 because there will be no possibility of
misinterpretation.)

By N' (—m < k < n) we denote the space of vector polynomials of the
form R(t) = Lt rtd, r; € C7*, such that

ox{t 'R(t)} =0, i=kk+1,..., n. (3.2)

It is easily seen that N} is the space of generating polynomials of vectors in
kerg T;. For convenience, we put NE ., =0 and denote by N}, the
(n + m + 2)g-dimensional space of all vector polynomials in ¢ of formal
degree n + m + 1.

It follows from the definition (3.1) that o,{t “R(¢)} coincides with the
coefflcient of ¢' in the vector polynomial a(¢)R(t). Hence R(t) € NE |
(—m <k <n)iff

a(t)R(t) =t*R_(t) + t"* 'R, (1), (3.3)

where R, () [R_(#)] is a vector polynomial in ¢ [¢t™'] of formal degree
m + k.
Similarly, we define on the space of rational matrix polynomials of the

form L(t) = i _ it/ ], € C'*?, the operator o; into the space C'*9:

m

af{L(t)} = Y La_;.

The space ker, T, is naturally isomorphic to the space N/ of vector
polynomials in ¢~ of the form L(t) = LjZ31t7/, I, € C?, such that

oftL(+)} =0, i=kk-1,..., —m.

We put N, ; = 0 and denote by NX | the (n + m + 2)p-dimensional
space of all vector polynomials in ¢~' of formal degree n + m + 1. Tt is
easily seen that L(¢t) € N} | (—m < k < n) iff

L(t)a(t) = t*"L (t) + t ™™ L_(¢), (3.4)

where L,(t) [L_(¢)] is a vector polynomial in ¢ [¢7'] of formal degree
n — k.

Let a = dim N® and o = dim NJ. We shall say that the sequence
is left regular (right regular) if a =0 (0 = 0). The

n



BLOCK TOEPLITZ MATRICES 97

sequence is said to be regular if & = o = 0. We shall also apply the notion
of regularity to the symbol a(t).

By dff (dF) denote the dimension of the space N/ (N/). Let A} = dff —
di,(-m<k<sn+ 1), Ak =dF —df, (—m — 1<k <n).

PROPOSITION 3.1.  For any sequence a_,....,4a,...,a, of complex
p X g matrices we have
a=A <Af L < <AT<AL =ptg -0 (35)

prg—a=A [ >A > - >AL > A= 0. (3.6)

—m

Proof. Tt follows from the definition (3.2) that N and tNJ are sub-
spaces of Nf | and Nf N tNF =tNE | for —m <k < n. Hence, by the
Grassman formula,

dim( NJF + (NF) = 2df - d} . 3.7
k k k

Let us denote by Af, | the dimension of any complement H(, , of the
subspace NF + tNJF in the whole space NJ% |. From (3.7) we have h{, | =

AR, — AR thatis, AY, | > AR It is easily seen that A" = a and A%, | =
p + ¢ — . In a similar manner we can prove the statement of the proposi-
tion on the sequence A%. [ |

It follows from the inequalities (3.5) that there exist p + ¢ —a — @

integers py | < 0 S Uy ig oy such that
R _ — AR _
ALy = =4, = a
R _ AR _
AL, = = AR = (3.8)
R - — AR _—
Ay.pw,wﬂ = =40, =ptg- o

If the ith row in these relations is absent, then we assume that u, = w,, .
definition, put u; = - =, = —m—lifa#0and p,, .7 = =
Mpig =n+ 1if @ #0.

I
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Similarly, from (3.6) we have

L _ — AL _
A*m—] == Avaﬂfl =P + q— «,
L _ _ AL _ ,
Avl_ _Avi+1fl_p+q_z’ (3.9)
L _ _ AL _
Vptg-w - A" = w
for some integers v, .| < ** < Yty w Putv, = =py,=-m-1 (for
a#0and v, . = =v,,,=n+ 1(for o # 0).
PROPOSITION 3.2.  For any sequence a_,,,...,4a,,...,a, of complex
p X q matrices the integers pu,, ..., Boptq coincide with v, ..., A More-
over,
p+q
Y = —indT,. (3.10)
j=1

Proof. 1t is easily seen that A} =p + g — A%, ,. This implies that
pi=v,j=1....p +q.Since di, | = Z}‘:lmA?, it follows from (3.8) that

Ptaq
Z;Lj=(n+l)p-—(m+l)q=—indTa. [ |
j=1

DEFINITION 3.1, The integers u,,..., u,,, defined in (3.8) will be
called the essential indices (briefly, indices) of the sequence a_
ay, . .-, a, and its symbol a(t).

m>*eo

From the relations (3.8) we get at once a way to compute the indices of
the sequence in terms of the ranks r, of the matrices T, (—m < k < n):

p = card{k|q +r_, —r, <j— 1}::]_," -m -1, (3.11)
j=12,...,p +q. Here card A is the cardinality of the set A, and by

definition r =r,,,=0.

