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Abstract

We study the Lah and related Laguerre transforms within the context of exponential

Riordan arrays. Links to the Stirling numbers are explored. Results for finite matrices

are generalized, leading to a number of useful matrix factorizations.

1 Integer sequences and transforms on them

In this note, we shall consider integer sequences

a : N0 → Z

with general term an = a(n). Normally, sequences will be described by either by their
ordinary generating function (o.g.f.), that is, the function g(x) such that

g(x) =
∞
∑

n=0

anx
n,

or by their exponential generating function (e.g.f.) f(x), where

f(x) =
∞
∑

n=0

an

xn

n!
.

We shall encounter transformations that operate on integer sequences during the course
of this note. An example of such a transformation that is widely used in the study of integer
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sequences is the so-called Binomial transform [14], which associates to the sequence with
general term an the sequence with general term bn where

bn =
n
∑

k=0

(

n

k

)

ak. (1)

If we consider the sequence with general term an to be the column vector a = (a0, a1, . . .)
′

then we obtain the binomial transform of the sequence by multiplying this (infinite) vector
by the lower-triangle matrix B whose (n, k)-th element is equal to

(

n

k

)

:

B =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 3 3 1 0 0 . . .
1 4 6 4 1 0 . . .
1 5 10 10 5 1 . . .
...

...
...

...
...

...
. . .























This transformation is invertible, with

an =
n
∑

k=0

(

n

k

)

(−1)n−kbk. (2)

We note that B corresponds to Pascal’s triangle. Its row sums are 2n, while its diagonal
sums are the Fibonacci numbers F (n + 1). If Bm denotes the m−th power of B, then the
n−th term of Bma where a = {an} is given by

∑n

k=0 mn−k
(

n

k

)

ak.
If A(x) is the ordinary generating function of the sequence an, then the ordinary generat-

ing function of the transformed sequence bn is 1
1−x

A( x
1−x

). Similarly, if G(x) is the exponential
generating function (e.g.f.) of the sequence an, then the exponential generating function of
the binomial transform of an is exp(x)G(x).

The binomial transform is an element of the exponential Riordan group, which can be
defined as follows.

The exponential Riordan group [2], [3], [4], is a set of infinite lower-triangular integer
matrices, where each matrix is defined by a pair of generating functions g(x) = 1 + g1x +
g2x

2 + . . . and f(x) = f1x + f2x
2 + . . . where f1 6= 0. The associated matrix is the matrix

whose k-th column has exponential generating function g(x)f(x)k/k! (the first column being
indexed by 0). The matrix corresponding to the pair f, g is denoted by [g, f ]. The group
law is then given by

[g, f ] ∗ [h, l] = [g(h ◦ f), l ◦ f ].

The identity for this law is I = [1, x] and the inverse of [g, f ] is [g, f ]−1 = [1/(g ◦ f̄), f̄ ] where
f̄ is the compositional inverse of f .

If M is the matrix [g, f ], and a = {an} is an integer sequence with exponential generating
function A (x), then the sequence Ma has exponential generating function g(x)A(f(x)).

We shall use the notation (g(x), f(x)) to denote an element of the (ordinary) Riordan
group [5]. Riordan group techniques have been used to provide alternative proofs of many
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binomial identities that originally appeared in works such as [8], [9]. See for instance [12],
[13].

Example 1. The Binomial matrix B is the element [ex, x] of the exponential Riordan group.
More generally, Bk is the element [ekx, x] of the exponential Riordan group. It is easy to show
that the inverse B−k of Bk is given by [e−kx, x]. Note that as an element of the (ordinary)
Riordan group, B is given by ( 1

1−x
, x

1−x
). Similarly Bk is the element ( 1

1−kx
, x

1−kx
) of the

Riordan group.

Example 2. The exponential generating function of the row sums of the matrix [g, f ] is
obtained by applying [g, f ] to ex, the e.g.f. of the sequence 1, 1, 1, . . .. Hence the row sums
of [g, f ] have e.g.f. g(x)ef(x).

We shall frequently refer to sequences by their sequence number in the On-Line Ency-
lopedia of Integer Sequences [10], [11]. For instance, Pascal’s triangle is A007318 while the
Fibonacci numbers F (n) are A000045.

Example 3. The Permutation matrix P and its inverse. We consider the matrix

P = [
1

1 − x
, x].

