Journal of Integer Sequences, Vol. 13 (2010),

On the Sum of Reciprocals of Numbers Satisfying a Recurrence Relation of Order s

Takao Komatsu ${ }^{1}$
Graduate School of Science and Technology
Hirosaki University
Hirosaki, 036-8561
Japan
komatsu@cc.hirosaki-u.ac.jp

Vichian Laohakosol ${ }^{2}$
Department of Mathematics
Kasetsart University
Bangkok 10900
Thailand
fscivil@ku.ac.th

Abstract

We discuss the partial infinite sum $\sum_{k=n}^{\infty} u_{k}^{-s}$ for some positive integer n, where u_{k} satisfies a recurrence relation of order $s, u_{n}=a u_{n-1}+u_{n-2}+\cdots+u_{n-s}(n \geq s)$, with initial values $u_{0} \geq 0, u_{k} \in \mathbb{N}(0 \leq k \leq s-1)$, where a and $s(\geq 2)$ are positive integers. If $a=1, s=2$, and $u_{0}=0, u_{1}=1$, then $u_{k}=F_{k}$ is the k-th Fibonacci number. Our results include some extensions of Ohtsuka and Nakamura. We also consider continued fraction expansions that include such infinite sums.

[^0]
1 Introduction

The so-called Fibonacci zeta function is defined by

$$
\zeta_{F}(s)=\sum_{n=1}^{\infty} \frac{1}{F_{n}^{s}}
$$

where F_{n} is the n-th Fibonacci number satisfying the recurrence formula

$$
F_{n}=F_{n-1}+F_{n-2} \quad(n \geq 2), \quad F_{0}=0, \quad F_{1}=1
$$

Ohtsuka and Nakamura [8] studied the partial infinite sums of reciprocal Fibonacci numbers $\sum_{k \geq n}^{\infty} 1 / F_{k}^{s}$. They gave an explicit formula for the integer part of $\left(\sum_{k \geq n}^{\infty} F_{k}^{-1}\right)^{-1}$ and $\left(\sum_{k \geq n}^{\infty} F_{k}^{-2}\right)^{-1}$. Holliday and Komatsu [2] generalized these results to the cases of G_{n} and H_{n}, satisfying $G_{n}=a G_{n-1}+G_{n-2}(n \geq 2)$ with $G_{0}=0$ and $G_{1}=1$, and $H_{n}=H_{n-1}+H_{n-2}$ ($n \geq 2$) with $H_{0}=c$ and $H_{1}=1$, where $a \geq 1$ and $c \geq 0$ are integers. In this paper we shall not consider the integer part, but the nearest integer function of $\left(\sum_{k \geq n}^{\infty} u_{k}^{-1}\right)^{-1}$, where $\left\{u_{k}\right\}_{k \geq 0}$ is a sequence of non-negative integers satisfying a linear recurrence formula of the type

$$
u_{n}=a u_{n-1}+u_{n-2}+\cdots+u_{n-s},
$$

where a and $s(\geq 2)$ are positive integers. Here, $\|\cdot\|$ denotes the nearest integer ${ }^{3}$, namely, $\|x\|=\lfloor x+1 / 2\rfloor$. Our main result is the following:

Theorem 1. Let $\left\{u_{n}\right\}_{n \geq 0}$ be an integer sequence satisfying the recurrence formula

$$
\begin{equation*}
u_{n}=a u_{n-1}+u_{n-2}+\cdots+u_{n-s} \quad(n \geq s) \tag{1}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
u_{0} \geq 0, \quad u_{k} \in \mathbb{N} \quad(0 \leq k \leq s-1) \tag{2}
\end{equation*}
$$

where a and $s(\geq 2)$ are positive integers. Then there is a positive integer n_{0} such that

$$
\begin{equation*}
\left\|\left(\sum_{k=n}^{\infty} \frac{1}{u_{k}}\right)^{-1}\right\|=u_{n}-u_{n-1} \quad\left(n \geq n_{0}\right) \tag{3}
\end{equation*}
$$

If $a=1, u_{0}=0, u_{1}=u_{2}=1, u_{3}=2, \cdots, u_{s-1}=2^{s-3}$, then the u_{n} 's are generalized Fibonacci numbers (sometimes called "Fibonacci s-step numbers" [1]). If $s=2$, then $u_{k}=F_{k}$ are Fibonacci numbers, while if $s=3$, then $u_{k}=T_{k}$ are Tribonacci numbers.

