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Abstract

We discuss the partial infinite sum
∑∞

k=n u
−s
k for some positive integer n, where uk

satisfies a recurrence relation of order s, un = aun−1 + un−2 + · · ·+ un−s (n ≥ s), with
initial values u0 ≥ 0, uk ∈ N (0 ≤ k ≤ s− 1), where a and s(≥ 2) are positive integers.
If a = 1, s = 2, and u0 = 0, u1 = 1, then uk = Fk is the k-th Fibonacci number. Our
results include some extensions of Ohtsuka and Nakamura. We also consider continued
fraction expansions that include such infinite sums.
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1 Introduction

The so-called Fibonacci zeta function is defined by

ζF (s) =
∞
∑

n=1

1

F s
n

,

where Fn is the n-th Fibonacci number satisfying the recurrence formula

Fn = Fn−1 + Fn−2 (n ≥ 2), F0 = 0, F1 = 1 .

Ohtsuka and Nakamura [8] studied the partial infinite sums of reciprocal Fibonacci num-
bers

∑∞

k≥n 1/F s
k . They gave an explicit formula for the integer part of (

∑∞

k≥n F−1

k )−1 and

(
∑∞

k≥n F−2

k )−1. Holliday and Komatsu [2] generalized these results to the cases of Gn and
Hn, satisfying Gn = aGn−1 +Gn−2 (n ≥ 2) with G0 = 0 and G1 = 1, and Hn = Hn−1 +Hn−2

(n ≥ 2) with H0 = c and H1 = 1, where a ≥ 1 and c ≥ 0 are integers. In this paper we
shall not consider the integer part, but the nearest integer function of (

∑∞

k≥n u−1

k )−1, where
{uk}k≥0 is a sequence of non-negative integers satisfying a linear recurrence formula of the
type

un = aun−1 + un−2 + · · · + un−s ,

where a and s (≥ 2) are positive integers. Here, ‖ · ‖ denotes the nearest integer3, namely,
‖x‖ = ⌊x + 1/2⌋. Our main result is the following:

Theorem 1. Let {un}n≥0 be an integer sequence satisfying the recurrence formula

un = aun−1 + un−2 + · · · + un−s (n ≥ s) (1)

with initial conditions
u0 ≥ 0, uk ∈ N (0 ≤ k ≤ s − 1) , (2)

where a and s (≥ 2) are positive integers. Then there is a positive integer n0 such that
∥

∥

∥

∥

∥

∥

(

∞
∑

k=n

1

uk

)−1
∥

∥

∥

∥

∥

∥

= un − un−1 (n ≥ n0) . (3)

If a = 1, u0 = 0, u1 = u2 = 1, u3 = 2, · · · , us−1 = 2s−3, then the un’s are generalized
Fibonacci numbers (sometimes called “Fibonacci s-step numbers” [1]). If s = 2, then uk = Fk

are Fibonacci numbers, while if s = 3, then uk = Tk are Tribonacci numbers.
We need the following two lemmas in order to prove this theorem.

Lemma 2. Let a, s ∈ N, s ≥ 2 and let

f(x) = xs − axs−1 − xs−2 − · · · − x − 1.

Then

3In other contexts, this notation is sometimes used for the distance from the nearest integer.
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(a) f(x) has exactly one positive simple zero α ∈ R with a < α < a + 1;

(b) the remaining s − 1 zeros of f(x) lie within the unit circle in the complex plane.

Proof. The case where a = 1 can be found in [7], so we assume from now on that a ≥ 2.
By Descarte’s rule of signs, we see that f(x) has at most one positive real zero. Since

f(a) < 0 and f(a + 1) > 0, its unique positive real zero, say α, satisfies (2 ≤) a < α < a+ 1.
Since multiple roots are counted separately by Descarte’s rule again, part (a) is proved.
Observe from part (a) that

for real x > α, we have f(x) > 0, (4)

while for real 0 < x < α, we have f(x) < 0. (5)

Next, let
g(x) = (x − 1)f(x) = xs+1 − (a + 1)xs + (a − 1)xs−1 + 1.

