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We use the A-sequence and Z-sequence of Riordan array to characterize the inverse relation associated with the Riordan array. We
apply this result to prove some combinatorial identities involving Catalan matrices and binomial coefficients. Some matrix identities
obtained by Shapiro and Radoux are all special cases of our identity. In addition, a unified form of Catalan matrices is introduced.

1. Introduction

The Catalan numbers C, have been widely encountered and
investigated [1, 2]. They can be defined through binomial
coeflicients

c, - <2”>, for > 0, )
n+1\#n

or by the generating function C(¢) = Y2 C,t" being

C@t)= 1-vi-4 V1_4t, 2)
2t
which satisfies the functional equation C(¥) = 1 + tC(1)2,
In [2], Stanley listed 66 enumerative problems which are
counted by the Catalan numbers. Many number triangles
related to the Catalan sequence have been introduced in
the literature. In [3-5], Shapiro et al. introduced a Catalan
triangle B with the entries given by

k+1/(2n+2
nk = T\ n-k

The following identity is obtained in [6] in connection with
the moment of the Catalan triangle:

>, where n > k > 0. (3)
n+1

1 0 000 - 1 1
21 000 - 2 4
5 4 100 - 3 4?
1414 6 10 4 =] 4 (4)
42 8 1 5 4%

48 27

Another proof of the above identity is given by Woan et al.
[7] while computing the areas of parallelo-polyominoes via
generating functions. In [8], a combinatorial interpretation
of the matrix identity (4) is also obtained.

In [9], Radoux introduced a triangle of numbers

. 2k+1 <2n
kT ntk+1\n—k

>, where n>k >0, (5)

and he presents the identity Y_,(2k + 1)¢,; = 2°" with n >
k > 0, which is equivalent to following matrix equation:

1 0 000 1 1
1 1 000 3 4
2 3 100 5 4?
5 9 510 7 =] 4 (6)
14 28 20 7 1 9 4%

Deng and Yan [10] proved this identity by using the Riordan
array method.

Aigner [11] introduced a number triangle with the entries
given by

_k+1

Ay = <2n B k>, where n>k > 0. 7

n+1\n-k
This array is also discussed in [12-14].
We use the A-sequence and Z-sequence of Riordan

array to characterize the inverse relation associated with the



Riordan array. We apply this result to prove some combi-
natorial identities involving Catalan matrices and binomial
coeflicients, which are generalizations of (4) and (6). In
addition, a unified form of Catalan matrices is introduced.

2. Riordan Arrays

In the recent literature, one may find that Riordan arrays have
attracted the attention of various authors from many points
of view, and many examples and applications can be found
(see, e.g., [13, 15-21]). An infinite lower triangular matrix
D = (d,})nis0 is called a Riordan array if its column k has
generating function g(t) f (t)k, where g(t) and f (¢) are formal
power series with g, = 1, f; = 0, and f; # 0. The Riordan
array is denoted by D = (g(t), f(¢)). Thus, the general term
of Riordan array D = (g(¢), f(¢)) is given by

dy =[] 9@ FO, ®)

where ["]h(t) denotes the coefficient of ¢ in power series
h(t). Suppose we multiply the array D = (g(t), f()) by
a column vector (by,b;,b,,...)" and get a column vector
(ag, ay, ay, . ... )T. Let b(t) be the ordinary generating function
for the sequence (by, by, by, ... )" Then it follows that the ordi-
nary generating function for the sequence (ag,ay,4d,,...)"
is g(t)b(f(t)). If we identify a sequence with its ordinary
generating function, the composition rule can be rewritten
as

(@), f@O)b®) =g®b(f®). 9)

This is called the fundamental theorem for Riordan arrays,
and this leads to the multiplication rule for the Riordan ar-
rays:

(g, f@) @), 1) = (g h(f©),1(f®)). (10)

The set of all Riordan arrays forms a group under ordinary
multiplication. The identityis (1,£). The inverse of (g(t), f(¢))
is

(g(t),f(t))1=< ! ),7@)), (1)

g(F@
where ?(t) is compositional inverse of f(t).

