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1. INTRODUCTION

Let Z and R (C) denote the ring of the integers and the field of real (complex)
numbers respectively. For a field F' we put F* = F'\ {0}. Fix A € C and B € C*,
and let L£(A, B) consist of all those second order recurrent sequences {wy, }nez of
complex numbers satisfying the recursion:

Wpt1 = Aw, — Bwy,—1 (i.e. Bw,—1 = Aw, — wp41) forn=0,£1,42,---. (1)

For sequences in £(A, B) the corresponding characteristic equation is z? — Az +
B = 0, whose roots (A + v A2 —4B)/2 are denoted by a and 5. If A € R* and
A = A? — 4B > 0, then we let

oo A— sgéA)\/Z and 5

A+sg(AWVA
2

(2)

where sg(A) = 1if A > 0, and sg(A4) = —1 if A < 0. In the case w; = awy, it
is easy to see that w, = a™wg for any integer n. If A = 0, then wq, = (—B)"wq
and wap4+1 = (—B)™w; for all n € Z. The Lucas sequences {uy, }nez and {vy, ez
in L£(A, B) take special values at n = 0, 1, namely

UOZO,Ulzl,UOZZ,Ule. (3)
It is well known that

(a —Plu, =a" =" and v, =a"+ (" forneZ. (4)
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If A=1and B = —1, then those F,, = u, and L, = v, are called Fibonacci
numbers and Lucas numbers respectively.
Let m be a positive integer. In 1974 1.J. Good [2] showed that

m m—1 n

1 Fom —1)2 Fom _
Soolg By SO By
n—0 F2n F2m n—0 F27L+1 F2m

V.E. Hoggatt, Jr. and M. Bicknell [4] extended this by evaluating > Fyon
where k is a positive integer. In 1977 W.E. Greig [3] was able to determine the
sum > up). with B = —1; in 1995 R.S. Melham and A.G. Shannon [5] gave
analogous results in the case B = 1. In 1990 R. Andfe-Jeannin [1] calculated

- 1 - 1

P pe

1 UknUk(n+1) 1 VknVk(n+1)
in the case B = —1 and 21 k, using the Lambert series

n

L) =Y = (el < 1)

n=1

in 1995 Melham and Shannon [5] computed the sums in the case B = 1, in terms
of a and (.

In the present paper we obtain the following theorems which imply all of the
above.

Theorem 1. Let m be a positive integer, and f a function such that f(n) € Z and
Wiy # 0 for alln =0,1,---,m. Then

m—1 n
3 B ™Wupsy _ B Oupn)— s )
S W Wit W)W (m)

where Af(n) = f(n+1)— f(n). If wy # awqy then
mzl (_1)n( 207 (1) B Bf(n)uAf(n)) _ 1 (af(O) — af(m))‘ ©)

n—o Wf(n) \W1 — &Wo Wf(n+1) W1 — aWo \ Wg(0) Wf(m)

Theorem 2. Suppose that A, B € R* and A = A2—4B > 0. Let f : {0,1,2,---} —
{k € Z : wi, # 0} be a function such that lim,,_, ; f(n) = +oo. If w1 # awqy then
we have

W Wrnt) (w1 — awo)wy(o)

_i (_1)n( 20.f (1) Bf(”)uAf(n))

o Wf(n) \W1 — QWo Wf(n+1)

i Bf(n)UAf(n) B
(7)

In the next section we will derive several results from these theorems. Theorems
1 and 2 are proved in Section 3.
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2. CONSEQUENCES OF THEOREMS 1 AND 2

Theorem 3. Let k and | be integers such that win+; # 0 for alln = 0,1,2,---
Then

Ukm
ukE: = orallm=1,2,3,---. 8
Wen+1Wk(n+1)+1  WiWkm+l d (8)

If A,B € R*, A2 > 4B, k > 0 and w; # awy, then

oo uy, BFH ol
= 9
T;) Win+1Wk(n41)+1 (wl - Oéwo)’wz ( )
and .
> — Bk 1
Z ( — (w1 — awp)uyf ( ) ) =—. (10)
— wlm+z Win+1Wk(n4-1)+1 wy

Proof. Simply apply Theorems 1 and 2 with f(n) = kn + .

Remark 1. When B =1, [ = k and {w,,} = {u,} or {v,}, Melham and Shannon
[5] obtained (8) with the right hand side replaced by a complicated expression in
terms of a and S.