Observe further that

for real x > α, we have g(x) > 0, (6)

while for real 1 < x < α, we have g(x) < 0. (7)

To prove part (b), we proceed by establishing several claims.

Claim 1. f(x) has no complex zero z1 with |z1| > α.

Proof of Claim 1. If 0 = f(z1) = zs
1 − azs−1

1 − zs−2

1 − · · · − z1 − 1, then

|z1|
s ≤ a |z1|

s−1 + |z1|
s−2 + · · · + |z1| + 1,

which implies that f (|z1|) ≤ 0, contradicting (4).

Claim 2. f(x) has no complex zero z2 with 1 < |z2| < α.

Proof of Claim 2. If f(z2) = 0, then 0 = g(z2) = zs+1

2 − (a + 1)zs
2 + (a − 1)zs−1

2 + 1 and so

(a + 1) |z2|
s ≤ |z2|

s+1 + (a − 1) |z2|
s−1 + 1,

i.e., g (|z2|) ≥ 0, contradicting (7).

Claim 3. f(x) has no complex zero z3 6= α, with either |z3| = α or |z3| = 1.

Proof of Claim 3. If f(z3) = 0, then

0 = g(z3) = zs+1

3 − (a + 1)zs
3 + (a − 1)zs−1

3 + 1 (8)

so that
(a + 1) |z3|

s ≤ |z3|
s+1 + (a − 1) |z3|

s−1 + 1. (9)
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If |z3| = α or |z3| = 1, then g (|z3|) = 0 and so (9) must be an equality. Then the two
conditions zs+1

3 and zs−1

3 ∈ R, or zs+1

3 = −(a − 1)zs−1

3 follow from two applications of the
fact that

|z1 + z2| = |z1| + |z2| ⇐⇒
z1

z2

∈ R≥0 (for z2 6= 0)

and from
(

z1 + z2 ∈ R ∧
z1

z2

∈ R
)

=⇒ (z1, z2 ∈ R ∨ z1 = −z2) .

• If zs+1

3 and zs−1

3 ∈ R, then (8) shows that zs
3 ∈ R, which in turn forces z3 ∈ R. Thus,

z3 = ± α or z3 = ± 1. The possibility z3 = α is ruled out by the hypothesis, and the
possibility z3 = 1 is ruled out by (5). To rule out the remaining two possibilities of negative
zeros, consider

g(−x) =

{

−xs+1 − (a + 1)xs − (a − 1)xs−1 + 1, if s is even;

xs+1 + (a + 1)xs + (a − 1)xs−1 + 1, if s is odd.
(10)

By Descarte’s rule of signs applied to g(−x), we deduce that g(x) and so also f(x), has at
most one real negative zero if s is even and has no real negative zeros if s is odd. When s
is even, since f(0) = −1, f(−1) = a > 0, should f(x) have a real negative zero, such zero
must lie in the interval (−1, 0) and so can neither be −α nor −1.

• If zs+1

3 = −(a − 1)zs−1

3 , then (8) gives zs
3 = 1

a+1
. Thus, either

2s ≤ as < |α|s = |z3|
s =

1

a + 1
≤

1

3
or 1 = |z3|

s =
1

a + 1
≤

1

3
.

Both possibilities are untenable and Claim 3 is proved.
Part (b) now follows from Claims 1–3.

We shall keep the notation of Lemma 2 throughout the rest of the paper.

