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1. Introduction

Let Z and R (C) denote the ring of the integers and the field of real (complex)
numbers respectively. For a field F we put F ∗ = F \ {0}. Fix A ∈ C and B ∈ C∗,
and let L(A,B) consist of all those second order recurrent sequences {wn}n∈Z of
complex numbers satisfying the recursion:

wn+1 = Awn −Bwn−1 (i.e. Bwn−1 = Awn − wn+1) for n = 0,±1,±2, · · · . (1)

For sequences in L(A,B) the corresponding characteristic equation is x2 − Ax +
B = 0, whose roots (A ±

√
A2 − 4B)/2 are denoted by α and β. If A ∈ R∗ and

∆ = A2 − 4B > 0, then we let

α =
A− sg(A)

√
∆

2
and β =

A + sg(A)
√

∆
2

(2)

where sg(A) = 1 if A > 0, and sg(A) = −1 if A < 0. In the case w1 = αw0, it
is easy to see that wn = αnw0 for any integer n. If A = 0, then w2n = (−B)nw0

and w2n+1 = (−B)nw1 for all n ∈ Z. The Lucas sequences {un}n∈Z and {vn}n∈Z
in L(A,B) take special values at n = 0, 1, namely

u0 = 0, u1 = 1, v0 = 2, v1 = A. (3)

It is well known that

(α− β)un = αn − βn and vn = αn + βn for n ∈ Z. (4)
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If A = 1 and B = −1, then those Fn = un and Ln = vn are called Fibonacci
numbers and Lucas numbers respectively.

Let m be a positive integer. In 1974 I.J. Good [2] showed that
m∑

n=0

1
F2n

= 3− F2m−1

F2m

, i.e.
m−1∑
n=0

(−1)2
n

F2n+1
= −F2m−1

F2m

,

V.E. Hoggatt, Jr. and M. Bicknell [4] extended this by evaluating
∑m

n=0 F−1
k2n

where k is a positive integer. In 1977 W.E. Greig [3] was able to determine the
sum

∑m
n=0 u−1

k2n with B = −1; in 1995 R.S. Melham and A.G. Shannon [5] gave
analogous results in the case B = 1. In 1990 R. Andŕe-Jeannin [1] calculated

∞∑
n=1

1
uknuk(n+1)

and
∞∑

n=1

1
vknvk(n+1)

in the case B = −1 and 2 - k, using the Lambert series

L(x) =
∞∑

n=1

xn

1− xn
(|x| < 1);

in 1995 Melham and Shannon [5] computed the sums in the case B = 1, in terms
of α and β.

In the present paper we obtain the following theorems which imply all of the
above.

Theorem 1. Let m be a positive integer, and f a function such that f(n) ∈ Z and
wf(n) 6= 0 for all n = 0, 1, · · · ,m. Then

m−1∑
n=0

Bf(n)u∆f(n)

wf(n)wf(n+1)
=

Bf(0)uf(m)−f(0)

wf(0)wf(m)
(5)

where ∆f(n) = f(n + 1)− f(n). If w1 6= αw0 then
m−1∑
n=0

(−1)n

wf(n)

(
2αf(n)

w1 − αw0
−

Bf(n)u∆f(n)

wf(n+1)

)
=

1
w1 − αw0

(
αf(0)

wf(0)
−(−1)m αf(m)

wf(m)

)
. (6)

Theorem 2. Suppose that A,B ∈ R∗ and ∆ = A2−4B > 0. Let f : {0, 1, 2, · · · } →
{k ∈ Z : wk 6= 0} be a function such that limn→+∞ f(n) = +∞. If w1 6= αw0 then
we have

∞∑
n=0

Bf(n)u∆f(n)

wf(n)wf(n+1)
=

αf(0)

(w1 − αw0)wf(0)

=
∞∑

n=0

(−1)n

wf(n)

(
2αf(n)

w1 − αw0
−

Bf(n)u∆f(n)

wf(n+1)

)
.

(7)

In the next section we will derive several results from these theorems. Theorems
1 and 2 are proved in Section 3.
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2. Consequences of Theorems 1 and 2

Theorem 3. Let k and l be integers such that wkn+l 6= 0 for all n = 0, 1, 2, · · · .
Then

uk

m−1∑
n=0

Bkn

wkn+lwk(n+1)+l
=

ukm

wlwkm+l
for all m = 1, 2, 3, · · · . (8)

If A,B ∈ R∗, A2 > 4B, k > 0 and w1 6= αw0, then

∞∑
n=0

ukBkn+l

wkn+lwk(n+1)+l
=

αl

(w1 − αw0)wl
(9)

and
∞∑

n=0

(
2
(−αk)n

wkn+l
− (w1 − αw0)ukβl (−Bk)n

wkn+lwk(n+1)+l

)
=

1
wl

. (10)

Proof. Simply apply Theorems 1 and 2 with f(n) = kn + l.
Remark 1. When B = 1, l = k and {wn} = {un} or {vn}, Melham and Shannon

[5] obtained (8) with the right hand side replaced by a complicated expression in
terms of α and β.