We need the following two lemmas in order to prove this theorem.
Lemma 2. Let $a, s \in \mathbb{N}, s \geq 2$ and let

$$
f(x)=x^{s}-a x^{s-1}-x^{s-2}-\cdots-x-1 .
$$

Then

[^1](a) $f(x)$ has exactly one positive simple zero $\alpha \in \mathbb{R}$ with $a<\alpha<a+1$;
(b) the remaining $s-1$ zeros of $f(x)$ lie within the unit circle in the complex plane.

Proof. The case where $a=1$ can be found in [7], so we assume from now on that $a \geq 2$.
By Descarte's rule of signs, we see that $f(x)$ has at most one positive real zero. Since $f(a)<0$ and $f(a+1)>0$, its unique positive real zero, say α, satisfies $(2 \leq) a<\alpha<a+1$. Since multiple roots are counted separately by Descarte's rule again, part (a) is proved. Observe from part (a) that

$$
\begin{align*}
\text { for real } & x>\alpha \text {, we have } f(x)>0 \tag{4}\\
\text { while for real } & 0<x<\alpha \text {, we have } f(x)<0 \tag{5}
\end{align*}
$$

Next, let

$$
g(x)=(x-1) f(x)=x^{s+1}-(a+1) x^{s}+(a-1) x^{s-1}+1 .
$$

Observe further that

$$
\begin{align*}
\text { for real } & x>\alpha \text {, we have } g(x)>0 \tag{6}\\
\text { while for real } & 1<x<\alpha \text {, we have } g(x)<0 \tag{7}
\end{align*}
$$

To prove part (b), we proceed by establishing several claims.
Claim 1. $f(x)$ has no complex zero z_{1} with $\left|z_{1}\right|>\alpha$.
Proof of Claim 1. If $0=f\left(z_{1}\right)=z_{1}^{s}-a z_{1}^{s-1}-z_{1}^{s-2}-\cdots-z_{1}-1$, then

$$
\left|z_{1}\right|^{s} \leq a\left|z_{1}\right|^{s-1}+\left|z_{1}\right|^{s-2}+\cdots+\left|z_{1}\right|+1
$$

which implies that $f\left(\left|z_{1}\right|\right) \leq 0$, contradicting (4).
Claim 2. $f(x)$ has no complex zero z_{2} with $1<\left|z_{2}\right|<\alpha$.
Proof of Claim 2. If $f\left(z_{2}\right)=0$, then $0=g\left(z_{2}\right)=z_{2}^{s+1}-(a+1) z_{2}^{s}+(a-1) z_{2}^{s-1}+1$ and so

$$
(a+1)\left|z_{2}\right|^{s} \leq\left|z_{2}\right|^{s+1}+(a-1)\left|z_{2}\right|^{s-1}+1,
$$

i.e., $g\left(\left|z_{2}\right|\right) \geq 0$, contradicting (7).

Claim 3. $f(x)$ has no complex zero $z_{3} \neq \alpha$, with either $\left|z_{3}\right|=\alpha$ or $\left|z_{3}\right|=1$.
Proof of Claim 3. If $f\left(z_{3}\right)=0$, then

$$
\begin{equation*}
0=g\left(z_{3}\right)=z_{3}^{s+1}-(a+1) z_{3}^{s}+(a-1) z_{3}^{s-1}+1 \tag{8}
\end{equation*}
$$

so that

$$
\begin{equation*}
(a+1)\left|z_{3}\right|^{s} \leq\left|z_{3}\right|^{s+1}+(a-1)\left|z_{3}\right|^{s-1}+1 \tag{9}
\end{equation*}
$$

