A PRIMER FOR THE FIBONACCI NUMBERS, PART XV VARIATIONS ON SUMMING A SERIES OF RECIPROCALS OF FIBONACCI NUMBERS

V. E. HOGGATT, JR., and MARJORIE BICKNELL San Jose State University, San Jose, California 95192

It is not easy, in general, to derive the sum of a series whose terms are reciprocals of Fibonacci numbers such that the subscripts are terms of geometric progressions. However, in [1] Good shows that

(1)
$$\sum_{n=0}^{\infty} \frac{1}{F_{2^n}} = \frac{7 - \sqrt{5}}{2}$$

a problem proposed by Millin [2]. This particular series can be summed in several different ways.

Method I. Write out the first few terms of (1),

1,
$$1+1$$
, $1+1+\frac{1}{3}=\frac{7}{3}$, $1+1+\frac{1}{3}+\frac{1}{21}=\frac{50}{21}$, ...

Now,

$$\frac{50}{21} = 1 + \frac{29}{21} = 1 + \frac{L_7}{F_0}$$
,

which suggests that

(2)
$$\frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_4} + \dots + \frac{1}{F_{2^n}} = 1 + \frac{L_{2^n - 1}}{F_{2^n}}.$$

From [3], we write

$$(3) L_m L_{m+1} - L_{2m+1} = (-1)^m$$

from which it follows that

$$1 + \frac{L_{2^{n}-1}}{F_{2^{n}}} \cdot \frac{L_{2^{n}}}{L_{2^{n}}} + \frac{1}{F_{2^{n+1}}} = 1 + \frac{L_{2^{n+1}-1}}{F_{2^{n+1}}}$$

since $F_m L_m = F_{2m}$. Thus, we can prove (2) by mathematical induction. If we compute the limit as $n \to \infty$ for (2), then we have the infinite sum of (1), for (see [3])

$$\lim_{n\to\infty} \left(1+\frac{L_{2^{n}-1}}{F_{2^{n}}}\right) = \lim_{n\to\infty} \left(1+\frac{L_{2^{n}}}{F_{2^{n}}}\cdot\frac{L_{2^{n}-1}}{L_{2^{n}}}\right) = 1+\sqrt{5}\cdot\frac{1}{a},$$

where $a = (1 + \sqrt{5})/2$, which simplifies to $(7 - \sqrt{5})/2$.

The limits used above can be easily derived from the well-known

$$F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta} \,, \qquad L_n = \alpha^n + \beta^n \,,$$

where $a = (1 + \sqrt{5})/2$, $\beta = (1 - \sqrt{5})/2$ are the roots of $x^2 - x - 1 = 0$.

$$\lim_{n\to\infty} \frac{L_n}{F_n} = \lim_{n\to\infty} (a-\beta) \frac{a^n + \beta^n}{a^n - \beta^n} = \lim_{n\to\infty} (a-\beta) \frac{1 + (\beta/a)^n}{1 - (\beta/a)^n} = \sqrt{5}$$

since $(a - \beta) = \sqrt{5}$ and $\beta/a < 1$. In an entirely similar manner, we could show that

$$\lim_{n\to\infty} L_{n+r}/L_n = \alpha^r, \qquad \lim_{n\to\infty} F_{n+r}/F_n = \alpha^r.$$

Method II. Returning to the first few terms of (1),

$$\frac{50}{21} = 2 + \frac{8}{21} = 2 + \frac{F_6}{F}$$

which suggests

(4)
$$\frac{1}{F_1} + \frac{1}{F_2} + \dots + \frac{1}{F_{2^n}} = 2 + \frac{F_{2^n-2}}{F_{2^n}}.$$

If we take the limit as $n \to \infty$ of the right-hand side of (4), we obtain $2 + 1/\alpha^2 = (7 - \sqrt{5})/2$. We can prove (4) by induction, since

$$2 + \frac{F_{2^{n}-2}}{F_{2^{n}}} + \frac{1}{F_{2^{n+1}}} = 2 + \frac{(F_{2^{n+1}})(F_{2^{n}-2})/F_{2^{n}+1}}{F_{2^{n+1}}} = 2 + \frac{L_{2^{n}}F_{2^{n}-2}+1}{F_{2^{n+1}}}.$$

We need to establish that

$$F_{2^{n}-2}L_{2^{n}}+1=F_{2^{n+1}-2}$$

which follows from (see [3], [4])

$$F_{m+p} - F_{m-p} = F_p L_m, \quad p \text{ even,}$$

where $m + p = 2^{n+1} - 2$, m - p = 2, $m = 2^n$, $p = 2^n - 2$, so that

$$F_{2^{n+1}-2} - F_2 = F_{2^n-2} L_{2^n}$$
.