Theorem 4. Let A,B ∈ R∗ and ∆ = A2 − 4B > 0. Then for any positive integer
k we have

∞∑
n=1

(−Bk)n

uknuk(n+1)
=

αk

u2
k

+ sg(A)
√

∆
uk

(
4L

(
α4k

B2k

)
− 2L

(
α2k

Bk

) )
(11)

and

∞∑
n=1

(−Bk)n

vknvk(n+1)
=

sg(A)√
∆

(
αk

u2k
− 2

uk

(
4L

(
α8k

B4k

)
−4L

(
α4k

B2k

)
+L

(
α2k

Bk

) ))
. (12)

Proof. Clearly |α| < |β| and β − α = sg(A)
√

∆. Thus un = (βn − αn)/(β − α)
and vn = αn + βn are nonzero for all n ∈ Z \ {0}. Obviously u1 − αu0 = 1 and
v1 − αv0 = A − 2α = β − α = sg(A)

√
∆. Applying Theorem 3 with l = k and

{wn}n∈Z = {un}n∈Z or {vn}n∈Z, we then obtain that

∞∑
n=1

(
uk

(−Bk)n

uknuk(n+1)
− 2

(−αk)n

ukn

)
=

αk

uk

and
∞∑

n=1

(
uk

(−Bk)n

vknvk(n+1)
− 2

sg(A)
√

∆
· (−αk)n

vkn

)
=

αk/vk

sg(A)
√

∆
.
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Clearly
∞∑

n=1

(−αk)n

ukn
=

∞∑
n=1

(β − α)
(−αk)n

βkn − αkn
= (β − α)

∞∑
n=1

(−1)n(α/β)kn

1− (α/β)kn

=(β − α)
(

2
∞∑

n=1
2|n

(α/β)kn

1− (α/β)kn
−

∞∑
n=1

(α/β)kn

1− (α/β)kn

)

=(β − α)
(

2L

(
α2k

β2k

)
− L

(
αk

βk

) )
= sg(A)

√
∆

(
2L

(
α4k

B2k

)
− L

(
α2k

Bk

) )
.

If |x| < 1 then
∞∑

n=1

(−1)n xn

1 + xn
= 2

∞∑
n=1

x2n

1 + x2n
−

∞∑
n=1

xn

1 + xn

=2
∞∑

n=1

(
x2n

1− x2n
− 2x4n

1− x4n

)
−

∞∑
n=1

(
xn

1− xn
− 2x2n

1− x2n

)
=2L(x2)− 4L(x4)− L(x) + 2L(x2) = −4L(x4) + 4L(x2)− L(x).

Thus
∞∑

n=1

(−αk)n

vkn
=

∞∑
n=1

(−αk)n

αkn + βkn
=

∞∑
n=1

(−1)n (α/β)kn

1 + (α/β)kn

=− 4L

(
α4k

β4k

)
+ 4L

(
α2k

β2k

)
− L

(
αk

βk

)
=− 4L

(
α8k

B4k

)
+ 4L

(
α4k

B2k

)
− L

(
α2k

Bk

)
.

Combining the above and noting that ukvk = u2k, we then obtain the desired (11)
and (12).

Remark 2. If |x| < 1 then

L(−x) =
∞∑

n=1

x2n

1− x2n
−

∞∑
n=1

xn

1 + xn
+

∞∑
n=1

x2n

1 + x2n

=L(x2)− (L(x)− 2L(x2)) + (L(x2)− 2L(x4)) = −2L(x4) + 4L(x2)− L(x).

Thus Theorem 2 of Andŕe-Jeannin [1] is essentially our (11) and (12) in the special
case B = −1 and 2 - k.

Theorem 5. Let k, l, m ∈ Z and l,m > 0. If w(k+n
l ) 6= 0 for all n = 0, 1, · · · ,m,

then
m−1∑
n=0

B(k+n
l )u(k+n

l−1)
w(k+n

l )w(k+n+1
l )

=
B(k

l)u(k+m
l )−(k

l)
w(k

l)w(k+m
l )

. (13)
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Proof. Let f(n) =
(
k+n

l

)
for n ∈ Z. It is well known that

∆f(n) =
(

k + n + 1
l

)
−

(
k + n

l

)
=

(
k + n

l − 1

)
.