Lemma 3. Let s ≥ 2 and let {un}n≥0 be an integer sequence satisfying the recurrence formula
(1) and the initial conditions (2). Then there are real numbers c > 0, d > 1, and α > a such
that

un = cαn + O(d−n) (n → ∞) . (11)

Proof. Let α1 = α, α2, . . . , αt with |αj| < 1 (2 ≤ t ≤ s) be the distinct roots of f(x), and
let rj for j = 2, 3, . . . , t denote the multiplicity of the root αj. Then the expansion formula
(11) follows from the shape of un, which is given by

un = cαn +
t
∑

j=2

Pj(n)αn
J ,

where
Pj(x) ∈ R[x], degPj = rJ − 1, 1 + r2 + r3 + · · · + rt = s .
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Proof of Theorem 1. Applying Lemma 3 and the expansion formula

1

1 ± ǫ
= 1 ∓ ǫ + O(ǫ2) = 1 + O(ǫ) (ǫ → 0) ,

we have

1

uk

=
1

cαk + O(d−k)
=

1

cαk(1 + O((αd)−k)))

=
1

cαk
(1 + O((αd)−k))) =

1

cαk
+ O((α2d)−k) ,

Since

∞
∑

k=n

1

uk

=
1

c

∞
∑

k=n

1

αk
+ O

(

∞
∑

k=n

(α2d)−k

)

=
α

c(α − 1)
α−n + O((α2d)−n) ,

we obtain

(

∞
∑

k=n

1

uk

)−1

=
α − 1

α
cαn + O(d−n)

= un − un−1 + O(d−n) .

Theorem 1 follows by choosing n ≥ n0 sufficient large so that the modulus of the last error
term becomes less than 1/2.

2 Related results

The following results are similarly obtained. Here, n1, n2, n3, n4 and n5 are positive integers
depending only on a.
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Theorem 4.
∥

∥

∥

∥

∥

∥

(

∞
∑

k=n

1

u2k

)−1
∥

∥

∥

∥

∥

∥

= u2n − u2n−2 (n ≥ n1) . (12)

∥

∥

∥

∥

∥

∥

(

∞
∑

k=n

1

u2k−1

)−1
∥

∥

∥

∥

∥

∥

= u2n−1 − u2n−3 (n ≥ n2) . (13)

∥

∥

∥

∥

∥

∥

(

∞
∑

k=n

(−1)k

uk

)−1
∥

∥

∥

∥

∥

∥

= (−1)n(un + un−1) (n ≥ n3) . (14)

∥

∥

∥

∥

∥

∥

(

∞
∑

k=n

(−1)k

u2k

)−1
∥

∥

∥

∥

∥

∥

= (−1)n(u2n + u2n−2) (n ≥ n4) . (15)

∥

∥

∥

∥

∥

∥

(

∞
∑

k=n

(−1)k

u2k−1

)−1
∥

∥

∥

∥

∥

∥

= (−1)n(u2n−1 + u2n−3) (n ≥ n5) . (16)

Proof. We shall prove only (14). The other identities are proved similarly. By (11) we get

∞
∑

k=n

(−1)k

uk

=
∞
∑

k=n

(−1)k

cαk + O(d−k)

=
∞
∑

k=n

(−1)k

cαk

(

1 + O((αd)−k)
)

=
α

c(−α)n(α + 1)
+ O

(

(−α2d)−n
)

.

By taking its reciprocal, we have

(

∞
∑

k=n

(−1)k

uk

)−1

=
c(−α)n(α + 1)

α

(

1 + O((αd)−n)
)

= (−1)n(cαn + cαn−1) + O((−d)−n)

= (−1)n(un + un−1) + O(d−n) .

The identity (14) follows by choosing n ≥ n3 sufficiently large so that the modulus of the
last error term becomes less than 1/2.

3 The sum of reciprocal Tribonacci numbers

The so-called Tribonacci numbers Tn ([6, Ch. 46], [9, sequence A000073], [3]) are defined by

Tn = Tn−1 + Tn−2 + Tn−3 (n ≥ 3), T0 = 0, T1 = T2 = 1 .
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By setting a = 1, s = 3 and uk = Tk (k ≥ 0) in Theorem 1 and Theorem 4, we get
some identities about the partial Tribonacci zeta functions. Numerical evidences imply that
identities hold for smaller positive integers n, as indicated in the identities. The detailed
explanations for small n can be seen in [5].

