Journal of Integer Sequences, Vol. 6 (2003),
Article 03.3.3

Matrix Transformations of Integer Sequences

Clark Kimberling
Department of Mathematics
University of Evansville
1800 Lincoln Avenue
Evansville, IN 47722
ck6@evansville.edu

Abstract

The integer sequences with first term 1 comprise a group \mathcal{G} under convolution, namely, the Appell group, and the lower triangular infinite integer matrices with all diagonal entries 1 comprise a group \mathbb{G} under matrix multiplication. If $A \in \mathcal{G}$ and $M \in \mathbb{G}$, then $M A \in \mathcal{G}$. The groups \mathcal{G} and \mathbb{G} and various subgroups are discussed. These include the group $\mathbb{G}^{(1)}$ of matrices whose columns are identical except for initial zeros, and also the group $\mathbb{G}^{(2)}$ of matrices in which the odd-numbered columns are identical except for initial zeros and the same is true for even-numbered columns. Conditions are determined for the product of two matrices in $\mathbb{G}^{(m)}$ to be in $\mathbb{G}^{(1)}$. Conditions are also determined for two matrices in $\mathbb{G}^{(2)}$ to commute.

1 Introduction

Let \mathcal{G} be the set of integer sequences $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ for which $a_{1}=1$. The notations $A=$ $\left(a_{1}, a_{2}, a_{3}, \ldots\right), B=\left(b_{1}, b_{2}, b_{3}, \ldots\right), C=\left(c_{1}, c_{2}, c_{3}, \ldots\right)$ will always refer to elements of \mathcal{G}. The finite sequence ($a_{1}, a_{2}, a_{3}, \ldots, a_{n}$) will be denoted by A_{n}, and likewise for B_{n} and C_{n}. Let \star denote convolution; i.e., if $C=A \star B$, then

$$
c_{n}=\sum_{k=1}^{n} a_{k} b_{n-k+1},
$$

which we shall sometimes write as $A_{n} \circledast B_{n}$, so that $A \star B$ is the sequence having $A_{n} \circledast B_{n}$ as nth term. Formally,

$$
\sum_{k=1}^{\infty} c_{k} x^{k-1}=\left(\sum_{k=1}^{\infty} a_{k} x^{k-1}\right)\left(\sum_{k=1}^{\infty} b_{k} x^{k-1}\right) .
$$

In particular, if $c_{1}=1$ and $c_{k}=0$ for $k \geq 2$, then the sequence B has generating function $1 /\left(a_{1}+a_{2} x+a_{3} x^{2}+\cdots\right)$, and A and B are a pair of convolutory inverses.

Let \mathcal{G}_{n} denote the group of finite sequences A_{n} under \star; the identity is $I_{n}=(1,0,0, \ldots, 0)$, and A_{n}^{-1} is the sequence B_{n} given inductively by $b_{1}=1$ and

$$
\begin{equation*}
b_{n}=-\sum_{k=1}^{n-1} a_{n-k+1} b_{k} \tag{1}
\end{equation*}
$$

for $n \geq 2$. The algebraic system (\mathcal{G}, \star) is a commutative group known as the Appell subgroup of the Riordan group. Its elements, the Appell sequences, are special cases of the Sheffler sequences, which play a leading role in the umbral calculus [2, Chapter 4]; however, the umbral developments are not used in this paper. In \mathcal{G}, the identity and A^{-1} are the limits of I_{n} and A_{n}^{-1}. (Here, limits are of the combinatorial kind: suppose $j_{1}, j_{2}, j_{3}, \ldots$ is an unbounded nondecreasing sequence of positive integers and $\left\{a_{i, j}\right\}$ is a sequence of sequences such for each i,

$$
\left(a_{k, 1}, a_{k, 2}, a_{k, 3}, \ldots, a_{k, j_{i}}\right)=\left(a_{i, 1}, a_{i, 2}, a_{i, 3}, \ldots, a_{i, j_{i}}\right)
$$

for every $k>i$. Then

$$
\lim _{i \rightarrow \infty}\left(a_{i, 1}, a_{i, 2}, a_{i, 3}, \ldots\right)
$$

is defined as the sequence $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ such that for every n there exists i_{0} such that if $i>i_{0}$, then

$$
\left.\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)=\left(a_{i, 1}, a_{i, 2}, a_{i, 3}, \ldots, a_{i, n}\right) .\right)
$$

The study of the group (\mathcal{G}, \star), we shall soon see, is essentially that of a certain group of matrices. However, we shall consider first a more general group of matrices.