So Theorem 5 follows from Theorem 1.
Remark 3. In the case k = 0 and l = 2, (13) says that

m−1∑
n=0

unBn(n−1)/2

wn(n−1)/2wn(n+1)/2
=

um(m−1)/2

w0wm(m−1)/2
. (14)

Theorem 6. Let a, k be integers, and m a positive integer. Suppose that wkan 6= 0
for each n = 0, 1, · · · ,m− 1. Then

m−1∑
n=0

Bkan

uk(a−1)an

wkanwkan+1
=

Bkuk(am−1)

wkwkam

. (15)

Proof. Just put f(n) = kan in Theorem 1.
Remark 4. In the case a = 2 and {wn} = {un}, (15) becomes

m−1∑
n=0

Bk2n

uk2n+1
=

Bkuk(2m−1)

ukuk2m

. (16)

This was obtained by Melham and Shannon [5] in the case B = 1 and k > 0. In
the case a = 3 and {wn} = {vn}, (15) turns out to be

m−1∑
n=0

Bk3n

uk3n

vk3n+1
=

Bkuk(3m−1)

vkvk3m

(17)

since u2h = uhvh for h ∈ Z.

Theorem 7. Let k be an integer and m a positive integers. If wk(2n−1) 6= 0 for
each n = 0, 1, · · · ,m− 1, then

m−1∑
n=0

Bk(2n−1)uk2n

wk(2n−1)wk(2n+1−1)
=

uk(2m−1)

w0wk(2m−1)
. (18)

Proof. Just apply Theorem 1 with f(n) = k(2n − 1).
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3. Proofs of Theorems 1 and 2

Lemma 1. For k, l,m ∈ Z we have

wkul+m − wk+mul = Blwk−lum (19)

and
wkαl − wlα

k = (w1 − αw0)Bluk−l. (20)

Proof. i) Fix k, l ∈ Z. Observe that(
wk+1 wk

ul+1 ul

)
=

(
wk wk−1

ul ul−1

) (
A 1
−B 0

)
=

(
wk−1 wk−2

ul−1 ul−2

) (
A 1
−B 0

)2

= · · ·

=
(

wk−l+1 wk−l

u1 u0

) (
A 1
−B 0

)l

.

Taking the determinants we then get that∣∣∣∣ wk+1 wk

ul+1 ul

∣∣∣∣ =
∣∣∣∣ wk−l+1 wk−l

1 0

∣∣∣∣× ∣∣∣∣ A 1
−B 0

∣∣∣∣l ,
i.e.,

wkul+1 − wk+1ul = Blwk−l.

Thus (19) holds for m = 0, 1.
Each side of (19) can be viewed as a sequence in L(A,B) with respect to the

index m. By induction (19) is valid for every m = 0, 1, 2, · · · ; also (19) holds for
each m = −1,−2,−3, · · · . Therefore (19) holds for any m ∈ Z.

ii) By induction on l we find that wl+1−αwl = (w1−αw0)βl. Clearly both sides
of (20) lie in L(A,B) with respect to the index k. Note that if k = l then both
sides of (20) are zero. As

(w1 − αw0)Bl = (w1 − αw0)βlαl = (wl+1 − αwl)αl = αlwl+1 − αl+1wl

(20) also holds for k = l + 1. Therefore (20) is always valid. We are done.
Proof of Theorem 1. Let d ∈ Z. In view of Lemma 1, for n = 0, 1, · · · ,m − 1

we have

ud+f(n+1)

wf(n+1)
−

ud+f(n)

wf(n)
=

ud+f(n+1)wf(n) − ud+f(n)wf(n+1)

wf(n)wf(n+1)

=
wf(n)ud+f(n)+∆f(n) − wf(n)+∆f(n)ud+f(n)

wf(n)wf(n+1)

=
Bd+f(n)w−du∆f(n)

wf(n)wf(n+1)
.



RECIPROCAL SUMS OF SECOND ORDER RECURRENT SEQUENCES 7

It follows that
m−1∑
n=0

Bd+f(n)w−du∆f(n)

wf(n)wf(n+1)
=

m−1∑
n=0

(
ud+f(n+1)

wf(n+1)
−

ud+f(n)

wf(n)

)
=

ud+f(m)

wf(m)
−

ud+f(0)

wf(0)

and that
m−1∑
n=0

(−1)n+1 Bd+f(n)w−du∆f(n)

wf(n)wf(n+1)
=

m−1∑
n=0

(
(−1)n+1 ud+f(n+1)

wf(n+1)
+ (−1)n ud+f(n)

wf(n)

)

= 2
m−1∑
n=0

(−1)n ud+f(n)

wf(n)
+ (−1)m ud+f(m)

wf(m)
− (−1)0

ud+f(0)

wf(0)
.

Putting d = −f(0) we then obtain (5) and that

m−1∑
n=0

(−1)n+1wf(0)

Bf(n)u∆f(n)

wf(n)wf(n+1)

=2
m−1∑
n=0

(−1)n Bf(0)uf(n)−f(0)

wf(n)
+ (−1)m Bf(0)uf(m)−f(0)

wf(m)
.