Theorem 4. Let A,B € R* and A = A> — 4B > 0. Then for any positive integer

k we have
S - e D) u () o

uknuk(n—i—l) k

and

k 8k 4k 2k
S (2 () () (57)) o
—rt U/-mvk(n+1) VA \u2r  ug B B B

Proof. Clearly |a| < |8 and 3 — a = sg(A)v/A. Thus u, = (8" — a™)/(3 — )
and v, = o™ 4+ " are nonzero for all n € Z\ {0}. Obviously u; — aup = 1 and
v —avg = A—20 = 3 —a = sg(A)VA. Applying Theorem 3 with | = k and
{wn tnez = {un}nez or {v,}nez, we then obtain that

i@ (—B*)" _2<—ak>“):a_k
U,

ne1 UpnUk(n4-1) Ukn

and

e Bk) B 2 . (—ozk)n B k/vk
2 ( VknVk(nt1)  sg(AWVA  Vkn >  sg(AWA

n=1
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i<- : i T -0 S Gl
< <m>— < ) —enis(o (22 (2))

> i x
Z 1+x”:221+x2”_21+x”
> 22n
_22(1_x2n_1_x4n> Z(l_xn_l_x2n>

=2L(2%) — 4L(z*) — L(z) + 2L(:cg) = —4L(2*) + 4L(z?) — L(x).

3

Thus

= by S (e S ()
Y = L e = Y Ty

n=1 n=1 n=1

4k 2k k
== (G ) +ae () -2 (5)

8k 4k 2k
— 4L <%) +4L <%> —L(‘;—k).

Combining the above and noting that ugvy = ugg, we then obtain the desired (11)

and (12).
Remark 2. If |z| < 1 then

o0 2n e 9] n o0 2n

L0 =Y oty P T
—~ 1+ —~ 1+

=L(z?) — (sz) —2L(2%)) + (L(2?) — 2L(2*)) = —2L(z*) + 4L(2*) — L(x).

Thus Theorem 2 of Andfe-Jeannin [1] is essentially our (11) and (12) in the special
case B = —1 and 21 k.

Theorem 5. Let k,l,m € Z and l,m > 0. If W(ktn) #0 foralln =0,1,--- ,m,
l

then (+47) )
m—1 B U k+n B\t ktm k
( ) — ( 1 )_(z) ) (13)

w k+n (k+n+1) ’w(k)w(k+m)

n=0
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Proof. Let f(n) = (IHZ'”) for n € Z. 1t is well known that

E+n+1 k+n kE+n
s = (7)) = (G0
So Theorem 5 follows from Theorem 1.
Remark 3. In the case k =0 and [ = 2, (13) says that

. . (14)
ne0 Wn(n—1)/2Wn(n+1)/2 WoWm(m—1)/2

Z_l u, B —1)/2 U (m—1)/2

Theorem 6. Let a, k be integers, and m a positive integer. Suppose that wyqn # 0
for eachn=0,1,--- ,m—1. Then

— B*" g (a—1yan _ BFuygm_1) (15)
"0 Wkar Wign+1 WEWggm .
Proof. Just put f(n) = ka™ in Theorem 1.
Remark 4. In the case a = 2 and {w,} = {u,}, (15) becomes
n—0 Uk2n+1 Ul U2m '

This was obtained by Melham and Shannon [5] in the case B =1 and k > 0. In
the case a = 3 and {w,} = {v,}, (15) turns out to be

nf BkgnUan _ Bkuk(;),m,l) (17)

Vi3n+1 Vi Vk3m

n=0

since usgp, = upvy, for h € Z.

Theorem 7. Let k be an integer and m a positive integers. If wyin_1)y # 0 for
eachn=0,1,---,m—1, then

m—1 n__
—o Wk(2n—1)Wg(2n+1-1) WoWp(2m—1)

n

Proof. Just apply Theorem 1 with f(n) = k(2™ —1).
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3. PROOFS OF THEOREMS 1 AND 2
Lemma 1. For k,l,m € Z we have
!
WrUl4m — WhymW = B wi_ iy, (19)

and
wral — wa = (wy — awg)Bluk_l. (20)

Proof. i) Fix k,l € Z. Observe that
Wpt1 Wg | _ [ Wk Wg—1 A 1
Ul41 Uuy Uuy Ur—1 —-B 0
[ wp—1 Wr—2 A 1 2_'__
S\ w1 w2 -B 0)
l
_ [ Wk—i41 Wk A 1
Uy Ug -B 0)°
Taking the determinants we then get that

Wiyl W

Ul+1 up 1 0

_ ' Wh—141 Wk

ie.,
WrUp1 — Wp1w = Blwg_g.
Thus (19) holds for m = 0, 1.