For any positive integer n, let \mathbb{G}_{n} be the set of lower triangular $n \times n$ integer matrices with all diagonal entries 1 , and let • denote matrix multiplication. Then $\left(\mathbb{G}_{n}, \cdot\right)$ is a noncommutative group. Now let \mathbb{G} denote the set of lower triangular infinite integer matrices with all diagonal entries 1 . In such a matrix, every column, excluding the zeros above the diagonal, is an element of \mathcal{G}, and (\mathbb{G}, \cdot) is a noncommutative group. Properties of matrices in \mathbb{G} arise via limits of those of matrices in \mathbb{G}_{n}. For example, if $M=\left(m_{i j}\right) \in \mathbb{G}$, then the $\operatorname{matrix} M_{n}:=\left(m_{i j}\right)$, where $1 \leq i \leq n$ and $1 \leq j \leq n$, is an element of \mathbb{G}_{n}, and

$$
M^{-1}=\lim _{n \rightarrow \infty} M_{n}^{-1}
$$

It is easy to check that if $A \in \mathcal{G}$ and $M \in \mathbb{G}$, then $M \cdot A \in \mathcal{G}$; here A is regarded as an infinite column vector.

Among subgroups of \mathbb{G} is the Riordan group (in the case that the coefficients are all integers) introduced in [3]. Although the Riordan group will not be further discussed in this paper, the reader may wish to consult the references listed at A053121 (the Catalan triangle) in [4].

Suppose $T=\left(t_{1}, t_{2}, t_{3}, \ldots\right) \in \mathcal{G}$. Let \mathbb{T} be the matrix in \mathbb{G} whose i th row is

$$
t_{i}, t_{i-1}, \ldots, t_{1}, 0,0 \ldots,
$$

so that the first column of \mathbb{T} is T, and each subsequent column contains T as a subsequence. Let $\mathbb{G}^{(1)}$ be the set of all such matrices \mathbb{T}. If \mathbb{T} and \mathbb{U} in $\mathbb{G}^{(1)}$ have first columns T and U, respectively, then the first column of $\mathbb{T} \cdot \mathbb{U}$ is the sequence $T \star U$, and $\mathbb{T} \cdot \mathbb{U} \in \mathbb{G}^{(1)}$. Clearly, $\left(\mathbb{G}^{(1)}, \cdot\right)$ is isomorphic to (\mathcal{G}, \star). Matrices in $\mathbb{G}^{(1)}$ will be called sequential matrices.

One more property of the group \mathbb{G}, with easy and omitted proof, will be useful: if $M=\left(m_{i j}\right) \in \mathbb{G}$ and $f(M):=\left((-1)^{i+j} m_{i j}\right)$, then

$$
\begin{equation*}
(f(M))^{-1}=f\left(M^{-1}\right) \tag{2}
\end{equation*}
$$

2 The Appell group (\mathcal{G}, \star)

The first theorem in this section concerns the convolutory inverse of a linear recurrence sequence of order $m \geq 2$.

Theorem 1. Suppose $m \geq 2$, and $a_{1}=1, a_{2}, \ldots, a_{m}$ are initial values of an m th order recurrence sequence given by

$$
\begin{equation*}
a_{n}=u_{1} a_{n-1}+u_{2} a_{n-2}+\cdots+u_{m} a_{n-m}+r_{n-m} \tag{3}
\end{equation*}
$$

for $n \geq m+1$, where $u_{1}, u_{2}, \ldots, u_{m}$ and $r_{1}, r_{2}, r_{3}, \ldots$ are integers and $u_{m} \neq 0$. Then the convolutory inverse, B, of A, is a sequence

$$
\left(1, b_{2}, \ldots, b_{m}, b_{m+1}, b_{m+2}, \ldots\right)
$$

for which the subsequence $\left(b_{m+2}, b_{m+3}, \ldots\right)$ satisfies

$$
b_{n}=\sum_{k=1}^{m-1} b_{n-k} c_{k}-B_{n-m} \circledast R_{n-m}
$$

where

$$
c_{k}=-a_{k+1}+\sum_{j=1}^{k} u_{j} a_{k+1-j}
$$

for $n \geq m+2$.
Proof: $\operatorname{By}(1), b_{1}=a_{1}=1$. Also, $b_{2}=-a_{2}$, and

$$
b_{n}=-a_{n} b_{1}-a_{n-1} b_{2}-\cdots-a_{2} b_{n-1}
$$

for $n \geq 3$. For the rest of this proof, assume that $n \geq m+2$, and for later convenience, let

$$
s_{n}=-a_{n} b_{1}-a_{n-1} b_{2}-\cdots-a_{m+2} b_{n-m-1} .
$$

For $n \geq m+2$ (but not generally for $n=m+1$), the recurrence (1) gives

$$
\sum_{k=1}^{m} u_{k} b_{n-k}=-\sum_{j=1}^{n-m-1} b_{j} \sum_{k=1}^{m} u_{k} a_{n-k-j+1}-U
$$

