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A PRIMER FOR THE FIBONACCI NUMBERS, PART XV

VARIATIONS ON SUMMING A SERIES
OF RECIPROCALS OF FIBONACC!I NUMBERS

V.E. HOGGATT, JR., and MARJORIE BICKNELL
San Jose State University, San Jose, California 95192

It is not easy, in general, to derive the sum of a series whose terms are reciprocals of Fibonacci numbers such that
the subscripts are terms of geometric progressions. However, in [1] Good shows that
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a problem proposed by Millin [2]. This particular series can be summed in several different ways.
Method I. Write out the first few terms of (1),
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From [3], we write
3) Lyplmer— Lamsr = (=1)7
from which it follows that
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since Fpy Ly = Fay. Thus, we can prove (2} by mathematical induction. If we compute the limit asn ~ = for (2},
then we have the infinite sum of (1), for (see [3])
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where a= (7 ++/5//2, which simplifies to (7 — /& J/2.
The limits used above can be easily derived from the well-known

n n
Fp = ’%—}g— Ly =a"+B",
where a= (1+/5)/2, 8= (1 — /6 )/2 are the roots of x? —x — 1= 0.
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since fa— )= /& and B/a < 1. In an entirely similar manner, we could show that
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Method 1. Returning to the first few terms of {1),
5[] = 2+ 8 - 2+ FG
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which suggests
F
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If we take the limit as 7 — o of the right-hand side of {4}, we obtain 2+ 1/a2 = {7 — /6 )/ 2. We can prove (4) by in-
duction, since

an F2n+1 F2n+1 2,,+7
We need to establish that
Fongton 1= F2n+7_2
which follows from (see [3], [4])
{5) Fm+p - Fm-p = Fp Lm. b even,

wherem+p=2"""—2 m—p=2 m=2" p=2" -2 so that
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Method [Hl. Examining the first terms of (1} yet again,
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used by Good [1], where the limit as 7 ~ = of the right-hand side is 3 — 1/a= {7 — /5 )/ 2. Establishing (6} by in-
duction involves showing that
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where we need
Lnfan_y = Foner_y*F1

which follows from [3], [4]
Fm+p + Fm-p = Lme, p odd,

wherem+p=2""1 1, m—-p=1m=2" p=2"-1
Method 1V. Proceeding in a similar manner, we notice that
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Thus one expects
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LonFony = 1= Fonety,
which follows from [31, [4]
{8) Fm+p* Fm-p = LpFm. b even,

wherem +p=2""T+ 1, m-p=1 m=2"+1, p=2".
Method V. Again looking at the early terms of (1),

.5.9.. = 5 — ﬁ.
1 8
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where the limit of the right-hand side asn — « is 5—a®* =5 — (@ + 1) = 4 — a again. From the form of (9)

and earlier experience, one expects

F

2"+2L

2n"7= F2n+1+2

which follows from (8), where m +p=2"+7 +2 m-p=2 m=2"+2 and p=2",

Method VI. One last time, we inspect the early terms of (1) to observe
@_ =g — 18 _ B — L_g._

2 21 F,
which has the form of
(10) I B I L2”+7
F, F, FZ,, _,E;’—
The proof of (10) by inducticn depends upon the identity
Lonygtgn= 1= Lontt,,
which follows readily from (3). The limit as 7 — o of the right-hand side of (10) follows from
L n Lan L,
i 24 - 2. 27+ - B,
Aim, —F - alim,, ,1:2,7 LG Vv5-a,

becoming 6 — /5 -a, which simplifies to {7 — +/5)/ 2.

Method VII. We again return to the early terms of (1), but we proceed in a different manner.

2+l+__1_ =2+Z_i'_1= +£i‘_f_1
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Assume that
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the limit as n — = of the right-hand side of (11) becomes

2+ J5lat ta-trar )+ 0 = 2+ J5-a (11— at)] = 2+J5[1/a* - 1)]
= 2+\/§[7/(a2 +1lar = 1)] = 2+ J5[1/(J5alla)] = 2+1/a
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since

a* = a+1 and a’+7=a+2=u?& +2=‘§%&=\/§-a.

Also, since @’ = (L, + Fy/5)/2, a® = (3 +/5)/2, and the above becomes
2+ 1/a* = 2+(3-J5)/2 = (7—J5)/2.
Here, (11) can be proved by induction if the identity

= v
(12) Lonllign gyt bign gyt Lat 1= Lonss y#Lonir g# o Lg
is known, (See [5]).
We could also have used
Lokin+1)— Lokn— Lok —2
(13} Z Logj = Tox—72
to sum the numerator of {11), and proceeded asin [6].
Method VIil. Starting with the first few partial sums,
i A L, -i+—7+__7;=7+L2+7 —;7-+—7+_L+_L=7+L_61M_7_
F, -)(-/"2 7.‘LF‘,,' F, F, F, £, F, F, F, F, s
Generally,
n L + L t ot Lz‘/' 1
- 2.2 "2"4
(14) E 1/F = 1+ £~ ,
=0 2
but
Lom+Lop-gt~+Llz = Lomer— 1.
Thus /
n
—— n
(15) 2L UF =1 2Ly
70 2"
so that

Jim, A= 1+5/a=(7-5)/2.
Method 1X. 1. J. Good [7] uses the identity

’

i: (XWZn_i/(xzn _y2n) - Min abs (x,y)

X—=y
n=1

where x = (1+ /5 }/2 andy = (1 — /§)/2. This is not quite complete hy itself.
Method X. On the other hand, L. Carlitz [8] uses

. " :
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but (@ff)? = 1, so that this is

(@- 5)2 3 o2 3+7

=1 /=0

but clearly, every even number greater than zero can be written as (2/ + 7}.2/. Thus, thisis
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Method XI. For yet another method see A. G. Shannon’s solution in the April 1976 Adwanced Problem Seciion
solution to H-237.
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[Continued from Page 253.]

Then the sequence

(wn) = log HaHY)
isu.d. mod 1.

Prooﬁ We have

H Hiet
Wn+1—Wp = log ”ﬁ:,l *log "[/;; .
which tends to _
2 log lj%i
asn — o for
Hner _ _9Fntpfn-1_ . QlFn/Fo-1)*p  Fn-1
Hp GFp-1+0Fp-2 GglFp-1/Fn-2)+p Fn-2
goes to _
1+/5
2
asn — oo

Theovem 3. Letp, g, p* g* H, and H} have the same meaning as in Theerem 2. Then the sequence
(xp) = Nog(H,+Hp))

isu.d. mod 1.

Proof. By the definitions of H,, and H,; we have

HotHy = (g +q*)Fng1+(0+p*Fpn (0> 3)

and so we see that

fg+g*)Fntlptp*)Fn_1
(q+q*)Fp-1+(p+p*)Fp-2

Xpt7—Xn = \og ((Hpe1+Hper)/ (Hy +Hp)) = log

[Continued on Page 281.]
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