The general term P (n, k) of this matrix is easily found:

P (n, k) =
n!

k!
[xn]

xk

1 − x

=
n!

k!
[xn−k]

1

1 − x

=
n!

k!
[xn−k]

∞
∑

j=0

xj

=
n!

k!
if n − k ≥ 0, = 0, otherwise,

= [k ≤ n]
n!

k!
.

Here, we have used the Iverson bracket notation [6], defined by [P ] = 1 if the proposition P
is true, and [P ] = 0 if P is false. For instance, δij = [i = j], while δn = [n = 0].

Clearly, the inverse of this matrix is P−1 = [(1 − x), x]. The general term of this matrix
is given by

P−1(n, k) =
n!

k!
[xn](1 − x)xk

=
n!

k!
[xn−k](1 − x)

=
n!

k!
(δn−k − δn−k−1)

= δn−k − (k + 1)δn−k−1
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Thus

P =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 2 1 0 0 0 . . .
6 6 3 1 0 0 . . .
24 24 12 4 1 0 . . .
120 120 60 20 5 1 . . .
...

...
...

...
...

...
. . .























while

P−1 =























1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
0 −2 1 0 0 0 . . .
0 0 −3 1 0 0 . . .
0 0 0 −4 1 0 . . .
0 0 0 0 −5 1 . . .
...

...
...

...
...

...
. . .























2 The Lah transform

Introduced by Jovovic (see, for instance, A103194), the Lah transform is the transformation
on integer sequences whose matrix is given by

Lah = [1,
x

1 − x
].

Properties of the matrix obtained from the n × n principal sub-matrix of Lah, and related
matrices have been studied in [7]. From the above definition, we see that the matrix Lah

has general term Lah(n, k) given by

Lah(n, k) =
n!

k!
[xn]

xk

(1 − x)k

=
n!

k!
[xn−k]

∞
∑

j=0

(−k

j

)

(−1)jxj

=
n!

k!
[xn−k]

∑

j

(

k + j − 1

j

)

xj

=
n!

k!

(

n − 1

n − k

)

Thus if bn is the Lah transform of the sequence an, we have

bn =
n
∑

k=0

n!

k!

(

n − 1

n − k

)

ak.
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It is clear that the inverse of this matrix Lah−1 is given by [1, x
1+x

] with general term

Lah(n, k)(−1)n−k. Thus

an =
n
∑

k=0

(−1)n−k n!

k!

(

n − 1

n − k

)

bk.

Numerically, we have

Lah =























1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 6 6 1 0 0 . . .
0 24 36 12 1 0 . . .
0 120 240 120 20 1 . . .
...

...
...

...
...

...
. . .























Operating on the sequence with e.g.f. f(x), it produces the sequence with e.g.f. f( x
1−x

).

Example 4. The row sums of the matrix Lah, obtained by operating on the sequence
1, 1, 1 . . . with e.g.f. ex, is the sequence 1, 1, 3, 13, 73, 501, . . . (A000262) with e.g.f. e

x

1−x .

We observe that this is n!L(n,−1,−1) = n!L
(−1)
n (−1) (see Appendix for notation). This

sequence counts the number of partitions of {1, .., n} into any number of lists, where a list
means an ordered subset.

3 The generalized Lah transform

Extending the definition in [7], we can define, for the parameter t, the generalized Lah matrix

Lah[t] = [1,
x

1 − tx
].

It is immediate that Lah[0] = [1, x] = I, and Lah[1] = Lah. The general term of the matrix
Lah[t] is easily computed:

Lah[t](n, k) =
n!

k!
[xn]

xk

(1 − tx)k

=
n!

k!
[xn−k]

∞
∑

j=0

(−k

j

)

(−1)jtjxj

=
n!

k!
[xn−k]

∑

j

(

k + j − 1

j

)

tjxj

=
n!

k!

(

n − 1

n − k

)

tn−k.

We can easily establish that Lah[t]−1 = [1, x
1+tx

] = Lah[−t] with general term n!
k!

(

n−1
n−k

)

tn−k(−1)n−k.
We also have

Lah[u + v] = Lah[u] · Lah[v].
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This follows since

Lah[u] · Lah[v] = [1,
x

1 − ux
][1,

x

1 − vx
]

= [1,
x

1−vx

1 − ux
1−vx

]

= [1,
x

1−vx

1−vx−ux
1−vx

]

= [1,
x

1 − (u + v)x
]

= Lah[u + v].