where

$$
U=\sum_{k=1}^{m-1} u_{k} \sum_{j=2}^{m-k+1} a_{j} b_{n-k-j+1} .
$$

Then

$$
\begin{aligned}
\sum_{k=1}^{m} u_{k} b_{n-k} & =-\sum_{j=1}^{n-m-1} b_{j}\left(a_{n+1-j}-r_{n+1-j-m}\right)-U \\
& =s_{n}+\sum_{j=1}^{n-m-1} b_{j} r_{n+1-j-m}-U \\
& =b_{n}+\sum_{j=2}^{m+1} a_{j} b_{n+1-j}+\sum_{j=1}^{n-m-1} b_{j} r_{n+1-j-m}-U
\end{aligned}
$$

so that

$$
\begin{equation*}
b_{n}=\sum_{k=1}^{m} u_{k} b_{n-k}-\sum_{j=2}^{m+1} a_{j} b_{n+1-j}-\sum_{j=1}^{n-m-1} b_{j} r_{n+1-j-m}+U . \tag{4}
\end{equation*}
$$

Now put $n=m+1$ into (3) and substitute in (4) for a_{m+1}. The resulting coefficient of b_{n-m} is $-r_{1}$, and (4) simplifies to

$$
\begin{aligned}
b_{n} & =\sum_{k=1}^{m-1} u_{k} b_{n-k}-\sum_{j=2}^{m} a_{j} b_{n+1-j}+\sum_{k=1}^{m-2} u_{k} \sum_{j=2}^{m-k} a_{j} b_{n-k-j+1}-\sum_{j=1}^{n-m} b_{j} r_{n+1-j-m} \\
& =\sum_{k=1}^{m-1} b_{n-k}\left(-a_{k+1}+\sum_{j=1}^{k} u_{j} a_{k+1-j}\right)-\sum_{j=1}^{n-m} b_{j} r_{n+1-j-m} .
\end{aligned}
$$

Corollary 1. If the recurrence for A in (3) is homogeneous of order $m \geq 2$, then the recurrence for the sequence $\left(b_{4}, b_{5}, b_{6}, \ldots\right)$ is of order $m-1$. If $m=2$, then the convolutory inverse of A is the sequence

$$
\left(b_{1}, b_{2}, b_{3}, \ldots\right)=\left(1,-a_{2}, f,\left(u_{1}-a_{2}\right) f,\left(u_{1}-a_{2}\right)^{2} f,\left(u_{1}-a_{2}\right)^{3} f, \ldots\right),
$$

where $f=a_{2}^{2}-a_{3}$.
Proof: Homogeneity of a means that $r_{n}=0$ for $n \geq 1$, so that $b_{n}=\sum_{k=1}^{m-1} c_{k} b_{n-k}$ for $n \geq m+2$.

Example 1. The Fibonacci sequence, $A=(1,1,2,3,5,8, \ldots)$, has inverse $(1,-1,-1,0,0,0,0,0, \ldots)$.
Example 2. The Lucas sequence, $A=(1,3,4,7,11,18, \ldots)$, has inverse, $(1,-3,5,-10,20,-40,80, \ldots)$, recurrent with order 1 beginning at the third term.

Example 3. Let A be the 2 nd-order nonhomogeneous sequence given by $a_{1}=1, a_{2}=$ 1 , and $a_{n}=a_{n-1}+a_{n-2}+n-2$ for $n \geq 3$. The inverse of A is the sequence $B=$ $(1,-1,-2,-1,1,4,6,4,-4,-11, \ldots)$ given for $n \geq 4$ by

$$
b_{n}=-B_{n-2} \circledast R_{n-2}=-\left(b_{1}, b_{2}, \cdots, b_{n-2}\right) \star(1,2,3, \ldots, n-2) .
$$

Example 4. Suppose that A and C are sequences in \mathcal{G}. Since \mathcal{G} is a group, there exists B in \mathcal{G} such that $A=B \star C$. For example, if A and C are the Fibonacci and Lucas sequences of Examples 1 and 2, then

$$
B=A \star C^{-1}=(1,-2,4,-8,16, \ldots),
$$

a 1st-order sequence.
Theorem 2. Let $B=\left(1, b_{2}, b_{3}, \ldots\right)$ be the convolutory inverse of $A=\left(1, a_{2}, a_{3}, \ldots\right)$, and let $\widehat{A}=\left(1,-a_{2}, a_{3},-a_{4}, a_{5},-a_{6}, \ldots\right)$. Then the convolutory inverse of \widehat{A} is the sequence $\widehat{B}=\left(1,-b_{2}, b_{3},-b_{4}, b_{5},-b_{6}, \ldots\right)$.