—m—1
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Since the dimension hf,, of the complement HJ , of the subspace
NF + tN! in the space N, | is equal to A¥ , — A% it follows from (3.8)

that hf, , + 0 iff k = g G=a+1....,p+qg— w. In this case h{,,
coincides with the multiplicity &; of the index p,. Hence for k # p,

NE | = NE 4+ INF, (3.12)
and for k = p,
NE ) = (N +iNY) + HE (3.13)

DEFINITION 3.2. If a # 0, then any. column polynomials R,(¢),...,
R(t) that form a basis for the space N%  will be called right essential

-m

polynomzals of the sequence a_,,, ..., aq, ..., a, [and its symbol a(¢)] corre-
sponding to the index w, = -+ = pu,.
Any polynomials Ri(t),..., R, _(t) that form a basis for H” . will be

called right essential polynomzals of the sequence [and its svmbol a(t)]
corresponding to the index p;, a + 1 <j<p +1 - .

Similarly, for k # u;
N = NE+ 7N
and for k = u
NEy = (Nkl +t7INF) + HE

Choosing bases for the space N (Gf w # 0) and for the spaces H#’/ 0
(a+1<j< p + g — w), we obtain a sequence of vector polynomials
Lyiit), ..., L, (¢) that will be called left essential polynomials of the
sequence a,m, .eeydg, ..., a, and its symbol a(t).

Therefore, for any sequence @ _,,, ..., 4y, ..., a, there are p + ¢ indices,
p + g — w right essential polynomials, and p + g — a left essential polyno-
mials. The remaining essential polynomials we shall define in the sequel.

Now we can describe the structure of the right and left kernels of the
matrices Ty in terms of the indices and essential polynomials of the sequence

7 S IR N
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THEOREM 3.1. Let the integers p,,..., M,., be the indices of the
sequence a_,,,...,4qy,...,a, and let R(t),..., Rp+q_w(t); La+q(t), e,
L,.,(t) be the essential polynomials of this sequence. Then the vector

polynomials

{Rj(t),tﬂj(t),...,t"*“f‘l}!{j(t)};=l (3.14)

are the generating polynomials for elements of a basis of the space kery T for
ke(psm)1<i<p+q— o Hereweput p,. .., =nif o=0.
Similarly, the vector polynomials

(L,(1) ' Ly(0)...., - R oL ()] (3.15)

are the generating polynomials for elements of a basis of the space ker, T, for
kelp, sm) a+r1<i<p+q. Here weput py= —mif a =0.

Proof. It follows from (3.12) and (3.13) that the polynomials (3.14)

generate the space NJ. Since df = Z;‘: _mA;‘, we have

df =ik — 1 u,. (3.16)
j=1

It is easily seen that the number of polynomials (3.14) is equal to d,f. Hence
they form a basis for the space NJ.
The second part of the theorem is proved in a similar manner. [ |

In particular, it follows from Theorem 3.1 that the kernel structure of a
finite Toeplitz matrix T, is just like that of a Toeplitz operator with an
invertible symbol. This fact was first obtained by G. Heinig (see, e.g., [17]).

4. CRITERION OF ESSENTIALNESS

In this section we solve the following problem. What are the conditions in
order that given integers shall be the indices and given polynomials shall be
the essential polynomials of the sequence a_,,,..., a,, ..., a,? The following
theorem gives a criterion for checking essentialness.
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THEOREM 4.1. Let a_,,...,4a,,...,a, be an arbitrary sequence of
complex p X q matrices and w = dimker, T,. Let ..., Kptq—o be inte-
gers such that —m — 1 < x; < =+ < Ky, <nand

ptg—o
)y K =(n+1(p—w)—(m+1)q. (4.1)
j=1

Let U(t),....U,,,_ () be column polynomials such that U(t) € NKR+1
1<j <p+q—w If w#0, then we put Kytg—wil =
n+1lifw=0.

The integers k,, ..., K, are the indices and the polynomials U(t), ...,
U, 14— t) are right essentzal polynomials of the sequence if and only if the
(p+q) X (p+q — ) matrix

prg

N L O I A G ,m,,w(t)})

+1

7
Ul‘m+kl+l L]1+q-‘w,m+xﬁ+",w

orthe (p + q) X (p + g — w) matrix

>
=]
|

&R{t_nflUl(t)} {t ”71U7)+</ w(t)})

Ul,ﬂ e Lp+(/*m,0

is left invertible.

Similarly, let o = dimkerg T_,,, and let k. ..., k., be integers such
that —m < K,y < - <K,y <n+ 1and
P*q
Yy K; = (n+1)p—(m+1)(g— a).
jEat+l
Let Vo, (8D, ..., V,, () be row polynomials such that Vi) € N’ _La+1
<j<p+tg. Ifa#O then we put k, = =+ =k, = -m—l
The integers Ky, ..., K,,, are the indices and the polynomials V,, (t),

V1 (1) are left essentml polynomials of the sequence if and only if the
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(p+q — a) X (p + q) matrix

Va1 {thV +1(t)}
A=
\%

p+gq,0

ot "‘“Vp+q(t)}

orthe (p + q — a) X (p + q) matrix

Va+l,n—l<a+1+1 O)\-L{t_KLHlVoH—l(t)}
A=
Vp+q,n—Kp+q+l &L{t7KP+qu+q(t)}

is right invertible.

