The Fibonacci Quarterly 1974 (12,4): 346

A RECIPROCAL SERIES OF FIBONACCI NUMBERS

I. J. GOOD

Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Theorem

$$
\frac{1}{F_{1}}+\frac{1}{F_{2}}+\frac{1}{F_{4}}+\frac{1}{F_{8}}+\frac{1}{F_{16}}+\ldots=\frac{7-\sqrt{5}}{2} .
$$

Proof

$$
\frac{1}{F_{1}}+\frac{1}{F_{2}}+\frac{1}{F_{4}}+\cdots+\frac{1}{F_{2^{n}}}=3-F_{2^{n}-1} / F_{2^{n}}
$$

is easily proved by induction using Binet's formula, and the theorem follows by letting $n \rightarrow \infty$. The result resembles the formula
where

$$
\sqrt{m}=\frac{(m-1) a_{n}}{4 \beta_{n-1}}-\frac{m-1}{2}\left(\frac{1}{\beta_{n}}+\frac{1}{\beta_{n+1}}+\cdots\right)
$$

(Reference 1.
Some curious properties of Fibonacci numbers appeared in [2] ; for example,

$$
\Delta_{48}^{2} 5^{F_{n}}=5^{F_{n+96}}-2 \cdot 5^{F_{n+48}}+5^{F_{n}}
$$

is a multiple of $2^{12} 3^{5} 7^{3}=341,397,504$ for $n=1,2,3, \cdots$.

REFERENCES

1. I.J. Good and T.N. Gover, "Addition to The Generalized Serial Test and the Binary Expansion of $\sqrt{2}$,"Journal of the Royal Statistical Society, Ser. A, 131 (1968), p. 434.
2. I.J. Good and R.A. Gaskins, "Some Relationships Satisfied by Additive and Multiplicative Congruential Sequences, with Implications for Pseudo-random Number Generation," Computers in Number Theory: Proceedings of the Science Research Council Atlas Symposium No. 2 at Oxford, 18-23 August 1969 (Academic Press, Aug. 1971, eds. A.O.L. Atkin and B.J. Birch), 125-136.

*

This work was supported in part by the Grant H.E.W. ROIGM18770-02.
Received by the Editors May, 1972. See H-237, Oct. 1974 Fibonacci Quarterly, p. 309.