Proof: Apply (2) to the subgroup $\mathbb{G}^{(1)}$ of sequential matrices.
Example 5. Let A be the sequence given by $a_{n}=\lfloor n \tau\rfloor$, where $\tau=(1+\sqrt{5}) / 2$. Then

$$
A=(1,3,4,6,8,9,11,12, \ldots) \quad \text { and } \quad A^{-1}=(1,-3,5,-9,17,-30,52,-90, \ldots)
$$

Let A be the sequence given by $a_{n}=(-1)^{n-1}\lfloor n \tau\rfloor$. Then

$$
A=(1,-3,4,-6,8,-9,11,-12, \ldots) \quad \text { and } \quad A^{-1}=(1,3,5,9,17,30,52,90, \ldots)
$$

Example 6. Let A be the Catalan sequence, given by $a_{n}=\frac{1}{n}\binom{2 n-2}{n-1}$. Then

$$
\begin{aligned}
A & =(1,1,2,5,14,42,132,429,1430, \ldots) \\
A^{-1} & =(1,-1,-1,-2,-5,-14,-42,-132, \ldots)
\end{aligned}
$$

Example 7. Let A be the sequence of central binomial coefficients, given by $a_{n}=$ $\binom{2 n-2}{n-1}$, Then

$$
A=(1,2,6,20,70,252,924, \ldots) \quad \text { and } \quad A^{-1}=(1,-2,-2,-4,-10,-28,-84,-264, \ldots)
$$

with obvious connections to the Catalan sequence.
Certain operations on sequences in \mathcal{G} are easily expressed in terms of convolution. Two of these operations are given as follows. Suppose x is an integer, and $A=\left(1, a_{2}, a_{3}, \ldots\right)$ is a sequence in \mathcal{G}, with inverse $B=\left(1, b_{2}, b_{3}, \ldots\right)$. Then

$$
\left(1, x a_{2}, x a_{3}, x a_{4}, \ldots\right)=\left(1,(1-x) b_{2},(1-x) b_{3},(1-x) b_{4}, \ldots\right) \star A
$$

and

$$
\left(1, x, a_{2}, a_{3}, \ldots\right)=\left(1, x+b_{2},(x-1) b_{2}+b_{3},(x-1) b_{3}+b_{4}, \ldots\right) \star A .
$$

Stated in terms of power series

$$
a(t)=1+a_{2} t+a_{3} t^{2}+\cdots \text { and } 1 / a(t)=b(t)=1+b_{2} t+b_{3} t^{2}+\cdots,
$$

the two operations correspond to the identities

$$
\begin{aligned}
x a(t)+1-x & =[(1-x) b(t)+x] a(t) ; \\
t a(t)+1+(x-1) t & =\{b(t)+[(x-1) b(t)+1] t\} a(t) .
\end{aligned}
$$

3 The group $\left(\mathbb{G}^{(m)}, \cdot\right)$

Recall that the set \mathbb{G} consists of the lower triangular infinite integer matrices with all diagonal entries 1. Define ' on \mathbb{G} as follows: if $A \in \mathbb{G}$, then A^{\prime} is the matrix that remains when row 1 and column 1 of A are removed. Clearly $A^{\prime} \in \mathbb{G}$. Define

$$
A^{(0)}=A, \quad A^{(n)}=\left(A^{(n-1)}\right)^{\prime}
$$

for $n \geq 1$. Let

$$
\mathbb{G}^{(m)}=\left\{A \in \mathbb{G}: A^{(m)}=A\right\}
$$

for $m \geq 0$. Note that $\left(\mathbb{G}^{(1)}, \cdot\right)$ is the group of sequential matrices introduced in Section 1, and $\mathbb{G}^{(m)} \subset \mathbb{G}^{(d)}$ if and only if $d \mid m$.

Theorem 3. $\left(G^{(m)}, \cdot\right)$ is a group for $m \geq 0$.
Proof: $\quad\left(\mathbb{G}^{(0)}, \cdot\right)$ is the group (\mathbb{G}, \cdot). For $m \geq 1$, first note that $(A B)^{\prime}=A^{\prime} B^{\prime}$, so that, inductively, $(A B)^{(q)}=A^{(q)} B^{(q)}$ for all $q \geq 1$. In particular, if A and B are in $\mathbb{G}^{(m)}$, then

$$
(A B)^{(m)}=A^{(m)} B^{(m)}=A B,
$$

so that $A B \in \mathbb{G}^{(m)}$. Moreover,

$$
\left(A^{-1}\right)^{(m)}=\left(A^{(m)}\right)^{-1}=A^{-1},
$$

so that $A^{-1} \in \mathbb{G}^{(m)}$.