Here Gy, 6, are the Stielties operators for the extended sequence
A 158 o5 Gy, a,, Where a_,, | is an arbitrary matrix; U, e+
is the leading coeﬂzctent of the column polynomial U(t); and V o, 18 the
constant term of the row polynomial V(t). In the matrices AR,AL the
operators Gy, G, correspond to the extended sequence a_ B PO
a,,,, where a, | is an arbitrary matrix.

Proof. Necessity: Let ky,...,k, be the indices, and let Uy(2),...,

U, (1) be the right essential polynomials of the sequence. Put r = p + ¢
— . Suppose that the rank of the matrix Ay is less than r. Then there exist
numbers «,..., a_, not all zero, such that
a, Gp{t (1)} + - +ar0-R{t_KrUr(t)} =0 (42)
and
alUl,n1+K1+1 + o +arUr,m+Kr+l =0. (4'3)
Let the index «, has the multiplicity v, that is, k,,, < k,_,,; = ** = k,

< k,, . We introduce the polynomial

Q(t) = ot U (L) + o e, T U A1) + a0 u+1(t)

r—v

+ - +a,U(t).
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From (4.3) it follows that the degree of this polynomial is not greater than
m + k,. Then (4.2) means that a{t7* Q(#)} = 0. Since Q(t) € NRH, we
have Q(t) € N and

a,_ V+l V+l(t) ) +arUr(t)
= Q(t) — t{at (1) + -+t T U (8)]
e NI+ N2 (4.4)
However, U,_,_(¢),...,U(¢) are the right essential polynomials corre-
sponding to the index k.. Therefore the condition (4.4) is fulfilled iff
a,_,,, = =a=0. By repeating these arguments for the indices
K,_,,..., K, we obtain @, = -+ = @, = 0. The contradiction shows that

the rdnk of the matrix Ay is equal to r. In an andlogous manner we obtain
the proofs of the statements about the matrices Az, A}, A L-

The proof of sufficiency is just like that of Theorem 3.1 from [5] and is
omitted. [ |

We shall call Ap, Ag (A,,A,) test matrices for right (left) essential
polynomials.

5. CONSTRUCTION OF THE GENERALIZED INVERSE IN
TERMS OF ESSENTIAL POLYNOMIALS

Now we consider a connection between the indices and essential polyno-
mials of a(t) and the Wiener-Hopf factorization of A(t).

THEOREM 5.1.  The factorization indices of A(t) coincide with the essen-
tial indices of a(t). Moreover, the polynomials

R,-(t)=[(bl+1(t) by; (t))] j=12,....p+tqg— w

are right essential polynomials of a(t), and

by
Lj(t)zl(bz_iz;)lj, j=a+lLa+2,....p+yg,

are left essential polynomials of a(t).
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Proof. Let w be the multiplicity of n + 1 as the factorization index of
A(#). Recall that w = dimker, T, (Lemma 2.2). If p,,..., p,,, are the
factorization indices of A(t), then

ptg—w
Y op=(n+1(p-w) - (n+l)g
j=1

Moreover, in Section 2 we showed that Rj(t) € Np’;+ Li=L2...,p+gq

— w. Let us compose the test matrix Ay for this system of polynomials. Put
a_,_, =0 and find Gz{t "R (¢)}. It follows from Equation (2.4) that

Gaft = R(1)} = 17 (®) = [(an(®) az(=))]’.

We denote #_(t) =t~ ™ '#(¢+)D'(¢). It is evident that the leading coeffi-
cient of the polynomial Rj(t) coincides with [.#_()). From the factoriza-
tion A(t)AT'(#)D (t) = A_(t) we have

A_(t) = (an(t) aj3(1))
Thus the matrix Ay is obtained from the invertible matrix

0 I,
I, 0

q

A_()

by deleting the last @ columns. Therefore Ay is a matrix of full rank, and, by
Theorem 4.1, py,..., p,., are the essential indices and the polynomials
R(t), 1 <j<p+q — o, are the right essential polynomials of a(¢).

The second part of the theorem is proved similarly. [ |

This theorem gives a way to compute the factorization indices of A(#) in
terms of the essential indices of the sequence a_,,, ..., ay, ..., a,. Hence the
factorization indices can be explicitly found by (3.11).

Now we show that the factors A (t) can be explicitly found in terms of
the right essential polynomials R(¢),..., R, q W) (for p < ¢) or in terms
of the left essential polynomials L, 1(t) L, () (for p > q).