If $\left|z_{3}\right|=\alpha$ or $\left|z_{3}\right|=1$, then $g\left(\left|z_{3}\right|\right)=0$ and so (9) must be an equality. Then the two conditions z_{3}^{s+1} and $z_{3}^{s-1} \in \mathbb{R}$, or $z_{3}^{s+1}=-(a-1) z_{3}^{s-1}$ follow from two applications of the fact that

$$
\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right| \quad \Longleftrightarrow \quad \frac{z_{1}}{z_{2}} \in \mathbb{R}_{\geq 0} \quad\left(\text { for } z_{2} \neq 0\right)
$$

and from

$$
\left(z_{1}+z_{2} \in \mathbb{R} \wedge \frac{z_{1}}{z_{2}} \in \mathbb{R}\right) \quad \Longrightarrow \quad\left(z_{1}, z_{2} \in \mathbb{R} \vee z_{1}=-z_{2}\right)
$$

- If z_{3}^{s+1} and $z_{3}^{s-1} \in \mathbb{R}$, then (8) shows that $z_{3}^{s} \in \mathbb{R}$, which in turn forces $z_{3} \in \mathbb{R}$. Thus, $z_{3}= \pm \alpha$ or $z_{3}= \pm 1$. The possibility $z_{3}=\alpha$ is ruled out by the hypothesis, and the possibility $z_{3}=1$ is ruled out by (5). To rule out the remaining two possibilities of negative zeros, consider

$$
g(-x)= \begin{cases}-x^{s+1}-(a+1) x^{s}-(a-1) x^{s-1}+1, & \text { if } s \text { is even } \tag{10}\\ x^{s+1}+(a+1) x^{s}+(a-1) x^{s-1}+1, & \text { if } s \text { is odd }\end{cases}
$$

By Descarte's rule of signs applied to $g(-x)$, we deduce that $g(x)$ and so also $f(x)$, has at most one real negative zero if s is even and has no real negative zeros if s is odd. When s is even, since $f(0)=-1, f(-1)=a>0$, should $f(x)$ have a real negative zero, such zero must lie in the interval $(-1,0)$ and so can neither be $-\alpha$ nor -1 .

- If $z_{3}^{s+1}=-(a-1) z_{3}^{s-1}$, then (8) gives $z_{3}^{s}=\frac{1}{a+1}$. Thus, either

$$
2^{s} \leq a^{s}<|\alpha|^{s}=\left|z_{3}\right|^{s}=\frac{1}{a+1} \leq \frac{1}{3} \quad \text { or } \quad 1=\left|z_{3}\right|^{s}=\frac{1}{a+1} \leq \frac{1}{3}
$$

Both possibilities are untenable and Claim 3 is proved.
Part (b) now follows from Claims 1-3.

We shall keep the notation of Lemma 2 throughout the rest of the paper.
Lemma 3. Let $s \geq 2$ and let $\left\{u_{n}\right\}_{n \geq 0}$ be an integer sequence satisfying the recurrence formula (1) and the initial conditions (2). Then there are real numbers $c>0, d>1$, and $\alpha>a$ such that

$$
\begin{equation*}
u_{n}=c \alpha^{n}+\mathcal{O}\left(d^{-n}\right) \quad(n \rightarrow \infty) \tag{11}
\end{equation*}
$$

Proof. Let $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{t}$ with $\left|\alpha_{j}\right|<1(2 \leq t \leq s)$ be the distinct roots of $f(x)$, and let r_{j} for $j=2,3, \ldots, t$ denote the multiplicity of the root α_{j}. Then the expansion formula (11) follows from the shape of u_{n}, which is given by

$$
u_{n}=c \alpha^{n}+\sum_{j=2}^{t} P_{j}(n) \alpha_{J}^{n}
$$

where

$$
P_{j}(x) \in \mathbb{R}[x], \quad \operatorname{deg} P_{j}=r_{J}-1, \quad 1+r_{2}+r_{3}+\cdots+r_{t}=s
$$