Method III. Examining the first terms of (1) yet again,

$$\frac{50}{21} = 3 - \frac{13}{21} = 3 - \frac{F_2}{F_8}$$

suggests

(6)
$$\frac{1}{F_1} + \frac{1}{F_2} + \dots + \frac{1}{F_{2^n}} = 3 - \frac{F_{2^n - 1}}{F_{2^n}} ,$$

used by Good [1], where the limit as $n \to \infty$ of the right-hand side is $3 - 1/\alpha = (7 - \sqrt{5})/2$. Establishing (6) by induction involves showing that

$$3 - \frac{F_{2^{n}-1}}{F_{2^{n}}} + \frac{1}{F_{2^{n}+1}} = 3 - \frac{L_{2^{n}}F_{2^{n}-1} - 1}{F_{2^{n}+1}} = 3 - \frac{F_{2^{n}+1} - 1}{F_{2^{n}}} ,$$

where we need

$$L_{2^{n}}F_{2^{n}-1} = F_{2^{n+1}-1} + F_{1}$$

which follows from [3], [4]

$$F_{m+p} + F_{m-p} = L_m F_p$$
, ρ odd,

where $m + p = 2^{n+1} - 1$, m - p = 1, $m = 2^n$, $p = 2^n - 1$.

Method IV. Proceeding in a similar manner, we notice that

$$\frac{50}{21} = 4 - \frac{34}{21} = 4 - \frac{F_9}{F_9}$$

and

$$\lim_{n \to \infty} \left(4 - \frac{F_{2^{n}+1}}{F_{2^{n}}} \right) = 4 - a = 4 - \frac{1 + \sqrt{5}}{2} = \frac{7 - \sqrt{5}}{2} ,$$

if indeed

(7)
$$\frac{1}{F_1} + \frac{1}{F_2} + \dots + \frac{1}{F_{2^n}} = 4 - \frac{F_{2^n + 1}}{F_{2^n}}.$$

Thus one expects

$$L_{2^n}F_{2^{n+1}}-1=F_{2^{n+1}+1}$$

which follows from [3], [4]

$$F_{m+p} + F_{m-p} = L_p F_m, \quad p \text{ even},$$

where $m + p = 2^{n+1} + 1$, m - p = 1, $m = 2^n + 1$, $p = 2^n$.

Method V. Again looking at the early terms of (1),

$$\frac{50}{21} = 5 - \frac{F_{10}}{F_{0}}$$

suggests

(9)
$$\frac{1}{F_1} + \frac{1}{F_2} + \dots + \frac{1}{F_{2^n}} = 5 - \frac{F_{2^n - 2}}{F_{2^n}} ,$$

where the limit of the right-hand side as $n \to \infty$ is $5 - a^2 = 5 - (a + 1) = 4 - a$ again. From the form of (9) and earlier experience, one expects

$$F_{2^{n}+2}L_{2^{n}}-1=F_{2^{n+1}+2}$$

which follows from (8), where $m+p=2^{n+1}+2$, m-p=2, $m=2^n+2$ and $p=2^n$.

Method VI. One last time, we inspect the early terms of (1) to observe

$$\frac{50}{21} = 6 - \frac{76}{21} = 6 - \frac{L_9}{F_8}$$

which has the form of

(10)
$$\frac{1}{F_1} + \frac{1}{F_2} + \dots + \frac{1}{F_{2^n}} = 6 - \frac{L_{2^n + 1}}{F_{2^n}}$$

The proof of (10) by induction depends upon the identity

$$L_{2^{n+1}}L_{2^{n}}-1=L_{2^{n+1}+1}$$

which follows readily from (3). The limit as $n \to \infty$ of the right-hand side of (10) follows from

$$\lim_{n \to \infty} \frac{L_{2^{n}+1}}{F_{2^{n}}} = \lim_{n \to \infty} \frac{L_{2^{n}}}{F_{2^{n}}} \cdot \frac{L_{2^{n}+1}}{L_{2^{n}}} = \sqrt{5} \cdot a,$$

becoming $6 - \sqrt{5} \cdot a$, which simplifies to $(7 - \sqrt{5})/2$.