First we extend the system R,(#),..., R, ., _,(t) (for o # 0 and p < ¢)
or the system L, (#),.. p+q(t) (for a# 0and p > q) to a full system
consisting of p + ¢ polynomlals
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Let  # 0 and p < g. Let us define essential polynomials R, ,_,(t),
..., R, (1) corresponding to the index n + 1 of multiplicity ». To do this,
we extend the left invertible matrix A, to an invertible matrix A% and
partition the additional columns [A%} of the matrix A% into blocks a';,R €
Cr*!and r, € C7Y

R

) a.
[AER]]:(;,)’ p+q—w+l<j<p+q.
7

Moreover, we extend the sequence a_,,_,,a_,,...,a,,...,a, by an arbi-
trary right invertible matrix a,,,. Then the matrix (a,,,.q,....,a_,,
a_, ) is also right invertible. Hence the equation
n+m-+2
~ —(n+1l) i
ot Z x;t
i=0
= a,4+1%p + a,x, + +a--mxn+m+l + a1 Xntm+2 = 1/

(x, € C¥*!, y € CP*!) is solvable for any y.

DEFINITION 5.1. Let @ # 0, p <gq. Arbitrary column polynomials
R, —onit)..., R, (t) of formal degree n + m + 2 such that

~ —(n+1 — R —

O'R{t o )Rj(t)} =0, Ry iinea =T
j=p+qg—w+1,...,p+ 1, are called right essential polynomials of the
sequence d_,,, ..., 4y, ..., a, corresponding to the index n + 1.

In a similar manner we define deficient left essential polynomials
L#),....,L(t)is « #+ O and p > g.

DEFINITION 5.2. Let a # 0 and p > g. We extend the right invertible
matrix A; to an invertible matrix A7 by the rows

[AeL]j= (lj’a}L)) ZJ.ECIXP, 031, e@lx(,’

j=1,...,a. The sequence a_,,_,,a_,,....,4a,...,a, is extended by an
arbitrary left invertible matrix a, . Arbitrary row polynomials L), ...,

n
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L () in ¢t 7! of formal degree n + m + 2 such that

aftm L) =gt Ly =1,

j=1...,a are called left essential polynomials of the sequence
a ag, - ., a, corresponding to the index —m — 1.

Note that the equations &;{t™* 'L (¢)} = g, are solvable because a,,,
is left invertible.
Thus for any sequence of matrices there are p + ¢ right essential

polynomials or p + q left essential polynomials.
THEOREM 5.2. Let a(t) = Lj_ _,,a;t/ be a rational p X q matrix poly-

nomial. Suppose that a(t) is right regular or p < q. Let p,,..., ., be the
essential indices, and let

Z(t) = (Ri(t) - B, (1))

be the matrix of the right essential polynomials of a(t).
Then the right Wiener-Hopf factorization of A(t) with respect to T can be
constructed by the formula

A(t) = A () D(t) BT (1), (5.1)

where

t_’”‘lﬂ(t)D_l(t)), B.(1) = (ﬂ(t))

A= ( r-(t) L (1)

and the matrix polynomials r_(t),1, (t) are uniquely determined by the
expansion

a(t)&(t) = r_(t)D(t) — " (1). (5.2)
Similarly, if a(t) is left regular or p > q, then

A(t) = BZY{(t) D(t) A, (1), (5.3)
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is the right Wiener-Hopf factorization of A(t). Here A (¢)=(r (t)
t"" D) 2(t), B_(t) = (1_(t) A1),

Li(t)
Z)=|
L, q(2)

is the matrix of the left essential polynomials of a(t), and 1_(t), r (t) are
uniquely determined by the expansion

Z(t)a(t) = D(t)r (t) —t " '_(t). (5.4)

Proof. For the construction of the factorization we shall use the full
system of right or left essential polynomials. Hence we must consider the two
cases.

Suppose that a(t) is a right regular of p<gq.Let u,..., Kpq be the
essential indices, and let R,(¢),..., R, q(t) be right essential polynomlals of
a(t). Recall that ..\ = - ;LPJH, n + 1if o = dimker, T, # 0.
The polynomials R, _,.(t),..., R, (t) corresponding to the 1ndex n +
1 are constructed by the matrix A% (see Definition 5.1).

If p; < n, then the condition R (t) e NI 1 s equivalent to the following
relation:

a(t)R;(t) = t*ry (t) — "7 () (5.5)

[see Equation (3.3)]. Here r; (1) [l*(t)] is a column polynomial in ¢ “Ue] of
degree at most m + u, if [.L] —m,and r; (1) =17(t) = 0if g, = —m —
1. The polynomials 7 ~(1), l (t) are unlquely determmed by the above
expansion. Let us compare the coefficients of ¢# in (5.5) for u; > —m:

i1

ay.jRj,O + ap,j—lR +oee a—ij‘mAF;L] = rjv(oo)'

m—

In the matrix A, we put a_
rewritten as follows:

. = 0. Then the previous equation can be

Galt MR, (1)} =1 (). (5.6)

It is easily seen that this equation is valid for u; = —m — 1 too.
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Now let p;,=n + 1, and let R/(t) be a right essential polynomial
corresponding to the index n + 1. The expansion (5.5) is also valid in this
case, and all coefficients of the polynomials r; (1), 1 +(t) except the constant
terms are uniquely determined. Let us compare the coefficients of t"*1! in

(5.5):
a,R; +a, R, + - +a_,R =r7(») = 17(0).

nttj 1 —m*tj,ntm+1

Let a,,, be the right invertible matrix from A% (see Definition 5.1). The
constant terms rj_(OO) and lj+(0) are related by the equation

Fa{t " TOR(1)} = r7 (%) — 1} (0) + a,, R, .
In (5.5) we put
L (0) = 4, By (5.7)
for u; = n + 1. Then r; () is uniquely determined by the equation
Gult= B () = 17 ().