Corollary 5.

∥

∥

∥

∥

∥

∥

(

∞
∑

k=n

1

Tk

)−1
∥

∥

∥

∥

∥

∥

= Tn − Tn−1 (n ≥ 1) . (17)

∥

∥

∥

∥

∥

∥

(

∞
∑

k=n

1

T2k

)−1
∥

∥

∥

∥

∥

∥

= T2n − T2n−2 (n ≥ 1) . (18)

∥

∥

∥

∥

∥

∥

(

∞
∑

k=n

1

T2k−1

)−1
∥

∥

∥

∥

∥

∥

= T2n−1 − T2n−3 (n ≥ 2) . (19)

∥

∥

∥

∥

∥

∥

(

∞
∑

k=n

(−1)k

Tk

)−1
∥

∥

∥

∥

∥

∥

= (−1)n(Tn + Tn−1) (n ≥ 2) . (20)

∥

∥

∥

∥

∥

∥

(

∞
∑

k=n

(−1)k

T2k

)−1
∥

∥

∥

∥

∥

∥

= (−1)n(T2n + T2n−2) (n ≥ 1) . (21)

∥

∥

∥

∥

∥

∥

(

∞
∑

k=n

(−1)k

T2k−1

)−1
∥

∥

∥

∥

∥

∥

= (−1)n(T2n−1 + T2n−3) (n ≥ 2) . (22)

4 Continued fraction expansion of generalized m-step

zeta functions

The first author [4] studied several continued fraction expansions of some types of Fibonacci
zeta functions ζF (s) :=

∑∞

n=1
F−s

n and Lucas zeta functions in ζL(s) :=
∑∞

n=1
L−s

n , where Ln

is the n-th Lucas number defined by

Ln = Ln−1 + Ln−2 (n ≥ 2) L0 = 2, L1 = 1.

A continued fraction expansion of the generalized m-step zeta functions defined by ζu(m)(s) :=
∑∞

n=1
u−s

n , where
un = aun−1 + un−2 + · · · + un−m (n ≥ m)
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with initial positive integral values uk (0 ≤ k ≤ m − 1), is given by

ζu(m)(s) =
1

us
1 −

u2s
1

us
1 + us

2 −
u2s

2

us
2 + us

3 −
u2s

3

us
3 + us

4 − ... −
u2s

n−1

us
n−1 + us

n − · · ·

.

Define An (respectively, Bn) as the numerator (respectively, denominator) of the nth conver-
gent of the continued fraction expansion given for ζu(m)(s):

An

Bn

=
1

us
1 −

u2s
1

us
1 + us

2 −
u2s

2

us
2 + us

3 −
u2s

3

us
3 + us

4 − ... −
u2s

n−1

us
n−1 + us

n

.

Hence {Aν}ν≥0 and {Bν}ν≥0 satisfy the following recurrence formulas.

Aν = (us
ν−1 + us

ν)Aν−1 − u2s
ν−1Aν−2 (ν ≥ 2), A0 = 0, A1 = 1;

Bν = (us
ν−1 + us

ν)Bν−1 − u2s
ν−1Bν−2 (ν ≥ 2), B0 = 1, B1 = us

1

In fact, Aν and Bν can be expressed explicitly as follows.

Lemma 6. For n = 1, 2, . . .

An = (u1u2 · · ·un)s

n
∑

ν=1

1

us
ν

, Bn = (u1u2 · · ·un)s .

Proof. By induction we have Bn = (u1u2 · · ·un)s. Thus,

An = Bn

n
∑

ν=1

1

us
ν

= (u1u2 · · ·un)s

n
∑

ν=1

1

us
ν

.

Theorem 1 provides us with interesting information about the nearest integer of the
reciprocal of ζu(m)(s) − An/Bn.
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