For integer m, it follows that
Lah[mt] = (Lah[t])m.

4 Laguerre related transforms

In this section, we will define the Laguerre transform on integer sequences to be the transform
with matrix given by

Lag = [
1

1 − x
,

x

1 − x
].

We favour this denomination through analogy with the Binomial transform, whose matrix
is given by

(
1

1 − x
,

x

1 − x
).

Numerically, we have

Lag =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 4 1 0 0 0 . . .
6 18 9 1 0 0 . . .
24 96 72 16 1 0 . . .
120 600 600 200 25 1 . . .
...

...
...

...
...

...
. . .























The inverse of the Laguerre transform, as we understand it in this section, is given by

Lag−1 = [
1

1 + x
,

x

1 + x
].

Clearly, the general term Lag(n, k) of the matrix Lag is given by

Lag(n, k) =
n!

k!

(

n

k

)

.
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Thus if bn is the Laguerre transform of the sequence an, we have

bn =
n
∑

k=0

n!

k!

(

n

k

)

ak.

The e.g.f. of bn is given by 1
1−x

f( x
1−x

) where f(x) is the e.g.f. of an. The inverse matrix of

Lag has general term given by (−1)n−k n!
k!

(

n

k

)

. Thus

an =
n
∑

k=0

(−1)n−k n!

k!

(

n

k

)

bk.

The relationship between the Lah transform with matrix Lah and the Laguerre transform
with matrix Lag is now clear:

Lag = [
1

1 − x
,

x

1 − x
]

= [
1

1 − x
, x][1,

x

1 − x
]

= P · Lah

We note that this implies that

Lag(n, k) =
n!

k!

(

n

k

)

=
n
∑

i=0

[i ≤ n]
n!

i!

i!

k!

(

i − 1

i − k

)

=
n
∑

i=0

[k ≤ n]
n!

k!

(

i − 1

i − k

)

=
n!

k!

n
∑

i=0

(

i − 1

i − k

)

which indeed is true since
(

n

k

)

=
n
∑

i=0

(

i − 1

i − k

)

.
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Numerically, we have

P · Lah =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 2 1 0 0 0 . . .
6 6 3 1 0 0 . . .
24 24 12 4 1 0 . . .
120 120 60 20 5 1 . . .
...

...
...

...
...

...
. . .













































1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 6 6 1 0 0 . . .
0 24 36 12 1 0 . . .
0 120 240 120 20 1 . . .
...

...
...

...
...

...
. . .























=























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 4 1 0 0 0 . . .
6 18 9 1 0 0 . . .
24 96 72 16 1 0 . . .
120 600 600 200 25 1 . . .
...

...
...

...
...

...
. . .























= Lag

Similarly we have
Lag−1 = Lah−1 · P−1,

which implies that

Lag−1(n, k) = (−1)n−k n!

k!

(

n

k

)

=
n
∑

i=0

(−1)n−i n!

i!

(

n − 1

n − i

)

(δi−k − (k + 1)δi−k−1).

It is of course possible to pass from Lag to Lah by:

Lah = P−1 · Lag.

Thus

Lah(n, k) =
n!

k!

(

n − 1

n − k

)

=
n
∑

i=0

(δn−i − (i + 1)δn−i−1)
i!

k!

(

i

k

)

We note in passing that this gives us the identity

n!

(

n − 1

n − k

)

=
n
∑

i=0

(δn−i − (i + 1)δn−i−1)i!

(

i

k

)

.
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Numerically, we have

P−1 · Lag =























1 0 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
0 −2 1 0 0 0 . . .
0 0 −3 1 0 0 . . .
0 0 0 −4 1 0 . . .
0 0 0 0 −5 1 . . .
...

...
...

...
...

...
. . .













































1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
2 4 1 0 0 0 . . .
6 18 9 1 0 0 . . .
24 96 72 16 1 0 . . .
120 600 600 200 25 1 . . .
...

...
...

...
...

...
. . .























=























1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 2 1 0 0 0 . . .
0 6 6 1 0 0 . . .
0 24 36 12 1 0 . . .
0 120 240 120 20 1 . . .
...