Method VII. We again return to the early terms of (1), but we proceed in a different manner.

$$2 + \frac{1}{3} + \frac{1}{21} = 2 + \frac{7+1}{21} = 2 + \frac{L_4 + 1}{F_8}$$

$$2 + \frac{L_4 + 1}{F_8} + \frac{1}{F_{16}} = 2 + \frac{L_8 L_4 + L_8 + 1}{F_{16}} = 2 + \frac{L_{12} + L_8 + L_4 + 1}{F_{16}}$$

Assume that

(11)
$$\sum_{i=0}^{n} \frac{1/F_{2^{i}}}{F_{2^{i}}} = 2 + \frac{L_{2^{n}-4} + L_{2^{n}-8} + L_{2^{n}-12} + \dots + L_{4} + 1}{F_{2^{n}}}$$

Since

$$\lim_{n\to\infty}\frac{L_{m-r}}{F_m}=\sqrt{5}\cdot\alpha^{-r},$$

the limit as $n \to \infty$ of the right-hand side of (11) becomes

$$\begin{aligned} 2 + \sqrt{5} \left(a^{-4} + a^{-8} + a^{-12} + \cdots \right) + 0 &= 2 + \sqrt{5} \cdot a^{-4} \left[1/(1 - a^{-4}) \right] &= 2 + \sqrt{5} \left[1/(a^4 - 1) \right] \\ &= 2 + \sqrt{5} \left[1/(a^2 + 1)(a^2 - 1) \right] &= 2 + \sqrt{5} \left[1/(\sqrt{5} \, a)(a) \right] &= 2 + 1/a^2 \end{aligned}$$

since

$$a^2 = a+1$$
 and $a^2 + 1 = a+2 = \frac{1+\sqrt{5}}{2} + 2 = \frac{5+\sqrt{5}}{2} = \sqrt{5} \cdot a$.

Also, since $a^n = (L_n + F_n \sqrt{5})/2$, $a^2 = (3 + \sqrt{5})/2$, and the above becomes

$$2 + 1/\alpha^2 = 2 + (3 - \sqrt{5})/2 = (7 - \sqrt{5})/2$$
.

Here, (11) can be proved by induction if the identity

(12)
$$L_{2^{n}(\overset{1}{L}(2^{n}-4)} + L_{(2^{n}-8)} + \dots + L_{4} + 1) = L_{2^{n+1}-4} + L_{2^{n+1}-8} + \dots + L_{4}$$

is known. (See [5]).

We could also have used

(13)
$$\sum_{j=1}^{n} L_{2kj} = \frac{L_{2k}(n+1) - L_{2kn} - L_{2k} - 2}{L_{2k} - 2}$$

to sum the numerator of (11), and proceeded as in [6].

Method VIII. Starting with the first few partial sums

$$\frac{1}{F_1} + \frac{1}{F_2} = 1 + \frac{L_2}{F_4}, \quad \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_4} = 1 + \frac{L_2 + 1}{F_4}, \quad \frac{1}{F_1} + \frac{1}{F_2} + \frac{1}{F_4} + \frac{1}{F_8} = 1 + \frac{L_6 + L_4 + L_2 + 1}{F_8}$$
Generally,

(14)
$$\sum_{i=0}^{n} 1/F_{2i} = 1 + \frac{L_{2^{n}-2} + L_{2^{n}-4} + \dots + L_{2} + 1}{F_{2^{n}}},$$

but

$$L_{2m} + L_{2m-2} + \dots + L_2 = L_{2m+1} - 1$$
.

Thus

(15)
$$\sum_{i=0}^{n} 1/F_{2i} = 1 + \frac{L_{2n-1}}{F_{2n}} = A$$

so that

that
$$\lim_{n\to\infty} A = 1 + \sqrt{5}/\alpha = (7 - \sqrt{5})/2.$$
 Method IX. I. J. Good [7] uses the identity

$$\sum_{n=1}^{\infty} (xy)^{2^{n-1}}/(x^{2^n}-y^{2^n}) = \frac{\min abs(x,y)}{x-y},$$

where $x = (1 + \sqrt{5})/2$ and $y = (1 - \sqrt{5})/2$. This is not quite complete by itself.