Proof of Theorem 1. Applying Lemma 3 and the expansion formula

$$
\frac{1}{1 \pm \epsilon}=1 \mp \epsilon+\mathcal{O}\left(\epsilon^{2}\right)=1+\mathcal{O}(\epsilon) \quad(\epsilon \rightarrow 0)
$$

we have

$$
\begin{aligned}
\frac{1}{u_{k}} & =\frac{1}{c \alpha^{k}+\mathcal{O}\left(d^{-k}\right)}=\frac{1}{\left.c \alpha^{k}\left(1+\mathcal{O}\left((\alpha d)^{-k}\right)\right)\right)} \\
& \left.=\frac{1}{c \alpha^{k}}\left(1+\mathcal{O}\left((\alpha d)^{-k}\right)\right)\right)=\frac{1}{c \alpha^{k}}+\mathcal{O}\left(\left(\alpha^{2} d\right)^{-k}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
\sum_{k=n}^{\infty} \frac{1}{u_{k}} & =\frac{1}{c} \sum_{k=n}^{\infty} \frac{1}{\alpha^{k}}+\mathcal{O}\left(\sum_{k=n}^{\infty}\left(\alpha^{2} d\right)^{-k}\right) \\
& =\frac{\alpha}{c(\alpha-1)} \alpha^{-n}+\mathcal{O}\left(\left(\alpha^{2} d\right)^{-n}\right)
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\left(\sum_{k=n}^{\infty} \frac{1}{u_{k}}\right)^{-1} & =\frac{\alpha-1}{\alpha} c \alpha^{n}+\mathcal{O}\left(d^{-n}\right) \\
& =u_{n}-u_{n-1}+\mathcal{O}\left(d^{-n}\right) .
\end{aligned}
$$

Theorem 1 follows by choosing $n \geq n_{0}$ sufficient large so that the modulus of the last error term becomes less than $1 / 2$.

2 Related results

The following results are similarly obtained. Here, $n_{1}, n_{2}, n_{3}, n_{4}$ and n_{5} are positive integers depending only on a.

Theorem 4.

$$
\begin{align*}
& \left\|\left(\sum_{k=n}^{\infty} \frac{1}{u_{2 k}}\right)^{-1}\right\|=u_{2 n}-u_{2 n-2} \quad\left(n \geq n_{1}\right) \tag{12}\\
& \left\|\left(\sum_{k=n}^{\infty} \frac{1}{u_{2 k-1}}\right)^{-1}\right\|=u_{2 n-1}-u_{2 n-3} \quad\left(n \geq n_{2}\right) \tag{13}\\
& \left\|\left(\sum_{k=n}^{\infty} \frac{(-1)^{k}}{u_{k}}\right)^{-1}\right\|=(-1)^{n}\left(u_{n}+u_{n-1}\right) \quad\left(n \geq n_{3}\right) \tag{14}\\
& \|\left(\left(\sum_{k=n}^{\infty} \frac{(-1)^{k}}{u_{2 k}}\right)^{-1} \|=(-1)^{n}\left(u_{2 n}+u_{2 n-2}\right) \quad\left(n \geq n_{4}\right)\right. \tag{15}\\
& \left\|\left(\sum_{k=n}^{\infty} \frac{(-1)^{k}}{u_{2 k-1}}\right)^{-1}\right\|=(-1)^{n}\left(u_{2 n-1}+u_{2 n-3}\right) \quad\left(n \geq n_{5}\right) \tag{16}
\end{align*}
$$

Proof. We shall prove only (14). The other identities are proved similarly. By (11) we get

$$
\begin{aligned}
\sum_{k=n}^{\infty} \frac{(-1)^{k}}{u_{k}} & =\sum_{k=n}^{\infty} \frac{(-1)^{k}}{c \alpha^{k}+\mathcal{O}\left(d^{-k}\right)} \\
& =\sum_{k=n}^{\infty} \frac{(-1)^{k}}{c \alpha^{k}}\left(1+\mathcal{O}\left((\alpha d)^{-k}\right)\right) \\
& =\frac{\alpha}{c(-\alpha)^{n}(\alpha+1)}+\mathcal{O}\left(\left(-\alpha^{2} d\right)^{-n}\right)
\end{aligned}
$$

By taking its reciprocal, we have

$$
\begin{aligned}
\left(\sum_{k=n}^{\infty} \frac{(-1)^{k}}{u_{k}}\right)^{-1} & =\frac{c(-\alpha)^{n}(\alpha+1)}{\alpha}\left(1+\mathcal{O}\left((\alpha d)^{-n}\right)\right) \\
& =(-1)^{n}\left(c \alpha^{n}+c \alpha^{n-1}\right)+\mathcal{O}\left((-d)^{-n}\right) \\
& =(-1)^{n}\left(u_{n}+u_{n-1}\right)+\mathcal{O}\left(d^{-n}\right)
\end{aligned}
$$

The identity (14) follows by choosing $n \geq n_{3}$ sufficiently large so that the modulus of the last error term becomes less than $1 / 2$.

