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Abstract

In this article we consider the infinite sums of reciprocal generalized Fibonacci
numbers and the infinite sums of reciprocal generalized Fibonacci sums. Applying the
floor function to the reciprocals of these sums, our results generalize some identities of
Holliday and Komatsu and extend some results of Liu and Zhao.

1 Introduction

Let a, b be two positive integers and c non-negative integer. Define the generalized Fibonacci
numbers Vn(c; a, b), briefly Vn, by the following relation

V0 = c, V1 = 1 and Vn+1 = aVn + bVn−1 (n ≥ 1).

Here note that Vn(0; 1, 1) = Fn are the Fibonacci numbers, Vn(2; 1, 1) = Ln are the Lucas
numbers and Vn(0; 2, 1) = Pn are the Pell numbers.

Ohtsuka and Nakamura [2] derived a formula for infinite sums of reciprocal Fibonacci
numbers, as follows,
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Fk

)
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





 =

{

Fn−2, if n is even and n ≥ 2;

Fn−2 − 1, if n is odd and n ≥ 1,
(1)
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where ⌊·⌋ is the floor function.
Wenpeng and Tingting [4] gave analogue of the identity (1) for the Pell numbers:
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∑
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Pk

)

−1






 =

{

Pn − Pn−1, if n is even and n ≥ 2;

Pn − Pn−1 − 1, if n is odd and n ≥ 1.
(2)

Holliday and Komatsu [1] generalized (1) and (2) to the generalized Fibonacci numbers
Vn(0; a, 1), briefly un, and Vn(c; 1, 1) for c ≥ 1, briefly Gn. They showed that
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{

un − un−1, if n is even and n ≥ 2;

un − un−1 − 1, if n is odd and n ≥ 1,
(3)

and

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∑

k=n
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Gk
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−1






 =

{

Gn−2, if n is odd and n ≥ n1;

Gn−2 − 1, if n is even and n ≥ n2,

where n1 and n2 are determined depending only on the value of c. For example, if Gn = Ln

or c = 2, then n1 = 2 and n2 = 3.
By the same proof as the one for (3), it is easy to verify that the identity (3) still holds

for Vn(0; a, b) in place of Vn(0; a, 1), provided that 1 ≤ b ≤ a.
In this paper, we first give the analogue of the identity (3) for the alternating sums of

reciprocals of Vn(0; a, b) and prove the following result in the next section.

Theorem 1. Let Un := Vn(0; a, b) with 1 ≤ b ≤ a. Then
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





 = (−1)n (Un + Un−1)− 1 (n ≥ 1).

We have a following corollary.

Corollary 2. For a positive integer n, we have
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(2)
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In 2012, Liu and Zhao [3] showed the formulas for the infinite sums of reciprocal hyper-
fibonacci numbers and hyperlucas numbers as:
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 = Fn − 1 (n ≥ 3), (4)









(

∞
∑

k=n

1
∑

k

i=0
Li

)

−1






 = Ln − 1 (n ≥ 4). (5)

Especially, they also gave a following general result for un = Vn(0; a, 1) as:

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−1






 = un − 1 (n ≥ 3).

Next, we will extend the above results on the Fibonacci and Lucas numbers and Vn(0; a, 1)
to the generalized Fibonacci numbers Vn(c; 1, 1) and Vn(0; a, b) and prove the following results
in the next section.

Theorem 3. Let Gn = Vn(c; 1, 1) for c ≥ 1. We have
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
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∑
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)

−1






 = Gn − 1 (n ≥ n0),

where n0 is determined depending only on the value of c.

For example, we can determine n0 for a fixed c as follows:

c 1 2 3-5 6-13 14-34 35-89 90-233 234-610 611-1597 1598-4181
n0 2 4 6 8 10 12 14 16 18 20

Put c = 1, 2 in Theorem 3, we can, respectively, deduce the identities (4) and (5).

Theorem 4. Let a ≥ b ≥ 1 and Un = Vn(0; a, b). We have

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 = Un − 1 (n ≥ Na),

where Na = 3 for a = 1 and Na = 2 for a ≥ 2.

We have the following corollary.

Corollary 5. We have
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

 = Pn − 1 (n ≥ 2).
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2 Proofs of Theorems

We begin with some identities of the generalized Fibonacci numbers Vn(c; a, b) whose induc-
tion proofs are omitted.

Lemma 6. Let a, b be positive integers and c non-negative integer. Then for n ≥ 1 we have

(1) Vn+1Vn−1 − V 2
n
= (−1)nbn−1(1− ac− bc2).

(2)
n
∑

i=0

Vi =
1

a+ b− 1
(Vn+1 + bVn + ac− c− 1).

Proof of Theorem 1 : By Lemma 6, we have

Un+1Un−1 − U2

n
= (−1)nbn−1

and
n
∑

i=0

Ui =
1

a+ b− 1
(Un+1 + bUn − 1) .

Since a ≥ b ≥ 1, we have Un+1 − Un−1 > an−1 ≥ bn−1, so

(−1)n

Un + Un−1 − (−1)n
−

(−1)n+1

Un+1 + Un − (−1)n+1
−

(−1)n

Un

=
(−1)n+1Un−1 + 1

Un (Un + Un−1 − (−1)n)
−

(−1)n+1

Un+1 + Un − (−1)n+1

=
(−1)n+1Un−1Un+1 + (−1)nU2

n
+ Un+1 − Un−1 + (−1)n

Un (Un + Un−1 − (−1)n) (Un+1 + Un − (−1)n+1)

=
(−1)n−1bn−1 + Un+1 − Un−1 + (−1)n

Un (Un + Un−1 − (−1)n) (Un+1 + Un − (−1)n+1)

> 0.