4 The group $\left(\mathbb{G}^{(2)}, \cdot\right)$

Suppose that A, B, C, D are sequences in \mathcal{G}. Let $\langle A ; B\rangle$ denote the matrix in $\mathbb{G}^{(2)}$ whose first column is $A=\left(a_{1}, a_{2}, \ldots\right)$ and whose second column is $\left(0, b_{1}, b_{2}, \ldots\right)$, where $a_{1}=b_{1}=1$. We shall see that the product $\langle A ; B\rangle \cdot\langle C ; D\rangle$ is given by certain "mixed convolutions." Write $\langle A ; B\rangle \cdot\langle C ; D\rangle$ as $\langle U ; V\rangle$. Then

$$
u_{n}= \begin{cases}\left(a_{1}, b_{2}, a_{3}, \ldots, b_{n-1}, a_{n}\right) \star\left(c_{1}, c_{2}, \ldots, c_{n}\right), & \text { if } n \text { is odd } \\ \left(b_{1}, a_{2}, b_{3}, \ldots, b_{n-1}, a_{n}\right) \star\left(c_{1}, c_{2}, \ldots, c_{n}\right), & \text { if } n \text { is even }\end{cases}
$$

$$
v_{n}= \begin{cases}\left(b_{1}, a_{2}, b_{3}, \ldots, a_{n-1}, b_{n}\right) \star\left(d_{1}, d_{2}, \ldots, d_{n}\right), & \text { if } n \text { is odd; } \\ \left(a_{1}, b_{2}, a_{3}, \ldots, a_{n-1}, b_{n}\right) \star\left(d_{1}, d_{2}, \ldots, d_{n}\right), & \text { if } n \text { is even. }\end{cases}
$$

In particular $\langle A ; B\rangle \cdot\langle B ; A\rangle$ is the sequential matrix of the sequence $A \star B$.
Recursive formulas for columns of $\langle A ; B\rangle^{-1}$ can also be given: write $\langle A ; B\rangle^{-1}$ as $\langle X ; Y\rangle$, so that $\langle A ; B\rangle \cdot\langle X ; Y\rangle$ is the identity matrix. Each nondiagonal entry of $\langle A ; B\rangle \cdot\langle X ; Y\rangle$ is zero, so that, solving inductively for $x_{1}, x_{2}, x_{3}, \ldots$ and $y_{1}, y_{2}, y_{3}, \ldots$ gives

$$
\begin{align*}
& x_{n}= \begin{cases}-a_{n}-b_{n-1} x_{2}-a_{n-2} x_{3}-\cdots-b_{2} x_{n-1}, & \text { if } n \text { is odd; } \\
-a_{n}-b_{n-1} x_{2}-a_{n-2} x_{3}-\cdots-a_{2} x_{n-1}, & \text { if } n \text { is even; }\end{cases} \tag{5}\\
& y_{n}= \begin{cases}-b_{n}-a_{n-1} y_{2}-b_{n-2} y_{3}-\cdots-a_{2} y_{n-1}, & \text { if } n \text { is odd; } \\
-b_{n}-a_{n-1} y_{2}-b_{n-2} y_{3}-\cdots-b_{2} y_{n-1}, & \text { if } n \text { is even. }\end{cases} \tag{6}
\end{align*}
$$

Example 8. Example 6 shows that the Catalan sequence satisfies the equation

$$
\left(1, a_{2}, a_{3}, \ldots\right)^{-1}=\left(1,-1,-a_{2},-a_{3}, \ldots\right),
$$

which we abbreviate as $A^{-1}=(1,-A)$. It is natural to ask whether there are sequences A and B for which

$$
\begin{equation*}
\langle A ; B\rangle^{-1}=\langle 1,-A ; B\rangle . \tag{7}
\end{equation*}
$$

This problem is solved as follows. Write the first and second columns of $\langle 1,-A ; B\rangle$ as $\left(1, x_{2}, x_{3}, \ldots\right)$ and ($0,1, y_{2}, y_{3}, \ldots$), respectively. Equation (7) implies $x_{n}=-a_{n-1}$ and $y_{n}=b_{n}$ for $n \geq 2$. Thus, $b_{2}=y_{2}$, but also, by (6), $y_{2}=-b_{2}$, so that $b_{2}=0$. Inductively, (6) and (7) imply $b_{n}=0$ for all $n \geq 3$, so that B is the convolutory identity sequence: $B=(1,0,0,0, \ldots)$. Using this fact together with (5) gives

$$
x_{n}= \begin{cases}-a_{n}-a_{n-2} x_{3}-a_{n-4} x_{5}-\cdots-a_{2} x_{n-1}, & \text { if } n \text { is even; } \\ -a_{n}-a_{n-2} x_{3}-a_{n-4} x_{5}-\cdots-a_{3} x_{n-2}, & \text { if } n \text { is odd } ;\end{cases}
$$

so that, substituting $x_{k}=-a_{k-1}$, we have a recurrence for A :

$$
a_{n}= \begin{cases}a_{n-1}+a_{n-2} a_{2}+a_{n-4} a_{4}+\cdots+a_{2} a_{n-2} & \text { if } n \text { is even; } \\ a_{n-1}+a_{n-2} a_{2}+a_{n-4} a_{4}+\cdots+a_{3} a_{n-3} & \text { if } n \text { is odd; }\end{cases}
$$

with intial values $a_{1}=1, a_{2}=1$. This sequence, listed as A047749 in [4], is given by

$$
a_{n}= \begin{cases}\frac{1}{2 m+1}\binom{3 m}{m}, & \text { if } n=2 m \\ \frac{1}{2 m+1}\binom{3 m+1}{m+1}, & \text { if } n=2 m+1\end{cases}
$$