3 The sum of reciprocal Tribonacci numbers

The so-called Tribonacci numbers T_{n} ([6, Ch. 46], [9, sequence A000073], [3]) are defined by

$$
T_{n}=T_{n-1}+T_{n-2}+T_{n-3} \quad(n \geq 3), \quad T_{0}=0, \quad T_{1}=T_{2}=1
$$

By setting $a=1, s=3$ and $u_{k}=T_{k}(k \geq 0)$ in Theorem 1 and Theorem 4, we get some identities about the partial Tribonacci zeta functions. Numerical evidences imply that identities hold for smaller positive integers n, as indicated in the identities. The detailed explanations for small n can be seen in [5].

Corollary 5.

$$
\begin{align*}
& \left\|\left(\sum_{k=n}^{\infty} \frac{1}{T_{k}}\right)^{-1}\right\|=T_{n}-T_{n-1} \quad(n \geq 1) \tag{17}\\
& \left\|\left(\sum_{k=n}^{\infty} \frac{1}{T_{2 k}}\right)^{-1}\right\|=T_{2 n}-T_{2 n-2} \quad(n \geq 1) \tag{18}\\
& \left\|\left(\sum_{k=n}^{\infty} \frac{1}{T_{2 k-1}}\right)^{-1}\right\|=T_{2 n-1}-T_{2 n-3} \quad(n \geq 2) \tag{19}\\
& \left\|\left(\sum_{k=n}^{\infty} \frac{(-1)^{k}}{T_{k}}\right)^{-1}\right\|=(-1)^{n}\left(T_{n}+T_{n-1}\right) \quad(n \geq 2) \tag{20}\\
& \left\|\left(\sum_{k=n}^{\infty} \frac{(-1)^{k}}{T_{2 k}}\right)^{-1}\right\|=(-1)^{n}\left(T_{2 n}+T_{2 n-2}\right) \quad(n \geq 1) \tag{21}\\
& \left\|\left(\sum_{k=n}^{\infty} \frac{(-1)^{k}}{T_{2 k-1}}\right)^{-1}\right\|=(-1)^{n}\left(T_{2 n-1}+T_{2 n-3}\right) \quad(n \geq 2) \tag{22}
\end{align*}
$$

4 Continued fraction expansion of generalized m-step zeta functions

The first author [4] studied several continued fraction expansions of some types of Fibonacci zeta functions $\zeta_{F}(s):=\sum_{n=1}^{\infty} F_{n}^{-s}$ and Lucas zeta functions in $\zeta_{L}(s):=\sum_{n=1}^{\infty} L_{n}^{-s}$, where L_{n} is the n-th Lucas number defined by

$$
L_{n}=L_{n-1}+L_{n-2} \quad(n \geq 2) \quad L_{0}=2, \quad L_{1}=1
$$

A continued fraction expansion of the generalized m-step zeta functions defined by $\zeta_{u^{(m)}}(s):=$ $\sum_{n=1}^{\infty} u_{n}^{-s}$, where

$$
u_{n}=a u_{n-1}+u_{n-2}+\cdots+u_{n-m} \quad(n \geq m)
$$

with initial positive integral values $u_{k}(0 \leq k \leq m-1)$, is given by

$$
\zeta_{u^{(m)}}(s)=\frac{1}{u_{1}^{s}-\frac{u_{1}^{2 s}}{u_{1}^{s}+u_{2}^{s}-\frac{u_{2}^{2 s}}{u_{2}^{s}+u_{3}^{s}-\frac{u_{3}^{2 s}}{u_{3}^{s}+u_{4}^{s}-\ddots-\frac{u_{n-1}^{2 s}}{u_{n-1}^{s}+u_{n}^{s}-\cdots}}}} .}
$$