Each side of (19) can be viewed as a sequence in L(A, B) with respect to the
index m. By induction (19) is valid for every m = 0,1,2,---; also (19) holds for
each m = —1,—2,—3,--- . Therefore (19) holds for any m € Z.

ii) By induction on [ we find that w1 — aw; = (w; —awg)B'. Clearly both sides
of (20) lie in L£(A, B) with respect to the index k. Note that if k¥ = [ then both
sides of (20) are zero. As

(wy — awo)Bl = (wy — awo)ﬂlal = (w41 — awl)al = Ofl'(Ul+1 — oty

(20) also holds for k =1+ 1. Therefore (20) is always valid. We are done.
Proof of Theorem 1. Let d € Z. In view of Lemma 1, for n =0,1,--- ,m — 1
we have

Udtf(nt1)  Udtf(n) _ Udtf(nt)Wf(n) = Yd+f(n)Wf(n+1)
Wi (n+1) Wi (n) Wf(n)Wf(n+1)
_ Wi Udtf(nm)+Af(n) = Win)+Af(n)Ud+f(n)
Wf(n)Wf(n+1)
Bd+f(n)w—duAf(n)

Wfn)Wf(n+1)
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It follows that

n m—1
BT M w_ qun p(n) _ Z <ud+f(n+1) B Ud+f(n)> _ Udif(m)  Udtf(0)
n—0 Win)Wf(n+1) n—0 Wf(n+1) Wg(n) Wf(m) Wg(0)

and that

m—1

n m—1
Z(—l)nﬂBd”( "w_atasm _ > ((—1)”+1—ud” (ntD) 4 (—1)”—Ud+f(n))
st W ()W (nt1) ~ Wi(nt1) W (n)

m—1
2 Z n d+f(n) + (_1)mud+f(m) _ (_1)0Ud+f(0) .
oy Wf(n) Wf(m) We(o0)

Putting d = —f(0) we then obtain (5) and that

Z Bf(n)“Af(n)
wf(n)wf(n+1)
m—1
Bf Oy ey Bf Oy e\
—9 (-1)" Uf(n)—£(0) +(-1)™ Uf(m) )
n—0 Wf(n) Wf(m)

By Lemma 1, for each n =0,1,--- ,m,

o ODwpy — o M) = (wi = awo) B Vw10,

ie.,
By g0 oI Mwpe ol
W (n) (w1 — qwo)wymy w1 — awp
Thus
B yn o m—1 weemod ™) 7(0)
W) Z )y DT TUAF(n) —9 Z(_l)n( £(0) .« )
W (n)W(nt1) oy (w1 — qwo)wym) — wr — awg
+ (—1)m( wpa/ ™ ol )
(w1 — qwo)wy(m) w1 — awp
and hence

— wf(n) wi—owo Wit

Z af(O) (—1)m (af(O) af(?ﬂ))
" wy — aw — wf(o) wl—O“UO Wr)  Wr(m)

1 ol © afm)
w1 — awp \ Wy (o) W (m)

This proves (6).
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Lemma 2. Let A, B € R* and A = A> —4B > 0. Then

n

lim < =0. (21)
n—-4oo Unp,
and
. wy, w1 — awp
1 = € Z. 22
Jm - Fm for any m (22)

Proof. When A =0 (i.e. a = f3), by induction u,, = n(A4/2)"" ! for all n € Z,
thus u, # 0 forn = +1,+2,+3,---,

lim @ lim (4/2)

B Sl |
n—+oo U,  n—+oon(A/2)r1

and

I _ 2
n—1>I—|I—100 Up, n—-—4o00 n(A/Q)n—l 2

In the case A > 0, |a| < |5] and hence u,, = (a™ — ")/(a — ) is zero if and
only if n = 0. Therefore

Umin _ <m+n><A/2>m+”—1:<A)m: gm.

am 1

i — = — li —— =0
T S N CE
Also,
n+l _ on+1 _ n __ Aan _
n—+oo \ Uy n—-+o0 an — [Gn n—+oo 1 — (B/a)”
If me {0,1,2,---}, then
Um+n Uk+n+1
1 = lim ] = gm
n——4oo Unp, n——4oo O<k<m k+n
and u u
lim —™ = lim o —pm™,
n—-4oo Un n—-4oo Um—i—n

In view of the above, (21) always holds and lim, oo Uptn/u, = ™ for all
m € 7.
By Lemma 1, wiu, — w,u; = Bwou,_1 for n € Z. Thus

. W, Buwg Buwyg
Iim — =w; — = =w; —
n—+00 Up hmn—>+oo un/un—l B

= W1 — Wy

and hence (22) is valid.
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Proof of Theorem 2. Assume that w; # awg. In view of Lemma 2,

m—-400 W f(m w1 — Wy w1 — QWo
f(m)
and " m
lim - = lim —— x lm —™ =0.
m——+o0 Wm m——+o0 Um, m——+o0 Wm

Applying Theorem 1 we immediately get (7).

Remark 5. On the condition of Theorem 2, if w; = awy then by checking the

proof of Theorem 2 we find that

oo

E: BfﬁouAﬂn)
o W)W (nt1)

= OQ.
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