Lemma 1 (see [22, 23]). Let D = (d,,;) be an infinite lower
triangular matrix. Then D is a Riordan array if and only if
doo = 1 and there exist two sequences A = (a;)5o and
Z = (2;);50 With ay #+ 0 and z, # 0 such that
dn+1,k+1 = aodn,k + aldn,kJrl
taydypyto, nk=0,1,...,

n=201,....
(12)

Api10 = 2080+ 21dyy + 2ydyy + .00,

Such sequences are called the A-sequence and the Z-sequence
of the Riordan array D = (g(t), f(t)), respectively.
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Lemma 2 (see [22, 23]). Let D = (g(t), f(t)) be a Riordan
array, and let A(t) and Z(t) be the generating functions for the
corresponding A- and Z-sequences, respectively. Then we have

1
gt) = TS0 f@&=tA(f®). (13
Ifthe inverse of D = (g(t), f(t)) is D™= (d@®), h(t)). Then
_ b _1-d(¥)
At) = o Z(t) = AT (14)

Example 3. (a) It is well known that the Pascal matrix P =

(<}>)ij>0 can be expressed as the Riordan array (1/(1 -

t),t/(1 — t)), and the generating functions of its A- and
Z-sequences are A(t) = 1+ ¢, Z(t) = 1. More generally,
it is easy to show that the generalized Pascal array P[x] =
(x"7 ( ; ))i js0 AN be expressed as the Riordan matrix (1/(1 -

xt),t/(1 — xt)) and the generating functions of its A- and
Z-sequences are A(f) = 1 + xt, and Z(¢) = x.

(b) For nonnegative integer s, the Pascal functional
s-eliminated matrix P; was introduced in [24] by P, =
(x"*f(;:z))ipo. We have P, = (1/(1 — xt)**L,¢/(1 — xt)),
and the gen)erating functions of its A- and Z-sequences are
AW) = 1+xt, Z@) = (1+x8) 1 = 1)/ (¢(1 +x1)*). We also have
P = (1 = x0T /(1= x0) = (1/(1+x)™ ¢/(1+x1)).

Definition 4. Let (r,(x)),-, be a sequence of polynomials,
where r,(x) is of degree n and r,(x) = Y, rn)kxk. We
say that (r,(x)),.o is a polynomial sequence of Riordan
type if the coefficient matrix (r,;), 150 is an element of the
Riordan group; that is, there exists a Riordan array (g(t), f (£))
such that (r,.),150 (g(®), £(£)). In this case, we say
that (r,(x)),.o is the polynomial sequence associated to the
Riordan array (g(t), f(£)).

If (r,(x)),50 is the polynomial sequence associated to a
Riordan array (g(¢), f(t)), and let (£, x) = Y 22 r,(x)t" be its
generating function, then by (9), we have

1

(g, f) T T r(t, x). (15)
Thus, r(t, x) = g(£)/(1 —xf(¢)). The notion of the polynomial
sequence of Riordan type was introduced in [25], and it
has been studied by [26]. In this paper, by studying the
polynomial sequence of Riordan type related to some Catalan
type matrices, we obtain some interesting identities and
inverse relations.

Theorem 5. Let D = (g(t), f(t)) be a Riordan array, and let
A(t) and Z(t) be the generating functions of its A-sequence and
Z-sequence. If B(t) = (A(t) —tZ(1))/(A(t) — xt), then

1
Cl-xt

(g@®).f@®)B(® (16)

where x is any real number.
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Proof. Let B(t) = (A({) -
FO)B(t) = g)B(f(t)) =

fl ) (fe ) A(f(8) = xf (£)
tFOZ(f()) (f(t) - xf(1)) =

Corollary 6. Let D = (g(t), f(¢£)) be a Riordan array.
If A(t) and Z(t) are the generating functions of its A-
sequence and Z-sequence, respectively, and if (¢,(x)),50 is the

polynomial sequence associated to the Riordan array D! =

(1/g(F(8)), F (&), then

[(A(£) — xt); then (g(t),
— tZ(fONA(f(#) -
(17—t Z(fFOMf ) -

(1 - xt). O

LZ(t))
(1/(1
) =
1/

7 (t)