By Lemma 1, for each n = 0, 1, · · · ,m,

αf(0)wf(n) − αf(n)wf(0) = (w1 − αw0)Bf(0)uf(n)−f(0),

i.e.,

−
Bf(0)uf(n)−f(0)

wf(n)
=

αf(n)wf(0)

(w1 − αw0)wf(n)
− αf(0)

w1 − αw0
.

Thus

wf(0)

m−1∑
n=0

(−1)n Bf(n)u∆f(n)

wf(n)wf(n+1)
=2

m−1∑
n=0

(−1)n

(
wf(0)α

f(n)

(w1 − αw0)wf(n)
− αf(0)

w1 − αw0

)

+ (−1)m

(
wf(0)α

f(m)

(w1 − αw0)wf(m)
− αf(0)

w1 − αw0

)
and hence

m−1∑
n=0

(−1)n

wf(n)

(
2αf(n)

w1 − αw0
−

Bf(n)u∆f(n)

wf(n+1)

)

=
2

w1 − αw0

m−1∑
n=0

(−1)n αf(0)

wf(0)
+

(−1)m

w1 − αw0

(
αf(0)

wf(0)
− αf(m)

wf(m)

)
=

1
w1 − αw0

(
αf(0)

wf(0)
− (−1)m αf(m)

wf(m)

)
.

This proves (6).
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Lemma 2. Let A,B ∈ R∗ and ∆ = A2 − 4B > 0. Then

lim
n→+∞

αn

un
= 0. (21)

and
lim

n→+∞

wn

um+n
=

w1 − αw0

βm
for any m ∈ Z. (22)

Proof. When ∆ = 0 (i.e. α = β), by induction un = n(A/2)n−1 for all n ∈ Z,
thus un 6= 0 for n = ±1,±2,±3, · · · ,

lim
n→+∞

αn

un
= lim

n→+∞

(A/2)n

n(A/2)n−1
= 0

and

lim
n→+∞

um+n

un
= lim

n→+∞

(m + n)(A/2)m+n−1

n(A/2)n−1
=

(
A

2

)m

= βm.

In the case ∆ > 0, |α| < |β| and hence un = (αn − βn)/(α − β) is zero if and
only if n = 0. Therefore

lim
n→+∞

αn

un
= (α− β) lim

n→+∞

1
1− (β/α)n

= 0

Also,

lim
n→+∞

(
un+1

un
−β

)
= lim

n→+∞

αn+1 − βn+1 − β(αn − βn)
αn − βn

= lim
n→+∞

(α− β)
1− (β/α)n

= 0,

If m ∈ {0, 1, 2, · · · }, then

lim
n→+∞

um+n

un
= lim

n→+∞

∏
06k<m

uk+n+1

uk+n
= βm

and
lim

n→+∞

un−m

un
= lim

n→+∞

un

um+n
= β−m.

In view of the above, (21) always holds and limn→+∞ um+n/un = βm for all
m ∈ Z.

By Lemma 1, w1un − wnu1 = Bw0un−1 for n ∈ Z. Thus

lim
n→+∞

wn

un
= w1 −

Bw0

limn→+∞ un/un−1
= w1 −

Bw0

β
= w1 − αw0

and hence (22) is valid.
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Proof of Theorem 2. Assume that w1 6= αw0. In view of Lemma 2,

lim
m→+∞

Bf(0)uf(m)−f(0)

wf(m)
= Bf(0) β−f(0)

w1 − αw0
=

αf(0)

w1 − αw0

and
lim

m→+∞

αm

wm
= lim

m→+∞

αm

um
× lim

m→+∞

um

wm
= 0.

Applying Theorem 1 we immediately get (7).
Remark 5. On the condition of Theorem 2, if w1 = αw0 then by checking the

proof of Theorem 2 we find that

∞∑
n=0

Bf(n)u∆f(n)

wf(n)wf(n+1)
= ∞. (23)
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1. R. Andŕe-Jeannin, Lambert series and the summation of reciprocals in certain Fibonacci

Lucas-Type sequences, Fibonacci Quart. 28 (1990), 223–226.

2. I.J. Good, A reciprocal series of Fibonacci numbers, Fibonacci Quart. 12 (1974), 346.
3. W.E. Greig, On sums of Fibonacci-type reciprocals, Fibonacci Quart. 15 (1977), 356–358.

4. V.E. Hoggatt, Jr. and M. Bicknell, A reciprocal series of Fibonacci numbers with subscripts

2nk, Fibonacci Quart. 14 (1976), 453–455.
5. R.S. Melham and A.G. Shannon, On reciprocal sums of Chebyshev related sequences, Fi-

bonacci Quart. 33 (1995), 194–202.

AMS Classification Numbers: 11B39, 11B37