Now the relations (5.5)—(5.6) are fulfilled for all right essential polynomi-
als. We rewrite these equations in the matrix form

(a0 t"”’ﬂ>(f8) =r_(t)D(t), (5.8)

(Galt™ (D} - G{treR, (D)) = r_(=). (5.9)
Here
Aty = (B() Bug(0)),  r(e) = (i) (D)

L)y = (L@ = L), D(t) = diag[t™,... t#d].
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Define
F_(t) =t 'F(t)D'(t). (5.10)

Since the column [Z(¢)) = Rj(t) is a polynomial in ¢ of formal degree
m+p+ 1, the column [% (¢)} is a polynomial in ¢~} of the same formal
degree. We rewrite (5.10) as follows:

tTmR(t) =& _(t)D(t). (5.11)

Now from (5.8), (5.11) we obtain

e, 0 &)\ [#_(1)
( a(t) t"“Ip)(l+(t)) - ( r(t) )D(t)'

Let us introduce (p + g) X (p + ¢) matrix functions

Z
B.(1) = (zﬁig) A-(1) = ( r((:)))_

B_(¢t) [A_(#)] is a matrix polynomial in ¢ [¢t~']. Hence B, (¢) [A_(¢)] is
analytic in the inner domain D [the outer domain D _] bounded by the
contour T. Thus we get

A(t)B.(t) = A_(t)D(t).

Since the sum of the essential indices of a(t) is (n + I)p — (m + g,
we obtain det B, (¢) = det A_(t) = const. Let us find A_ (=), From (5.9),
(5.10) we have

v 1)

&R{t*#lRl(t)} &R{t““’”"B,,ﬂ,(t)} .

( Rl,m+,u,,+l R])+({,1)1+/.L,,h’+l
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It follows from this that

g A%. (5.12)
q

0

Hence det B, (¢) = det A_(¢) # 0, and B;'(¢) [AZ'(#)] is a matrix polyno-
mial in ¢ [¢t7!]. Thus

A(t) = A_(1)D(t) BT (1)

is a Wiener-Hopf factorization of A(#) with respect to T.
The case when a(t) is left regular or p > ¢ can be analyzed in a similar
manner. |

Using Theorems 5.2 and 5.1, now we can recover left (right) essential
polynomials if we know p + g right (left) ones. We can do this by the
following procedure. Let a(t) be a right regular rational matrix polynomial or
p <gq. Let Ryt),..., R, (¢) be right essential polynomials of a(t). The
matrix a(t)#(¢) can uniquely be expanded in the form

a(t)#(t) = r_(t)D(t) —t""'1, (¢).

Let us form the matrix

o[ o)

By Theorem 5.2, this matrix is the factor of the right Wiener-Hopf factoriza-
tion of A(t). Then, by Theorem 5.1, the row polynomials

biao(2)

Bt = [b;g(t)

], j=at+l,a+2,...,p+g,
J

are left essential polynomials of a(t). Here

bi(t)  bi(t)
ba(t)  by(t) )

AZN(¢) =(
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If a # 0, then the system of these left essential polynomials can be extended
by the polynomials L(t), 1 <j < a. We shall call them the left essential
polynomials corresponding to the index —m — 1.

DEFINITION 5.3. Let Li(%),..., Lp+q(t) be the left essential polynomi-

als that are constructed with the help of the right essential polynomials
R(®),...., R, () accordmg to the above-mentioned procedure The essen-

tial polynomlals Ly#),..., L,, (t) and R(1),.. (t) are called the
conforming essential polynommls of a(t).

P+q

Similarly, if we know p + g left essential polynomial [a(?) is left regular
or p > ql, then we can recover the right essential polynomials R(t),...,

R, () and constructed the conforming polynomials.

REMARK 5.1.  Let R,(¢), Ry(¢) be right essential polynomials of a scalar
sequence. It is easily seen that if

1
(t) _t (m+‘u.2+l)R (t) Lz(t) — ;t_("]+“1+1)31(t),
9y 0

then R(¢), Ry(t), L(t), Ly(t) are the conforming essential polynomials of
this sequence. Here o, = o{t™*:R, ., . Ro(t) =t ™R, .., . R()}
and, by the essentialness criterion, o, # 0.

Now we can formulate our results (Theorem 2.1, Theorem 5.1, Theorem
5.2) on the generalized inversion of block Toeplitz matrix T, without the use
of the Wiener-Hopf factorization of the auxiliary matrix function A(t).