Method X. On the other hand, L. Carlitz [8] uses

$$\sum_{n=0}^{\infty} 1/F_{2^n} = \sum_{i=0}^{\infty} \frac{a-\beta}{a^{2^i} - \beta^{2^i}} = 1 + \sum_{i=1}^{\infty} \frac{a-\beta}{a^{2^i} - \beta^{2^i}} = (a-\beta) \sum_{i=1}^{\infty} \left(\sum_{j=0}^{\infty} \beta^{j2^j} / a^{(j+1)2^j} \right) + 1,$$

but $(a\beta)^2 = 1$, so that this is

$$(a-\beta)\sum_{j=1}^{\infty}\left(\sum_{j=0}^{\infty}a^{-(2j+1)2^{j}}\right)+1$$

but clearly, every even number greater than zero can be written as $(2j + 1)2^{i}$. Thus, this is

$$1 + (a - \beta) \sum_{n=1}^{\infty} a^{-2n} = 1 + \frac{a^{-2}(a - \beta)}{1 - a^{-2}} = 1 + \frac{a - \beta}{a^2 - 1} = 1 + \sqrt{5}/a = \frac{7 - \sqrt{5}}{2}$$

Method XI. For yet another method see A. G. Shannon's solution in the April 1976 Advanced Problem Section solution to H-237.

REFERENCES

- I. J. Good, "A Reciprocal Series of Fibonacci Numbers," The Fibonacci Quarterly, Vol. 12, No. 4 (Dec. 1974), p. 346.
- 2. D. A. Millin, Problem H-237, The Fibonacci Quarterly, Vol. 12, No. 3 (Oct. 1974), p. 309.
- 3. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton-Mifflin, Boston, 1969.
- I. D. Ruggles, "Some Fibonacci Results Using Fibonacci-Type Sequences," The Fibonacci Quarterly, Vol. 1, No. 2 (April 1963), pp. 75–80.
- 5. Ken Siler, "Fibonacci Summations," The Fibonacci Quarterly, Vol. 1, No. 3 (Oct. 1963), pp. 67-69.
- 6. V. E. Hoggatt, Jr., and Marjorie Bicknell, "A Reciprocal Series of Fibonacci Numbers with subscripts k2"," The Fibonacci Quarterly, to appear.
- 7. I. J. Good and P. S. Bruckman, "A Generalization of a Series of De Morgan with Applications of Fibonacci Type," *The Fibonacci Quarterly*, Vol. 14, No. 3 (Oct. 1976), pp. 193—196.
- 8. L. Carlitz, private communication.

[Continued from Page 253.]

Then the sequence

$$(w_n) = (\log H_n H_n^*)$$

is u.d. mod 1.

Proof. We have

$$w_{n+1} - w_n = \log \frac{H_{n+1}}{H_n} + \log \frac{H_{n+1}^*}{H_n^*}$$

which tends to

$$2 \log \frac{1+\sqrt{5}}{2}$$

as $n \to \infty$ for

$$\frac{H_{n+1}}{H_n} = \frac{qF_n + pF_{n-1}}{qF_{n-1} + pF_{n-2}} = \frac{q(F_n/F_{n-1}) + p}{q(F_{n-1}/F_{n-2}) + p} \cdot \frac{F_{n-1}}{F_{n-2}}$$

goes to

$$\frac{1+\sqrt{5}}{2}$$

as $n \to \infty$

Theorem 3. Let p, q, p^*, q^*, H_p and H_p^* have the same meaning as in Theorem 2. Then the sequence

$$(x_n) = (\log (H_n + H_n^*))$$

is u.d. mod 1.

Proof. By the definitions of H_n and H_n^* we have

$$H_n + H_n^* = (q + q^*)F_{n-1} + (p + p^*)F_{n-2}$$
 $(n \ge 3)$

and so we see that

$$x_{n+1} - x_n = \log \left((H_{n+1} + H_{n+1}^*) / (H_n + H_n^*) \right) = \log \frac{(q+q^*)F_n + (p+p^*)F_{n-1}}{(q+q^*)F_{n-1} + (p+p^*)F_{n-2}} ,$$

[Continued on Page 281.]