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In this paper, we present a method for obtaining a wide class of combinatorial
identities. We give several examples; some of them have already been considered
previously, and others are new. 0 2002 Elsevier Science (USA)

1. INTRODUCTION

In 1981, Rockett [R, Theorem 1] (see also [P1]) proved the following. For
any nonnegative integer n,
"on\Tt on 17 ok
>(3) =S )
im0 \K ok
In 1999, Trif [T] proved the above result using the Beta function. The
present paper can be regarded as a far-reaching generalization of the ideas

presented in [T]. Our main result, in its simplest form, can be stated as
follows.

THEOREM 1.1. Let r,n > k be any nonnegative integer numbers, and let
f(n, k) be given by

fn k= S [ gy ar

where p(t) and q(t) are two functions defined on [uy, u,]. Let {a,},-, and
{b,} 0 be any two sequences, and let A(x), B(x) be the corresponding ordi-
nary generating functions. Then

> [ i f(n, k)akbn_k}" = ddxr, [x’ fuz A(xp(t))B(xq(t))dt].

n>0 | k=0 t
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As an easy consequence of Theorem 1.1, we get a family of identities,
including the one presented above.

ExampLE 1.2 (see [JS]). Let a, = a" and b, = b" for all n > 0, and
let a + b # 0. So the corresponding generating functions are A(x) = (1 —
ax)~!and B(x) = (1 — bx)™!

It is easy to see that

(j)l = (s+1) /0 (=, @)

for all nonnegative real numbers s and r such that s > r.
By Theorem 1.1 and (2),
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d 1 1
kypn—k “
,gx Za ’ (k) dx<x o (1—axt)(1— bx + bxt) dt)

_d (—In(1—ax)—In(1 - Dx)
" dx a+b—abx ’

and after simple transformations, we get

k
- ni1 @i+ )

" n
Zakbn_k< ) — — Z
k=0 k (a+b)(§ + %) = k

for any nonnegative integer n. In particular, for a = b = 1, we get (1).

ExampLE 1.3. Let us define a, = n, b,, = 1 for n > 0. By Theorem 1.1
and (2), it is easy to see that

no(n\7'| ., —2xIn(1-x) x(3x — 4)
Z[Zk@ }“ 2-x" @-x(1-xF

n>0 | k=0

Hence, for any nonnegative integer n,

n -1 k—1
k(" :l[ 12" —1 —k)n—k-1)2 }
;2) <k> 2" (n+1)( HZ k+1

In the rest of the paper, we prove Theorem 1.1 and generalize it to
functions represented by integrals over a real d-dimensional domain. We
present several examples; some of them have been considered previously,
and others are new. For combinatorial identities yields from integral rep-
resentation in the complex domain, see [E].
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2. ONE-DIMENSIONAL CASE

First of all, let us prove Theorem 1.1. Let f(n, k) be as in the statement
of the theorem. Then

(n+r)

Zf(n ©a,b,s = "I S 4 gt b, g

U k=0
which means that
b (n+ r) x" .
ZX Z f(l’l, k)anbnfk = Z |: / Z agp (t)bn kqd k(t)
n>0 k=0 n=0 " k=0
Let A(x) = Y,50a,x", B(x) = }_,~ b,x"; hence

r

5 3 flnKyayd, o = [ [

n>0 k=0 ”1

A(xp(t))B(xq(t))dr},

which means that Theorem 1.1 holds. 1

Now, we present other applications of Theorem 1.1.

ExampLE 2.1. Immediately, by (2) and Theorem 1.1, we get, for any
nonnegative integer numbers ¢ and d,

-1
e (en\ _d ! x-dt
yg)x kgb (dk> ~dx o (1 —=(1=1)x)(1 —t4(1 - t)c—dXC)'

For ¢ = d =2, it is easy to get, for any nonnegative integer n,

i 2n\"' nQ@n41)° 2k
o\2k) 22 k4

THEOREM 2.2. Let {a,},-¢ and {b,},=, be two sequences, let A(x) and
B(x) be the corresponding ordinary generating functions, and let w be the
differential operator of the first order defined by u(f) = d—‘i(x - f). Then, for
any positive integer m,

g@ [ kz_o (Z) makbn_k:|xn

1,1 1
=u" fofofo A(xt;ty-1,))B(1=1))(1=1ty)---(1—t,,)x)dt,dt - dt,,

m times
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Proof.  Using (2), we get

<Z)_m =(n+ 1)"‘[/01 S dt}m,

which means that

(3) =0 [ [ ) (=)= () iy
——

So, similarly to the proof of Theorem 1.1, this theorem holds. 1
Now let us find another representation for (})™"
PROPOSITION 2.3.  For any nonnegative integers n, m,
n\ T n k (_1)1' k "
> (1) =osry| xSl ()]
im0 \k o | on—k+1+i\i

Proof. By (2), we get, for all positive integer m,

(Z)_m =(n+ 1)’"(/01 *(1 =)k dt)m,

which means that

(Z>_ (n+1)'”[/lg( 1)( . )tkﬂdt}m,

hence the proposition holds. 1§
The above proposition and (1) yield the following.