= no_ A (t) B
an()%(x)t ey (17)
Proof. By the theorem, we have
AW)-tzZ(¢) 1
(g@®).f®) AO xS 1a (18)
Hence,
a1 AW -tZ()
(9®), £) l-xt  A@)-xt ' 19)
The result then follows from identity (15). O

Corollary 7. Let D = (d,;) be a Riordan array. If A(t)
and Z(t) are the generating functions of its A-sequence and
Z-sequence, respectively, and if (@,(x)),so is the polynomial
sequence associated to the Riordan array D™", then

zdn,k()ok (X) = xn’
k=0

zan,k'xk =¢n (X) >

k=0

where En)k is the (n, k)-element of D" In matrix form, we have

dop 00 0 0 @ (x)
dipd, 0 0 0 @ (x)
dz,o d2,1 dz,z 0 0 - @, (x)
ds,o d3,1 ds,z d3,3 0 @3 (x)
dyo dyy dyy dys dyy - Py (x)
21

1

X

52

= x3

5

Example 8. The lower triangular matrix in (4) may be
represented as

1-2t-+v1- t 1-2t-+v1-4
(cwy?.tce?) = ( 3 m )

(22)

The generating functions of its A- and Z-sequence are A(t) =
1+2t+ 13, 2(t) = 2 + t. Because (A(t) — tZ(t))/(A(t) — 4t) =
1/(1-1)?% = Yooo(n+ 1)t", from Theorem 5, we have

1 1

(-0 1-4t @3)

(e’ tcw?)

This is exactly the matrix identity (4).

Example 9. The lower triangular matrix in (6) can be written
as

(Cw.icw?) = (1‘ VW 12 - VT )

The generating functions of its A- and Z-sequence are A(t) =
(1+ 0% 21 = 1+t Since (A(t) — tZE)/(At) — 4t) =
A+0/1-1)?%= Yooo(2n+ 1)t", from Theorem 5, we have

2 1+t _ 1
(c®.tce?) Tk T (25)

This is exactly the matrix identity (6).

3. Inverse Relations Determined by
Catalan Matrices

Let a, b be integer numbers, and let r be arbitrary parameter.
We define the generalized Catalan matrix Cla, b; r] to be the
Riordan array

Cla.b;r] = (Crt)* 1C(rt)") (26)

where C(t) is the generating function of Catalan sequence
defined in (2). From [27], we have C()* = 37,
(a/(2n + a)) (#)¢" for any integer number a. Hence
[ICEOCCE)D)F = [ FCE)™ = ((a + bk)/(2n -
2k + a + bk)) (2 Hrarbi) " ¥ Therefore, by (8), the generic
element of the generalized Catalan matrix Cla, b; r] is given
by

Cla,byr] . =

a+ bk <2n—2k+a+bk> ek
2n-2k+a+ bk n-k

(27)
Denote Cla, b] = Cla,b;1] = (C(t)“,tC(t)b). ForO0 <a,b <

2, the corresponding matrices C[a, b] are widely studied by
many authors [5, 12, 14, 15, 28, 29]. For example, C[1,0] =

(C(t) t) = ((1-+1-41)/2t,t),C[0,1] = (1,tC(¢)), C[2,0] =
(C()%, 1), and C[0,2] = (1,tC()%) = (1,C@) - 1). The matrix
C[1,1] = (C(#),tC(t)) is the Catalan triangle introduced by

Aigner [11] and studied in [6, 12, 13]. The matrix C[2,2] =
(C()?, tC(t)?) is the Catalan triangle defined by Shapiro [5];
see also (4). The matrix C[1,2] = (C(¢), tC(#)?) is the Catalan
matrix defined by Radoux [9]; see also (6).



