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It is not easy, in general, to derive the sum of a series whose terms are reciprocals of Fibonacci numbers such that
the subscripts are terms of geometric progressions. However, in [1] Good shows that
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a problem proposed by Millin [2]. This particular series can be summed in several different ways.
Method I. Write out the first few terms of (1),
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From [3], we write
@) Lmlm+1—Lomer = (-1)7
from which it follows that
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since Fpy Ly = Fom. Thus, we can prove (2) by mathematical induction. [f we compute the limit asn — « for (2),
then we have the infinite sum of (1), for (see [3])
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where a= (7 +/5)/2, which simplifies to (7 — /5 J/2.
The limits used above can be easily derived from the well-known
n n
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where a= (1++/5)/2, 8= (1 —/5)/2 are the roots of x> —x — 7 =0,
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since fa— )= +/5 and 8/a < 1. In an entirely similar manner, we could show that
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Method Il. Returning to the first few terms of (1),
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which suggests
4) _L+_7_+...+_7=2+in_"_2_
F. R Fon Fon

2
If we take the limit as n — o of the right-hand side of (4), we obtain 2+ 1/a® = (7 — /5 )/ 2. We can prove (4) by in-
duction, since

4 f%"_—; ‘o . (F2n+1l(F/f,,_2)/F2,, +1 - L2,,F2,,_2+7
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We need to establish that
Fongton® 1= F2n+7_2
which follows from (see [3], [4])
(5) Fmtp — Fm-p = Folm, p even,

wherem+p=2"""_2 m—p=2 m=2", p=2" -2 so that
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Method I1l. Examining the first terms of (1) yet again,

suggests
6) -

used by Good [1], where the limit as 7 — o of the right-hand side is 3 — 1/a = (7 — </5)/2. Establishing (6) by in-
duction involves showing that
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where we need

which follows from [3], [4]
Fmtp* Fm-p = LmFp, p odd,
wherem+p=2""" 1, m—p=1,m=2" p=2"-1.
Method 1V. Proceeding in a similar manner, we notice that
ﬂ: 4 — gﬂ'_ =4 - F9
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if indeed
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Thus one expects
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L F —7=Fn+7+
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which follows from [3], [4]
(8} Fmip* Fm-p = LpFm. p even,

wherem +p=2""1 41 m—p=1, m=2"+1, p=2",
Method V. Again looking at the early terms of (1),
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where the limit of the right-hand side as» —+ « is 5 — a*> =5 — (@ + 1) = 4 — @ again. From the form of (9)

and earlier experience, one expects

F

2”+2L

on 1= F2n+1+2

which follows from (8), wherem +p=2""1+2 m—p=2 m=2"+2 and p=2".

Method VI. Gne last time, we inspect the early terms of (1) to observe
_5_0_ =6 — 16 = §— éﬂ.
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which has the form of L
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The proof of (10) by induction depends upon the identity

L L ,—71=1
2M41"2" 2"y

which follows readily from (3). The limit as n —  of the right-hand side of (10) follows from
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becoming 6 — /5 -a, which simplifies to (7 — \/5)/ 2.

Method VII. We again return to the early terms of (1), but we proceed in a different manner.

2-!-1_-{-_1_ =2+Z.+_1=2+L4+1
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Assume that
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the limit as 7 — = of the right-hand side of {11) becaomes

2+\5la* +a-t+a 1 +..)+0 = 2+ JF-a*[1/(1—a-*)] = 2+J5[1/{a* - 1)]
= 2+\5[1/fa? + 1)a> — 1)] = 2+ J5[1/(\/5alla)] = 2+ 1/a?
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since

a*=a+1 ad a*+71=a+2-= 7+2\/5 +2=5+;Z5 = J5-a.

Also, since @ = (L, + Fp/5)/2, a? = (3 +/5)/2, and the above becomes
2+1/a? = 2+(3-5)/2 = (7-/5)/2.
Here, (11) can be proved by induction if the identity

(12) n(i. Fotlyg+1) = L2n+1_4+ L2n+1—8+ et ly

(2n-4)" (2"—8)
is known. (See [5] ).
We could also have used

L - -1 2
(13) Z Lok = 2k(n+1) leiknz 2k —

to sum the numerator of (11), and proceeded asin [6].
Method VIII. Starting with the first few partial sums,
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Generally,
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but
Lom+Lom-2+~*L2 = Lomsr— 1.
Thus
L2 -1
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2’1
so that

Jim A= 1+J5/a=(7-5)/2.
Method IX. 1. J. Good [7] uses the identity

2 (Xy}zn—I/(in _ y2n) - min abs (X:k}
x—y
n=1
where x = (1+/5)/2 andy = (1 — /5)/2. This is not quite complete by itself.
Method X. On the other hand, L. Carlitz [8] uses

2 1Fyn Z _—13_ ,
n=0 0 a2 — g% =1 @ —32
but (af)? = 1, so that this is
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but clearly, every even number greater than zero can be written as (2 + 1)2". Thus, this is
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Method XI. For yet another method see A. G. Shannon's solution in the April 1976 Adwenced Problem Section
solution to H-237.
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[Continued from Page 253.]

Then the sequence
(wn) = flogH,Hy)

is u.d. mod 1.
Proof. We have
Hnp+1 H*+1
Wnt1— Wy = log /’_;: + log —/’_’/;
which tends to _
2 log E%S—
as n — o= for
Hnt1 __ gFptpFa1_ _ alfa/Fpo1}*p  Fp-g
Hp gFn-1+pFp-2 glFp-1/Fn-2)+p Fn-2
goes to _
1+/5
2
asn — oo

Theorem 3. Letp, g, p* g* H, and H; have the same meaning as in Theorem 2. Then the sequence
(xn) = Nog(H,+Hy )
isu.d. mod 1.
Proof. By the definitions of #,, and H,, we have
Hp+Hpy = (g+q*)Fp_q+(p+p*)Fp2 (n = 3)

and so we see that

(g +g*)Fn+(p+p*)Fp-yq
Xn#1=Xn =109 ((Hps1+ Haer)/ (Hy + Hp)) = log (g +q*)F _nf+(p ¥p*)Fpo

[Continued on Page 281.]