COROLLARY 2.4. For any nonnegative integer n,

i(Z)_l=(n+1>i :

o (n+1—k)2*

:(n—i—l)ii(_—l)](k)

isojo0 Mk H1+ N\

COROLLARY 2.5. For any nonnegative integer n,

2 (1) o g [0 ()]

n k (_1)]‘ k
z("+1)22n—k+ Zn+2+i(i>'

k=0 j=0
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Proof. By Proposition 2.3, the first equality holds. Now let us prove the
second equality. By Theorem 2.2, we get

n

n -2 1.1 1 |
Zx Z (Z) :M2|:/O -/0 (1 —tux)(1 — (1 = 1)1 — u)x) dudt}

n>0 k=0

2ot (o) =l wriah ]

n>0 k=0

therefore,

Hence, since In(1 —tx) = 3_,.;(~t"x")/n and 14(+¢)% = Y sot"(1 -
t)"x", the second equality holds. 1

3. GENERALIZATION: d-DIMENSIONAL CASE

The following result, which is a generalization of Theorem 1.1, gives us
a general method for obtaining combinatorial identities.

THEOREM 3.1. Let X be a multiset of variables x j» Where j =1,2,...,
d+1,and let X' = {x;,...,x;} be the underlying set. Let g(t) and f;(t),
J=1,2,...,d, be any d + 1 functions such that ¢(x;,...,x;) = g(xz41)

;1=1 [i(x;) is a function defined on an Il-dimensional domain D. Let r be a

nonnegative integer number, and let f(k, k,, ..., k,) be given by
ey + g 1)
Pl feas oo k) = e /D¢>(xil, X)) dxg e dx

Then for any sequences {aﬁ,j)}nzo, ji=12,...,4d,

d o
)DEEDD f(kl,kz,“.,kd)xnrlag)
j=1

n>0 ky+-+ky=n

r

d d
= e s 1407 5, ax]

where Aj(x) is the ordinary generating function of the sequence {a;j )},,20.

Another way to generalize Theorem 1.1 is the following. Let V' be the
hyperplane defined by ZL(%)P" =1,where x; >0foralli=1,2,...,d.
If p; > 0 for all i, then the Dirichlet’s integral is defined by

a® .ot T(3)--T(5)

pro-pa T(L+ 3+ 4 52

d
a;—1
/Vl‘[xjf dx,---dx, = T 3)
j=1
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So for p; =1, a; =1, and Zle @; = n, we obtain

n M (n+d-1)" @ ay "
= X; =X dx d.x . 4
(al,.‘.,ad> n!™ (»/;c1+---+xd=1 ! d = d) “

Hence, Theorem 3.1, Theorem 1.1, and (3) yield the following.

THEOREM 3.2. Let {aﬁ,j)}nzo be any sequence for all j =1,2,...,d, and
let v be the differential operator of the (d — 1)th order defined by v,(f) =
(d¥1/dx?1) (x4 ). Then

n -m d )
x" ( ) ay
Z Z al, ...,ad ]Zl_ll U

n>0 ay+tay=n

d d,m
_m
=V f/ [TAjCex x5 x;,,) T[] dxj|,
14 Vo1 i1 i—
—— = i=1, j=1
m times

where V' is the hyperplane defined by xy + x, +---+ x4 = 1, and Ay(x) is
the ordinary generating function of sequence {aﬁ,’ )}n20> j=12,...,d.

EXAMPLE 3.3 (see Carlson [C, Chapter 8]). Let ay) = (*") for n > 0,
j=1,2,...,d,and m = 1. By Theorem 3.2 and (4), it is easy to see that

-1 d
n 20
Z n 2 : | | J
n>0  aj+-+ay=n 1o %4 j=1 J

di-t 1|: d 1 d :|
= —x [1T—=1I14x;|
dxd 1 //;1+---+Xd:1 j=1 \/1 — 4xxj j=1 !

As a numerical example, for d = 2, equating the coefficients at x”, we get
n -1 . . n .
() () -22()
j=0 J J n—j j=0 J
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