Example 9. Let $a_{n}=1$ and $b_{n}=F_{n}$ for $n \geq 1$, where F_{n} denotes the Fibonacci sequence in Example 1. Let C be the sequence given by $c_{1}=1, c_{2}=-1, c_{3}=0, c_{4}=1$, and $c_{n}=2^{\lfloor(n-5) / 2\rfloor}$ for $n \geq 5$. Let D be the sequence given by $d_{1}=1, d_{2}=-1, d_{3}=-1$, and $d_{n}=-c_{n+1}$ for $n \geq d_{4}$. Then $\langle A ; B\rangle^{-1}=\langle C ; D\rangle$.

Theorem 4. If any three of four sequences A, B, C, D in G are given, then the fourth sequence is uniquely determined by the condition that $\langle A ; B\rangle \cdot\langle C ; D\rangle$ be a sequential matrix.

Proof: The requirement that $\langle A ; B\rangle \cdot\langle C ; D\rangle$ be a sequential matrix is equivalent to an infinite system of equations, beginning with

$$
\begin{aligned}
d_{1} & =1 \\
b_{2}+d_{2} & =a_{2}+c_{2} \\
b_{3}+a_{2} d_{2}+d_{3} & =a_{3}+b_{2} c_{2}+c_{3}
\end{aligned}
$$

For $n \geq 3$, the system can be expressed as follows:

$$
\begin{align*}
& b_{n}+a_{n-1} d_{2}+b_{n-2} d_{3}+\cdots+h_{2} d_{n-1}+d_{n} \\
= & a_{n}+b_{n-1} c_{2}+a_{n-2} c_{3}+\cdots+h_{2}^{\prime} c_{n-1}+c_{n} \tag{8}
\end{align*}
$$

where $h_{2}=a_{2}$ if n is odd, $h_{2}=b_{2}$ if n is even; and $h_{2}^{\prime}=b_{2}$ if n is odd, $h_{2}^{\prime}=a_{2}$ if n is even.
Equations (8) show that each of the four sequences is determined by the other three.

Example 10. By (8), D is determined by A, B, C in accord with the recurrence

$$
\begin{align*}
d_{n}= & a_{n}+c_{2} b_{n-1}+c_{3} a_{n-2}+c_{4} b_{n-3}+\cdots+c_{n-1} h_{2}^{\prime}+c_{n} \\
& -b_{n}-d_{2} a_{n-1}-d_{3} b_{n-2}-d_{4} a_{n-3} \cdots-d_{n-1} h_{2} . \tag{9}
\end{align*}
$$

Suppose $a_{n}=b_{n}=c_{n-2}=0$ for $n \geq 3$. Then by (9),

$$
d_{n}= \begin{cases}-b_{2} d_{n-1}-a_{3} d_{n-2}, & \text { if } n \text { is even; } \\ -a_{2} d_{n-1}-b_{3} d_{n-2}, & \text { if } n \text { is odd }\end{cases}
$$

for $n \geq 4$, with $d_{1}=1, d_{2}=a_{2}-b_{2}, d_{3}=a_{3}-a_{2} d_{2}-b_{3} d_{1}$. If $\left(a_{1}, a_{2}, a_{3}\right)=(1,-1,-1)$ and $\left(b_{1}, b_{2}, b_{3}\right)=(1,-2,-1)$ and $c_{1}=1$, then

$$
D=(1,1,1,3,4,11,15,41,56,153, \ldots)
$$

which, except for the initial 1 , is the sequence of denominators of the convergents to $\sqrt{3}$, indexed in [4] as A002530. In this example, $\langle A ; B\rangle \cdot\langle C ; D\rangle$ is the sequential matrix with first three terms $1,-1,-1$ and all others zero.

Theorem 5. If A, B, C in G are given and $\left|a_{2}\right|=1$, then there exists a unique sequence D in G such that $\langle A ; B\rangle \cdot\langle C ; D\rangle=\langle C ; D\rangle \cdot\langle A ; B\rangle$.