THEOREM 5.3. Let a(t) = L]_ _,,a;t/ be a rational p X q matrix poly-
nomial. Let u,, ..., T be the essential indices, and let
Ly(t)
H(t) = (Rl(t) Rp*q(t))’ Z(t) = ..
Lp+q(t)

be the matrices of the conforming right and left essential polynomials of a(t).
Then the matrix of the operator

G=P,, IgP, Ip- P\ IoP, lIm P,
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where D(t) = diag[t*, ... t*Pr+4], is a generalized (one-sided, two-sided)
inverse of T,.

Let us find the formula for G in terms of the coefficients of the matrix
polynomials F(¢), £(t). Let A} < -+ < A_ be the distinct essential indices
of a(t), and let »,..., v, be their multiplicities (v, + - +v, =p + ¢).
Then

Dl ="M, + -+t M,
1 r
Here I1_, = ll&/5, 254, where
)\] i

1

0  otherwise.

i=vpteety Loyt

>

gl =

Put Hk—Ofor —n<k<m, k+# —Aj,..., A,.. Then the matrix II of
the operator P, \T,-1P,, llm P, | has the followmg form:

m, I, SRS |
_ I, I SAR | A
Hm i'—[m—-l o iIm—n

It is easily seen that II is a subpermutation matrix.
From Theorem 5.3 we have

R, 0 0 Sy &, z .
& R : 0o % - 2,

o R 1 L (5.3)
‘%m ‘%m—vl o L9?() 0 o o Z)

Here %; € Ccrxrto [Z e C+9*P] are the coefficients of #(t) [.Z(¢)].

We note that Theorem 5.2 can be applied to the problem of the explicit
construction of a Wiener-Hopf factorization for block triangular matrix func-
tions of the form

G(t) =

Gi(t) 0
Ga(t)  Gult)
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where G (1) [Gy(t)] is a ¢ X g [p X p] matrix function admiting a right
Wiener-Hopf factorization of the form

G (t) = G ()t GH(2) [Gaa(t) = Go(t)t"2G(t)].
In particular, we can obtain an explicit solution of the factorization

problem for an arbitrary 2 X 2 triangular matrix function. This was done in

the paper [1].

6. GENERATING MATRIX POLYNOMIALS FOR THE
GENERALIZED INVERSES

In this section we obtain a formula for the generating matrix polynomial

m n
G(t,s) = )Y gi,‘tisﬂj
i=0j=0
for the generalized inverse
G = ||gl‘j“i=0 ..... me

J=0..... n

Let 2(a, B) (=m < a < B < n) be the projector acting by the formula
n B .
P(a,B) Y, rti= Y rt'

If the operator #(«a, B) acts on a polynomial in ¢ and s, then the notation
2,(a, B) means that the operator acts on the variable t.

PROPOSITION 6.1.  The generating matrix polynomial of the generalized
inverse G from Theorem 5.3 is found by the formula

%(t)DJl(t,S)f/(S)‘

G(t,s) =20, m)P(—n,0) [ =g !

(6.1)

Here (1), £(s) are the matrices of the conforming essential polynomials.

D,(t,s) =diag[t*, ... .¢tF shorr L sHria],
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and the integer o is found from the condition
l'l‘l < ' < ”’a’ < 0 < ,“Lcr+l S < ”‘p+q'
Proof. Consider the matrix function

Z(t)D; (¢, s)Z(s)
1—ts! '

B(t,s) =

Since for the conforming essential polynomials the condition
FRR)DH()Z(t) = 0 is fulfilled, B(¢,s) is a polynomial in ¢ of order at
most max(m + w,, ,, m), and 57! of order at most max(n — g, n).

Let B = llbi].II?,j:o (b;; € C9?) be the matrix of the operator B =
TzT,-1T,. Recall that B is an operator from l,l;><1 into I, ;. We shall show
that (¢, s) is the generating polynomial of B. The proof is similar to the
proof of a formula for the generating function of the inverse of a Toeplitz
operator [18].

Apply the operator B to the sequence E = (Ip, s_llp, s_zlp,...). For
[s| > 1 the sequence belongs to l;,><1 and has the symbol (the Fourier
transform)

© N 1
'ZOtJS L= ==, =1
=

The symbol of the sequence BE is the function Y7 ].:Obi ].t"s_f , that is, the
generating function of B.

On the other hand, the sequence T4 E = (Z(s), s LA(s), sT2A(s),...)
has the symbol #(s)/(1 — ts™'). Hence the symbol of the sequence Tj,-1 To E

1S

D™ (t)Z(s)

oy -t

where the projector P acts by the formula

Pl X rtl= 'Zorjtj .
j=

]’= —
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Since
t'f"
, <0,
p T 1—ts 1 s
1 —ts! sTH
T M2 0,
we have

D™ (t).Z(s) _ D(t, s)Z(s)

ol —gs! 1 ~¢s7!

Thus the symbol of the sequence T, T,- T, E is the function

P+ﬁ(t)l)1§i(;—sl)f/(8) _ ﬂ(t)l)loi(;’i)‘?(s) =B(t.s).