Define A_{n} (respectively, B_{n}) as the numerator (respectively, denominator) of the $n^{\text {th }}$ convergent of the continued fraction expansion given for $\zeta_{u^{(m)}}(s)$:

$$
\frac{A_{n}}{B_{n}}=\frac{1}{u_{1}^{s}-\frac{u_{1}^{2 s}}{u_{1}^{s}+u_{2}^{s}-\frac{u_{2}^{2 s}}{u_{2}^{s}+u_{3}^{s}-\frac{u_{3}^{2 s}}{u_{3}^{s}+u_{4}^{s}-\ddots-\frac{u_{n-1}^{2 s}}{u_{n-1}^{s}+u_{n}^{s}}}}}}
$$

Hence $\left\{A_{\nu}\right\}_{\nu \geq 0}$ and $\left\{B_{\nu}\right\}_{\nu \geq 0}$ satisfy the following recurrence formulas.

$$
\begin{array}{llll}
A_{\nu}=\left(u_{\nu-1}^{s}+u_{\nu}^{s}\right) A_{\nu-1}-u_{\nu-1}^{2 s} A_{\nu-2} & (\nu \geq 2), & A_{0}=0, & A_{1}=1 ; \\
B_{\nu}=\left(u_{\nu-1}^{s}+u_{\nu}^{s}\right) B_{\nu-1}-u_{\nu-1}^{2 s} B_{\nu-2} & (\nu \geq 2), & B_{0}=1, & B_{1}=u_{1}^{s}
\end{array}
$$

In fact, A_{ν} and B_{ν} can be expressed explicitly as follows.
Lemma 6. For $n=1,2, \ldots$

$$
A_{n}=\left(u_{1} u_{2} \cdots u_{n}\right)^{s} \sum_{\nu=1}^{n} \frac{1}{u_{\nu}^{s}}, \quad B_{n}=\left(u_{1} u_{2} \cdots u_{n}\right)^{s} .
$$

Proof. By induction we have $B_{n}=\left(u_{1} u_{2} \cdots u_{n}\right)^{s}$. Thus,

$$
A_{n}=B_{n} \sum_{\nu=1}^{n} \frac{1}{u_{\nu}^{s}}=\left(u_{1} u_{2} \cdots u_{n}\right)^{s} \sum_{\nu=1}^{n} \frac{1}{u_{\nu}^{s}} .
$$

Theorem 1 provides us with interesting information about the nearest integer of the reciprocal of $\zeta_{u^{(m)}}(s)-A_{n} / B_{n}$.

References

[1] Eric Weisstein, World of Mathematics, published electronically at http://mathworld.wolfram.com/Fibonaccin-StepNumber.html.
[2] S. H. Holliday and T. Komatsu, On the sum of reciprocal generalized Fibonacci numbers, submitted.
[3] E. Kiliç, Tribonacci sequences with certain indices and their sums, Ars Combin. 86 (2008), 13-22.
[4] T. Komatsu, On continued fraction expansions of Fibonacci and Lucas Dirichlet series, Fibonacci Quart. 46/47 (2008/2009), 268-278.
[5] T. Komatsu, On the sum of reciprocal Tribonacci numbers, Ars Combin., to appear.
[6] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley \& Sons, 2001.
[7] M. D. Miller, On generalized Fibonacci numbers, Amer. Math. Monthly 78 (1971), 1108-1109.
[8] H. Ohtsuka and S. Nakamura, On the sum of reciprocal Fibonacci numbers, Fibonacci Quart. 46/47 (2008/2009), 153-159.
[9] N. J. A. Sloane, (2010), The On-Line Encyclopedia of Integer Sequences, published electronically at http://www.research.att.com/~njas/sequences/.

2010 Mathematics Subject Classification: Primary 11A55; Secondary 11B39.
Keywords: Fibonacci numbers, recurrence relations of s-th order, partial infinite sum.
(Concerned with sequence $\underline{\text { A000073.) }}$

Received January 20 2010; revised version received May 19 2010. Published in Journal of Integer Sequences, May 202010.

Return to Journal of Integer Sequences home page.

[^0]: ${ }^{1}$ The first author was supported in part by the Grant-in-Aid for Scientific Research (C) (No. 22540005), the Japan Society for the Promotion of Science.
 ${ }^{2}$ The second author was supported in part by the Commission on Higher Education and the Thailand Research Fund RTA5180005.

[^1]: ${ }^{3}$ In other contexts, this notation is sometimes used for the distance from the nearest integer.