Proof: Write $\langle A ; B\rangle \cdot\langle C ; D\rangle$ as $\left(s_{i j}\right)$ and $\langle C ; D\rangle \cdot\langle A ; B\rangle$ as $\left(t_{i j}\right)$. Equating $s_{n+1,1}$ and $t_{n+1,1}$ and solving for d_{n} give

$$
\begin{equation*}
d_{n}=\frac{1}{a_{2}}\left(u_{n}-v_{n}\right) \tag{10}
\end{equation*}
$$

for $n \geq 3$, where

$$
\begin{aligned}
& u_{n}= \begin{cases}c_{2} b_{n}+c_{3} a_{n-1}+c_{4} b_{n-2}+\cdots+c_{n} a_{2}, & \text { if } n \text { is odd; } \\
c_{2} b_{n}+c_{3} a_{n-1}+c_{4} b_{n-2}+\cdots+c_{n} b_{2}, & \text { if } n \text { is even; }\end{cases} \\
& v_{n}= \begin{cases}a_{3} c_{n-1}+a_{4} d_{n-2}+\cdots+a_{n} c_{2}, & \text { if } n \text { is odd; } \\
a_{3} c_{n-1}+a_{4} d_{n-2}+\cdots+a_{n} d_{2}, & \text { if } n \text { is even }\end{cases}
\end{aligned}
$$

with $d_{1}=1, d_{2}=b_{2} c_{2} / a_{2}$. A sequence D is now determined by (10); we shall refer to the foregoing as part 1 .

It is necessary to check that the equations $s_{n+1,2}=t_{n+1,2}$ implied by

$$
\langle A ; B\rangle \cdot\langle C ; D\rangle=\langle C ; D\rangle \cdot\langle A ; B\rangle
$$

do not impose requirements on the sequence D that are not implied by those already shown to determine D. In fact, the equations $s_{n+1,2}=t_{n+1,2}$ with initial value $d_{1}=1$ determine exactly the same sequence D. To see that this is so, consider the mapping $\langle A ; B\rangle^{\prime}=\langle B ; A\rangle$. It is easy to prove the following lemma:

$$
(\langle A ; B\rangle \cdot\langle C ; D\rangle)^{\prime}=\langle B ; A\rangle \cdot\langle D ; C\rangle .
$$

By part 1 applied to $\langle B ; A\rangle \cdot\langle D ; C\rangle$ and $\langle D ; C\rangle \cdot\langle B ; A\rangle$, the first column of $\langle B ; A\rangle \cdot\langle D ; C\rangle$ equals the first column of $\langle D ; C\rangle \cdot\langle B ; A\rangle$. Therefore, by the lemma, the second column of $\langle A ; B\rangle \cdot\langle C ; D\rangle$ equals the second column of $\langle C ; D\rangle \cdot\langle A ; B\rangle$, which is to say that the equations $s_{n+1,2}=t_{n+1,2}$ hold.

Example 11. Let $a_{1}=1, a_{2}=1$, and $a_{n}=0$ for $n \geq 3$. Let B be the Fibonacci sequence. Let $C=(1,1,0,1,0,0, \ldots)$, with $c_{n}=0$ for $n \geq 5$. Then D is given by $d_{1}=1, d_{2}=1, d_{3}=2$, and $d_{n}=L_{n-1}$ for $n \geq 4$, where $\left(L_{n}\right)$ is the Lucas sequence, as in Example 1. Writing $\langle A ; B\rangle \cdot\langle C ; D\rangle$ as $\langle U, V\rangle$, we have $\langle U, V\rangle=\langle C ; D\rangle \cdot\langle A ; B\rangle$, where $U=(1,2,1,3,4,7,11,18, \ldots)$ and $V=(1,2,5,9,20,32,66,105,207, \ldots)$.

5 Generalization of Theorem 4

It is natural to ask what sort of generalization Theorem 4 has for $m \geq 3$. The notation $\langle A ; B\rangle$ used for matrices in $\mathbb{G}^{(2)}$ is now generalized in the obvious manner to $\left\langle A_{1}, A_{2}, \ldots, A_{m}\right\rangle$ in $\mathbb{G}^{(m)}$, where A_{i} is a sequence $\left(a_{i 1}, a_{i 2}, \ldots\right)$ having $a_{i 1}=1$, for $i=1,2, \ldots, m$.

Theorem 4A. Suppose $A_{1}, A_{2}, \ldots, A_{m}$ and B_{i} for some i satisfying $1 \leq i \leq m$ are given. Then sequences B_{j} for $j \neq i$ are uniquely determined by the condition that $\left\langle A_{1}, A_{2}, \ldots, A_{m}\right\rangle$. $\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle$ be a sequential matrix. Conversely, suppose $B_{1}, B_{2}, \ldots, B_{m}$ and A_{i} for some i satisfying $1 \leq i \leq m$ are given. Then sequences A_{j} for $j \neq i$ are uniquely determined by the condition that $\left\langle A_{1}, A_{2}, \ldots, A_{m}\right\rangle \cdot\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle$ be a sequential matrix.
Proof: Let $U=A B$. For given A, each column of B uniquely determines the corresponding column of U, and each column of U determines the corresponding column of B. Thus, under
the hypothesis that a particular column B_{i} of B is given, the equation $U=A B$ determines the corresponding column of U. Consequently, as U is a sequential matrix, every column of U is determined, and this implies that every column of B is determined.