Hence, #(t, s) is the generating function of the operator B:

B(t,s) = fo: Yobgt's™, =1, |s|>1.

i=0j=0

Since .&(¢, s) is a polynomial in ¢, s~!, we can omit the conditions |¢] = 1.

Is| > 1.
It is evident that the generating polynomial of the matrix of the

operator G =P, | I,T,-T,P,, [lm P,,, coincides with the polynomial
20, m)#(—n,0)%(t, s). The proposition is proved. n

If in (6.1) we replace D,(t, s) by

D (t,s) = diag[¢#, ... t# s#rr L shrra],

0 <k <p + g, then we obtain the generating polynomial of another general-

ized inverses of T,.
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PROPOSITION 6.2. The matrix polynomial

R(t) D (. 5)Z(s)

Gk(t’s) ='@t(0’m)‘@s(_n’0) 1 —¢s !

, 0<k<p+tyg,

(6.2)
is the generating polynomial of some generalized inverse G of T,.

Proof. For k = o the statement is proved in Proposition 6.1. Hence it is
sufficient to prove that for all k (1 <k <p + ¢) the matrices G, and G, _,
are generalized inverses of T, simultaneously, that is, T,KT, = 0, where
K = G;_, — G;. For the generating function K(t, s) = G,_ (¢, s) — G (¢, s)
the last condition can be rewritten in the following form:

a,{a’f{t_ist(t, s)} =0, i=0,1,...,n, j=0,1,...,m.
If

A(t) D (1, 5)Z(s)

Bt s) = 1—ts7!

>

then
By (t,s) —Bi(t,s) = Ri(t)s *di (¢, s) Li(s),
where di(t,s) = (1 — (¢s7)7#) /(1 — ts~1). Hence
K(t,s) =20, m)Z(—n,0)Ri(t)s™*di (¢, 5) Li(s).
Let p, < 0. Then

|p.k\—l

di(t,s) = Y, tis)
j=0
and
“‘-k|“l

K(t,s) = ¥ t/R()[#(—n,0)s7 7 Ly(5)].
j=0
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Therefore,
|Il«k|—1
on{t 'K(t,s)} = L op{t VR(1)}A(—n,0)sTT ML (s) =0
j=0
for i = 0,1,..., n. Here we use the inequality u; + 1 <i —j < n and the

definition of the right essential polynomial R(¢). Thus T,K = 0.
In a similar manner we can prove that KT, = 0 for u, > 0. If u, =0,
the d, (¢, s) = 0 and K = 0. Thus, we always have T,KT, = 0. The proposi-

tion is proved. [ |

7. SOME SPECIAL CASES OF THE GENERALIZED
INVERSION FORMULAS

Now we consider some special cases of (5.13), (6.1), and (6.2).

7.1
If all indices of a(t) are equal to zero, then the sequence is regular and
the matrix T, is invertible. Let

A(t) = (R(t) -~ R, (1))
be the matrix of arbitrary right essential polynomials, and let

Li(#)

L;)-Fq(t)

Z(t) =

be the matrix of conforming left essential polynomials. If L,(¢),..., L, +q(z‘)
are arbitrary left essential polynomials, then there exists an invertible matrix
C such that

Ly(#)
Z(t) = CZL(t), where Z(t) =
Ly, .(t)
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It follows from this that A9 = CA;, where A% [A,] is the test matrix for
Z(t) [£(t)]. From the definition of conforming left essential polynomials we
have

o 1\’
A5, = B_(%) I 0 ,
where

-1 -1 0 IP B
B_() =AZN (=) = Ag 1, o

Here Ay is the test matrix for (¢). Thus C = A™!, where

Ag.

Applying Theorem 5.3 and Proposition 6.1, we arrive at the following
result.

CoroLLARY 7.1.  Let Ry(t),..., R, (t) be any linearly independent
polynomials in the space NE, and L (¢), ..., L, ,(t) be any linearly indepen-
dent polynomials in N |. (The dimension of these spaces is not less than

p+q)
The block Toeplitz matrix T, is invertible if and only if the matrix

&R{Rl(t)} &R{Rrﬁq(t)}
R R . R

1. m+1 ptg,m+1

or the matrix

L, &L{thLl(t)}
A, = . .

Lp+q,0 &L{thLp’rq(t)}
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is invertible. Here R, ,, | is the leading coefﬁczent of the polynomial R(t);
L; o is the constant term of L(t); and Gy, G, are the Stieltjes opemtors
for the sequence a a ay,...,a,, where a_,_, is an arbitrary
matrix.