Theorem 10. Let {E,(x, )} be the polynomial sequence asso-
ciated to the Riordan array C[1, L] = (C@r), tCrt)) !
Then, the identities

ZE <2:—_kk> r”’ka (x,7) = x",

k:0n+1

> (',2 i ,1) e =By ),

k=0

(28)

hold for every n € N.
nd

Proof. From generic term given in (27) witha = 1 a

b = 1, we have the generic term of Catalan matrix C[ 1, I;r] =
(C(rt),tC(rt)) which is C[1,1;r],, = ((1 + k)/(2n -
2k + 1+ k) (221K ) K and by simplifying we obtain
Cl1, 1] = (k+ 1)/ (n+ 1))(2,;4;,5)r”*".Using(11) and (14),
we get C[1, Lr]™t = (1= rt,¢(1 - rt)), and the generating
functions of its A- and Z-sequences are A(f) = 1/(1 —ri)
and Z(t) = r/(1 — rt). By Corollary 6, > °  F, o Fn (x, )" =
(A@®) =t ZE)](A®) - xt) = (1=r)/(1—xt + xrt?). Therefore,
Fy(x,r) = 1, F(x,r) = x —r,and F,(x,7) = xF,_,(x,r) -
xtE, ,(x,r), forn > 2. Solving this recurrence relation, we

have F,(x,r) = Y5 o (X1} x*(=r)"*. From Corollary 7, we
get the results. O

For the case r = 1, x = 4, we have > 77 F,(4, Dt" = (1 -
D/ (1-4t+4%) = (1-1)/(1-2t)* = Yoon 2" Y(n+2)¢". Thus,
F,(4,1) = 2" '(n + 2). By Theorem 10, we obtain

i <f:11> )™ =2t ),

k=0

ik+1<2nn—k>2k,1 k+2) =

k:0n+1

The last identity is equivalent to the following matrix identity:

1 00 000 - 1 1
1 1.0 000 - 3 4
221 000 - 8 4?
553 100 - 20 |_| 4
1414 9 4 10 - 48 41
42 42 28 14 5 1 112 45

(30)

Theorem 11. Let {u,(x,r)} be the polynomial sequence asso-
ciated to the Riordan array C[1,2; 1t = (Cat), tCrn)?) !
Then, for any nonnegative integer n, one has

22k +1/2n+1\ .k n
E 07 uy (x,1)=x",
snt+1\n-

5 (Z . ’,ﬁ) e = ().

k=0
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Proof. From generic term given in (27) with ¢ = 1 and
b = 2, we have the generic term of Catalan matrix C[1, 2;r]
= (C(rt), tC(rt)*) which is ClL, 2], = (Qk+ 1)/2n +
1)) (21)r"*. Using (1), we obtain C[1,2;7] " = (1/(1 +
1), t/(1 + r1)?). Hence, the generic term of Cl1,2;7]7F is
A/ + )L+ D = [/ + )P
(=) (k). By Corollary 7, we obtain the desired results.
O

Since C[1,2; 7] = (1/(1+7t), t/(1+7t)?), from Lemma 2,
the generating functions of A- and Z-sequences of C[1,2;r]
are A(t) = (1+rt)? and Z(t) = r+r*t. Hence, Yo Unlx, )" =
(A —tZ(O)/(AQ) — xt) = (1 +18) /(1 = (x = 21)t + %), For
thecaser = land x = 4 we have Y u, (4, D" = (1+1)/(1-

20+£2) = (1+8)/(1-8)* = Y5 2n+ 1)t and u,,(4, 1) = 2n+1.
By Theorem 11, we have
u nk(n+k\ «
(-1 <n_ k>4 =2n+1,
k=0
(32)
22k+ 1 <2n+k1> Qk+1) = 4"
snt+1\n-
The last identity is equivalent to identity (6).
For the caser = —1 and x = 1, we have ZZZO u,(L-1" =