...
...

...
...

...
. . .























= Lah

Thus if the Laguerre transform of an has general term bn, then the general term of the Lah
transform of an will be given by

bn − nbn−1

(for n > 0).

Example 5. The row sums of the matrix Lag, that is, the transform of the sequence
1, 1, 1, . . . with e.g.f. ex, is the sequence 1, 2, 7, 34, 209, 1546, 13327, . . . with e.g.f. 1

1−x
e

x

1−x .
This is A002720. Among other things, it counts the number of matchings in the bipartite
graph K(n, n). It general term is

∑n

k=0
n!
k!

(

n

k

)

. This is equal to Ln(−1) where Ln(x) is the
n-th Laguerre polynomial.

Example 6. The row sums of the matrix Lag−1 yield the sequence 1, 0,−1, 4,−15, 56,−185, 204, . . .
with e.g.f. 1

1+x
e

x

1+x . It has general term
∑n

k=0(−1)n−k n!
k!

(

n

k

)

which is equal to (−1)nLn(1).

5 The Associated Laguerre transforms

The Lah and Laguerre transforms, as defined above, are elements of a one-parameter family
of transforms, whose general element is given by

Lag(α) = [
1

(1 − x)α+1
,

x

1 − x
].

9
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We can calculate the general term of this matrix in the usual way:

Lag(α)(n, k) =
n!

k!
[xn](1 − x)−(α+1)xk(1 − x)−k

=
n!

k!
[xn−k](1 − x)−(α+k+1)

=
n!

k!

∞
∑

j=0

(

α + k + j

j

)

xj

=
n!

k!

(

n + α

n − k

)

.

We note that Lah = Lag(−1) while Lag = Lag(0). We can factorize Lag(α) as follows:

Lag(α) = [
1

(1 − x)α
, x][

1

1 − x
,

x

1 − x
]

= P(α) · Lag

where P(α) has general term n!
k!

(

n+α−k−1
n−k

)

. Clearly, P(1) = P. In fact, we have P(α) = Pα.
The transform of the sequence an by the associated Laguerre transform for α is the sequence
bn with general term bn =

∑n

k=0
n!
k!

(

n+α

n−k

)

ak, which has e.g.f. 1
(1−x)α+1 f( x

1−x
).

We note that in the literature of Riordan arrays, the subset of matrices of the form
(1, f(x)) forms a sub-group, called the associated group. We trust that this double use of the
term “associated” does not cause confusion.

6 The Generalized Laguerre transform

We define, for the parameter t, the generalized Laguerre matrix Lag[t] to be

Lag[t] = [
1

1 − tx
,

x

1 − tx
].

We immediately have

Lag[t] = [
1

1 − tx
,

x

1 − tx
]

= [
1

1 − tx
, x][1,

x

1 − tx
]

= P[t] · Lah[t].

where the generalized permutation matrix P[t] has general term [k ≤ n]n!
k!

tn−k. It is clear
that

Lag[t]−1 = Lag[−t] = [
1

1 + tx
,

x

1 + tx
].

It is possible to generalize the associated Laguerre transform matrices in similar fashion.
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7 Transforming the expansion of x
1−µx−νx2

The e.g.f. of the expansion of x
1−µx−νx2 takes the form

f(x) = A(µ, ν)er1x + B(µ, ν)er2x

which follows immediately from the Binet form of the general term. Thus the transform of
this sequence by Lag(α) will have e.g.f.

A(µ, ν)

(1 − x)α+1
e

r1x

1−x +
B(µ, ν)

(1 − x)α+1
e

r2x

1−x .

In the case of the Lah transform (α = −1), we get the simple form

Ae
r1x

1−x + Be
r2x

1−x

while in the Laguerre case (α = 0) we get

A
e

r1x

1−x

1 − x
+ B

e
r2x

1−x

1 − x

But e
rx

1−x

1−x
is the e.g.f. of the sequence n!Ln(−r). Thus is this case, the transformed sequence

has general term An!Ln(−r1) + Bn!Ln(−r2).

Example 7. The Laguerre transform of the Fibonacci numbers

F (n) =
1√
5
(
1 +

√
5

2
)n − 1√

5
(
1 −

√
5

2
)n

is given by
1√
5
n!Ln(−1 +

√
5

2
) − 1√

5
n!Ln(−1 −

√
5

2
).