If the matrix Ay is invertible, A, is also invertible and w‘ce versa.
Moreover, in this case the polynomials R\(¢), .. (#); Ly(¢t),. L,
are the essential polynomials of the sequence a_m, R PO and the

generating polynomial for the inverse of T, is constructed by the formula

—m=1 s ee s n»

p+q

Ly(s)

(Rl(t) o Rp+q(t))A“l
Lp+q(s)
B(t,s) = Tl (7.1)
0
where A = A, I Ay
R

This result was first established in 1985 [2] for p = g (scalar case in [4]).
Since the coefficients of essential polynomials are solutions of systems of
homogeneous linear equations, they are nonuniquely determined parameters.
Therefore (7.1) contains a family of inversion formulas. Choosing special
bases for the spaces N, NL, (the spaces of essential polynomials), we may
obtain some special cases of the inversion formula.

For example, if we normalize the essential polynomials by the conditions

Ar = Ay =1, then we obtain

COROLLARY 7.2.  The block Toeplitz matrix T, is invertible if and only if
there exist solution of the systems of matrix equations

(7.2)
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or the systems

M=

810 1= —a_; , i=0]1,..m,

~.
I
(=)

(7.3)

n
Y v = 8,1, i=01,...m,
j=0

where a_,, _, is an arbitrary matrix. If the systems (7.2) are solvable, then
the systems (7.3) are also solvable and vice versa. The inversion formula for
T, has the following form:

B=L(ay,..., 2, )U(L,,8,,...,8,) = L(By>---, B,)U(0, v}, ---. 7,)-

Here

Xo 0
L(xg,.co,x,) =+ 7. o,
X, %,
Yo 7 Yu 7 Yn
U(Yos---» Ya) = : ’ ' :
O yO ynvm
for m < n, and
X, 0
L(xg,....x,)=1{=x, - x, |
x"’l o xm—n
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Yo U Ya
U(yo,--nyn) = | 1

for m > n.

The parameters a;, Bj, Sj, Y, are the coefficients of the matrix normalized
essential polynomials. In the scalar case an analogous result was first obtained
by Li-Gun-Y [20]. In the block case the invertibility of T, was proved in [13].
In that article the inversion formula, which use only the solutions of systems
(7.2) or only the solutions of systems (7.3), was found.

In an similar manner we can obtain from (7.1) other well-known inversion
formulas (the Sakhnovich formula, the Gohberg-Heinig formula, and the
Gohberg-Krupnik formula).

7.2
Let p =g = 1. Applying Theorem 5.3, Proposition 6.2 for k = 0, and
Remark 5.1, we obtain

COROLLARY 7.3. Let u,, u, be the indices and let R\(t), Ry(t) be the
right essential polynomials of a scalar sequence a ag, .., a,. Then the
polynomial

—mr e

G(t,5) = :Tl_ogat(o, m)g’g(—n,O)s‘WH)31(8)32(5)—_;S1f1](t)32('9)

is the generating polynomial of a generalized (one-sided, two-sided) inverse

Uf‘ ,I‘(l'

This result was establish by a different method in [3]. For Hankel matrices
a similar formula was found in [17].

We note that Theorem 3 of [3] about a recovery of the initial sequence by
indices and essential polynomials can be generalized to the block case.

7.3

In conclusion we note that the results of this paper can be formulated in
the same form as the results of the theory of Toeplitz operators. This enables
us to state that the proposed technique of indices and essential polynomial is
an analog of the Wiener-Hopf factorization method.
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From Equations (5.2), (5.4) it is easily seen that an arbitrary rational

p X g matrix polynomial a(t) = L7__, a;t/ can be represented in the form

a(t) = r_(¢)D(T)r.(t). (7.4)

til

Here the matrix polynomials r ,(¢) in satisfy the following conditions:

(1) there exists a matrix polynomial r{~(¢) [#C D)) in £ [¢7'] such that
&, (1) = I, [r_@rCY() = Ip];

@ r D)D) =0,

B Z ()=t rOOD N [Z. () =t""' DM O)rTV(@)] is a
matrix polynomial in ¢ ™' [¢];

F_
@) det(r,(t) &, (1)) and det( r_((t)
It turns out that any r{ (¢), rC~(¢) are matrices of conforming essen-
tial polynomials of a(t). The representation (7.4) of a rational matrix polyno-
mial a(t) we shall call an essential factorization of a(t).
The following theorem shows that in the finite-dimensional case the
essential factorization plays a role of a Wiener-Hopf factorization.

) are constants.

THEOREM 7.1. Let

Ta = “ai—]‘”i=0 ..... n
j=0,..., m

be an arbitrary block Toeplitz matrix. T, is strictly generalized invertible if
and only if its symbol a(t) = L7 _, a;t/ has both positive and negative
essential indices. T, is left (right) invertible if and only if all essential indices
of a(t) are nonnegative (nonpositive). Thus, T, is invertible if and only if all
indices are equal to zero. Moreover,

Ptq
indTa = = Z I"'Ja
j=1
dimker T, = — ) B dimcoker T, = Y K- (7.5)
<0 >0

If
a(t) =r_(¢) D(t)r.(1)
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is a essential factorization of a(t), then the matrix of the operator

G = Pm+1 r([”Pm-%I_H—Dlen+lTr(:l)Pn+l|ImPn+l (76)

is a generalized (one-sided, two-sided) inverse of T,. |
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