By applying the above inequality repeatedly, we obtain

1

(−1)n(Un + Un−1)− 1
>

(−1)n

Un

+
1

(−1)n+1(Un+1 + Un)− 1

>
(−1)n

Un

+
(−1)n+1

Un+1

+
1

(−1)n+2(Un+2 + Un+1)− 1
...

>
(−1)n

Un

+
(−1)n+1

Un+1

+
(−1)n+2

Un+2

+ · · · .
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Therefore,
∞
∑

k=n

(−1)k

Uk

<
1

(−1)n(Un + Un−1)− 1
. (6)

Similarly, we have

(−1)n

Un

−
(−1)n

Un + Un−1

+
(−1)n+1

Un+1 + Un

= (−1)n
(

Un−1

Un(Un + Un−1)
+

1

Un+1 + Un

)

= (−1)n
(

Un−1Un+1 − U2
n

Un(Un + Un−1)(Un+1 + Un)

)

=
bn−1

Un(Un + Un−1)(Un+1 + Un)

> 0,

so
(−1)n

Un + Un−1

<
(−1)n

Un

+
(−1)n+1

Un+1 + Un

.

Repeating the above inequality, we obtain

∞
∑

k=n

(−1)k

Uk

>
(−1)n

Un + Un−1

. (7)

Combining the (6) and (7), we get

1

(−1)n(Un + Un−1)
<

∞
∑

k=n

(−1)k

Uk

<
1

(−1)n(Un + Un−1)− 1
,

it is equivalent to








(

∞
∑

k=n

(−1)k

Uk

)

−1






 = (−1)n(Un + Un−1)− 1.

Proof of Theorem 3 : By Lemma 6, we have

Gn+1Gn−1 −G2

n
= (−1)n(1− c− c2)

and
n
∑

i=0

Gn = Gn+2 − 1.
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Suppose c ≥ 1, we have

1

Gn − 1
−

1

Gn+1 − 1
−

1
∑

n

i=0
Gi

=
1

Gn − 1
−

1

Gn+1 − 1
−

1

Gn+2 − 1

=
Gn+1

(Gn − 1)(Gn+2 − 1)
−

1

Gn+1 − 1

=
2Gn − 1 + (−1)n+1(c2 + c− 1)

(Gn − 1)(Gn+1 − 1)(Gn+2 − 1)
.

Since Gn is monotone increasing with n, we can take n so large that 2Gn ≥ (−1)n(c2 + c)
for a fixed c. Hence, the numerator of the right-hand side of the above identity is positive if
n ≥ N1 for some positive integer N1, so we get

1

Gn − 1
≥

1
∑

n

i=0
Gi

+
1

Gn+1 − 1

≥
1

∑

n

i=0
Gi

+
1

∑

n+1

i=0
Gi

+
1

Gn+2 − 1

≥
1

∑

n

i=0
Gi

+
1

∑

n+1

i=0
Gi

+
1

∑

n+2

i=0
Gi

+ · · · .

Thus,
∞
∑

k=n

1
∑

k

i=0
Gi

≤
1

Gn − 1
(n ≥ N1). (8)

On the other hand, we have

1
∑

n

i=0
Gi

−
1

Gn

+
1

Gn+1

=
1

Gn+2 − 1
−

1

Gn

+
1

Gn+1

=
1−Gn+1

Gn(Gn+2 − 1)
+

1

Gn+1

=
Gn−1 + (−1)n(c2 + c− 1)

GnGn+1(Gn+2 − 1)
.

Similarly, we can take n so large that Gn−1 + (−1)n(c2 + c− 1) > 0 for a fixed c. Hence, the
numerator of the right-hand side of the above identity is positive if n ≥ N2 for some positive
integer N2, so we get

1

Gn

<
1

∑

n

i=0
Gi

+
1

Gn+1

<
1

∑

n

i=0
Gi

+
1

∑

n+1

i=0
Gi

+
1

Gn+2

<
1

∑

n

i=0
Gi

+
1

∑

n+1

i=0
Gi

+
1

∑

n+2

i=0
Gi

+ · · · .
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Thus,
∞
∑

k=n

1
∑

k

i=0
Gi

>
1

Gn

(n ≥ N2). (9)

Combining the two inequalities (8) and (9) we obtain

1

Gn

<

∞
∑

k=n

1
∑

k

i=0
Gi

≤
1

Gn − 1
,

where n ≥ n0 = max{N1, N2}, which completes the proof.

Proof of Theorem 4 : The case a = 1 has already been proved, it suffices to show the
case a ≥ 2. Defining Sn =

∑

n

i=0
Ui. We have

1

Sn

−
1

Un

+
1

Un+1

=
1

Un+1

−
Sn−1

UnSn

=
UnSn − Un+1Sn−1

UnUn+1Sn

=
Un+1 − Un + (−1)n+1

aUnUn+1Sn

> 0,

and for n ≥ 2

1

Un − 1
−

1

Un+1 − 1
−

1

Sn

=
Sn−1 + 1

(Un − 1)Sn

−
1

Un+1 − 1

=
Un+1Sn−1 − UnSn + aSn

(Un − 1)(Un+1 − 1)Sn

=
2Un + (−1)n − 1

a(Un − 1)(Un+1 − 1)Sn

> 0.

Then, we obtain
1

Un

<

∞
∑

k=n

1

Sk

≤
1

Un − 1
(n ≥ 2),

which completes the proof.
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