For the converse, suppose B, together with just one column A_{i} of A, are given, and that the product $U=A B$ is sequential. As a first induction step,

$$
\begin{equation*}
a_{21} b_{11}+a_{22} b_{21}=a_{32} b_{22}+a_{33} b_{32}=\cdots \tag{11}
\end{equation*}
$$

As $a_{i+1, i}$ is given, equations (11) show that $a_{h+1, h}$ is determined for all $h \geq 1$. Assume for arbitrary $k \geq 1$ that $a_{h+j, h}$ is determined for all j satisfying $1 \leq j \leq k$, for all $h \geq 1$. As U is sequential,

$$
\begin{align*}
& a_{k+1,1} b_{11}+a_{k+1,2} b_{21}+\cdots+a_{k+1, k+1} b_{k+1,1} \\
= & a_{k+2,2} b_{22}+a_{k+2,3} b_{32}+\cdots+a_{k+2, k+2} b_{k+2,2} \\
= & \cdots . \tag{12}
\end{align*}
$$

As $a_{k+i, i}$ is given, equations (12) and the induction hypothesis show that $a_{k+h, h}$ is determined for all $h \geq 1$. Thus, by induction, A is determined.

Theorem 4A shows that Theorem 4 extends to $\mathbb{G}^{(m)}$. The method of proof of Theorem 4A clearly applies to \mathbb{G}, so that Theorem 4A extends to \mathbb{G}.

6 Transformations involving divisors

We return to the general group (\mathbb{G}, \cdot) for a discussion of several specific matrix transformations involving divisors of integers. The first is given by the left summatory matrix,

$$
T(n, k)= \begin{cases}1, & \text { if } k \mid n \\ 0, & \text { otherwise }\end{cases}
$$

The inverse of T is the left Möbius transformation matrix. The matrices T and T^{-1} are indexed as A077049 and A077050 in [4], where transformations by T and T^{-1} of selected sequences in \mathcal{G} are referenced. In general, if A is a sequence written as an infinite column vector, then

$$
T \cdot A=\left\{\sum_{k \mid n} a_{k}\right\} \quad \text { and } \quad T^{-1} \cdot A=\left\{\sum_{k \mid n} \mu(k) a_{k}\right\}
$$

that is, the summatory sequence of A and the Möbius transform of A, respectively.
Next, define the left summing matrix $S=\{s(n, k)\}$ and the left differencing matrix $D=\{d(n, k)\}$ by

$$
\begin{aligned}
& s(n, k)= \begin{cases}1, & \text { if } k \leq n \\
0, & \text { otherwise }\end{cases} \\
& d(n, k)= \begin{cases}(-1)^{n+k}, & \text { if } k=n \text { or } k=n-1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Note that $D=S^{-1}$.
Example 12. Suppose that a sequence $C=\left(1, c_{2}, c_{3}, \ldots\right)$ in \mathcal{G} is transformed to a sequence $A=\left(1, a_{2}, a_{3}, \ldots\right)$ by the sums $a_{n}=\sum_{k=1}^{n} c_{k}\lfloor n / k\rfloor$. In order to solve this system of equations, let $U(n, k)=\lfloor n / k\rfloor$ for $k \geq 1, n \geq 1$. Then $U=S \cdot T$, so that $U^{-1}=T^{-1} \cdot D$, which means that

$$
c_{n}=\sum_{d \mid n} \mu(d)\left(a_{n / d}-a_{n / d-1}\right),
$$

where $a_{0}:=0$. If $a_{n}=1$ for every $n \geq 1$, then $c_{n}=\mu(n)$. If $a_{n}=n$, then C is the convolutory identity, $(1,0,0,0, \ldots)$. If $a_{n}=\binom{n+1}{2}$, then $c_{n}=\varphi(n)$. If $a_{n}=\binom{n+2}{3}$, then C is the sequence indexed as A000741 in [4] and discussed in [1] in connection with compositions of integers with relatively prime summands.

References

[1] H. W. Gould, Binomial coefficients, the bracket function, and compositions with relatively prime summands, Fibonacci Quart. 2 (1964) 241-260.
[2] Steven Roman, The Umbral Calculus, Academic Press, New York, 1984.
[3] Louis W. Shapiro, Seyoum Getu, Wen-Jin Woan, and Leon C. Woodson, The Riordan group, Disc. Appl. Math. 34 (1991) 229-239.
[4] N. J. A. Sloane The On-Line Encyclopedia of Integer Sequences,
http://www.research.att.com/~njas/sequences.

2000 Mathematics Subject Classification: Primary 11A25.
Keywords: Appell sequence, convolution, Fibonacci sequence, linear recurrence, Riordan group, sequential matrix.
(Concerned with sequences A000045, A000108 A000142 A000201 A000204 A000741 A000984 $\underline{\text { A002530 A047749 A077049 A077050 A077605 A077606.) }}$

Received November 13, 2002; revised versions received January 28, 2003; September 2, 2003. Published in Journal of Integer Sequences, September 8, 2003.

Return to Journal of Integer Sequences home page.