(1-6)/(1=-3t+£2) = Y7 By t™ and u, (1, 1) = F,,,, |, where
{F,},50 is Fibonacci sequence with generating Y0, F,t" =
t/(1 -t —12). By Theorem 11, we have

< wk2k+1 (2n+1 B
];)(—1) 2n+1<n—k>F2k“ =1

- (n+k
z <n—k> 4k = Fyup1-

k=0

Theorem 12. Let {
ciated to the Riordan array C[2,2; 1]
Then, one has

Sk+12n+2\ .
z— P L v (6, 7) = X",
cntl\n-

v,(x,7)} be the polynomial sequence asso-
= (o) )

) (34)
g(”;’_‘z 1>x"<—r>”*" = v, (6,1),
Joreveryn € N.
Proof. From generic term given in (27) with a = 2 and

b = 2, we have the generic term of Catalan matrix
C[2,2;7] = (C(rt)*, tC(rt)*) which is C[2, 2574 = ((k + 1)/
(n + 1))(2,;“f,{2)r”7k. Using (11), we obtain C[2,2;r]"
= 1/ + r%t/(1 + r)*). Hence, the generic term
of C[2,2;¢7] is ["](1/(1 + /(1 +11) )k =
[ K11/ (1 + 7)™ 2 = () (mkL). By Corollary 7,
we obtain the desired results. O
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The generating functions of A- and Z-sequences of
Cl2,2;r] are A(t) = 1 + 2rt + 22 and Z(t) = 2r + r*t. Thus

Yoo Valx, 1" = (A@) -t Z(1) [(A(t)—xt) = 1/(1—(x—2r)t+
%),

For the case r = 1 and x = 2y + 2, we have ) ° v, (2y +
2,0 = 1/(1 -2yt + £2) = Y2 U, (y)t", where U, (y) are

Chebyshev polynomials of the second kind (see [1]). Hence,
by Theorem 13, we have

Substituting y = 1 in the last identity, we get (4) again.

Theorem 13. Let {w,(x,r)} be the polynomial sequence asso-
ciated to the Riordan array C[2, L] = (Crt)* tCrt)) !

Then, one has identities

”k+2<2n—k+1> nk n
E— " wy (x,r) = X7,
k:0n+2 n-k

(36)
z <f1 :L i) (=) = w, (x,7).

k=0

= ((1-r)4t - r?). Hence the generic term ofC[Z 27t
is (€101 = r)%(t — 2 = [ (1= rt)2 = (R (R

From generic term given in (27) with a = 2 and b =
we have the generic term of Catalan matrix C[2, 1;7]
(C(rt)*, tC(rt)) which is C[2, Lrle = (2 + K/Q2n -
2k + 2 + k) (2 242K ) K and by simplifying we obtain
ClL, L] = ((k+2)/(n+2)) (2 K1) "k From Corollary 7,
we obtain the desired results. O

Proof. Using (11),we obtain C[2, 1;7] " = (C(rt)*, tC(rt)) "}
+2

0)-
1,

The generating functions for the A- and Z-sequences of
Cl2, 1;r] are A(t) = 1/(1 — 1), Z(t) = Qr —+*)/(1 = rt), and
30w, (x, )" = (AW)—tZ(E)/(A(t)-xt) = (1-rt)*/(1-xt+
xrt?). For the case r = 1 and x = 4, we have Yo w,(4, D" =
(1= /(1-4t+4%) = (1-£)*/(1-2)* = 1+ 30 (n+3)2" 2"
By Theorem 13, we have

n—k k+2 k n—2
;)(—1) <n—k>4 =m+3)2"% n>1, (37)
2 <2n:11>+zk+2<2n fl+1>(k 3) 24
n+2 n k:11’1+ n (38)
=4" n=0

5

The matrix form of the last identity is

1 0 0 00 - 1 1

21 0 00 - 2 4

53 100 - 5 4

14 9 410 - 12 =] 4 (39)

42 28 14 51 - 28 44
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