This is A105277. It begins 0, 1, 5, 29, 203, 1680, 16058, . . ..

Example 8. The Laguerre transform of the Jacobsthal numbers [1], [15] (expansions of
x

1−x−2x2 )

J(n) =
2n

3
− (−1)n

3

is given by
1

3
n!Ln(−2) − 1

3
n!Ln(1).

This is A129695. It begins 0, 1, 5, 30, 221, 1936, 19587, . . .. We can use this result to express
the Lah transform of the Jacobsthal numbers, since this is equal to bn − nbn−1 where bn is
the Laguerre transform of J(n). We find

n!

3
(Ln(−2) − Ln−1(−2) − (Ln(1) − Ln−1(1))).
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Example 9. We calculate the Lag(1) transform of the Jacobsthal numbers J(n). Since
Lag(1) = P · Lag, we apply P to the Laguerre transform of J(n). This gives us

n
∑

k=0

n!

k!
(k!Lk(−2) − k!Lk(1))/3 =

n!

3

n
∑

k=0

(Lk(−2) − Lk(1)).

This sequence has e.g.f. 1
(1−x)2

e
2x

(1−x)
−e

−x

1−x

3
.

8 The Lah and Laguerre transforms and Stirling num-

bers

In this section, we follow the notation of [6]. Thus the Stirling numbers of the first kind,
denoted by

[

n

k

]

, are the elements of the matrix

s = [1, ln(
1

1 − x
)].

[

n

k

]

counts the number of ways to arrange n objects into k cycles.
The Stirling numbers of the second kind, denoted by

{

n

k

}

, count the number of ways to
partition a set of n things into k nonempty subsets.

{

n

k

}

are the elements of the matrix

S = [1, ex − 1].

We have
{

n

k

}

=
k
∑

i=0

(

k

i

)

in

k!
.

We note that the matrix [1, ex − 1] of Stirling numbers of the second kind is the inverse of
the matrix with elements (−1)n−k

[

n

k

]

, which is the matrix [1, ln(1 + x)].
Related matrices include

[
1

1 − x
, ln(

1

1 − x
)]

whose elements are given by
[

n+1
k+1

]

and its signed version,

[
1

1 + x
, ln(

1

1 + x
)]

whose elements are given by (−1)n−k
[

n+1
k+1

]

, along with their inverses, given respectively by

[e−x, 1−e−x], with general element (−1)n−k
{

n+1
k+1

}

, and [ex, ex−1] with general element
{

n+1
k+1

}

.
We can generalize a result linking the Lah matrix to the Stirling numbers [7] to the

infinite matrix case as follows:
Lah = s · S.

12



This is because we have

s · S = [1, ln(
1

1 − x
)][1, ex − 1]

= [1, eln( 1
1−x

) − 1]

= [1,
1

1 − x
− 1]

= [1,
x

1 − x
] = Lah.

Thus we have
S = s−1 · Lah, s = Lah · S−1.

We now observe that

[
1

1 − x
,

x

1 − x
][1, ln(1 + x)] = [

1

1 − x
, ln(1 +

x

1 − x
)]

= [
1

1 − x
, ln(

1

1 − x
)]

or

Lag ·
(

(−1)n−k

[

n

k

])

=

([

n + 1

k + 1

])

.

We deduce the identity
[

n + 1

k + 1

]

=
n
∑

j=0

n!

j!

(

n

j

)

(−1)j−k

[

j

k

]

.

Taking the inverse of the matrix identity above, we obtain

([

n + 1

k + 1

])

−1

=

(

(−1)n−k

[

n

k

])

−1

· Lag−1

which can be established alternatively by noting that

[1, ex − 1][
1

1 + x
,

x

1 + x
] = [1.

1

1 + ex − 1
,

ex − 1

1 + ex − 1
]

= [e−x, 1 − e−x].

This establishes the identity

(−1)n−k

{

n + 1

k + 1

}

=
n
∑

j=0

(−1)j−k

(

j

k

)

j!

k!

{

n

j

}

.

Finally, from the matrix identity

Lag ·
(

(−1)n−k

[

n

k

])

=

([

n + 1

k + 1

])

.

13



we deduce that

Lag =

([

n + 1

k + 1

])

·
(

(−1)n−k

[

n

k

])

−1

=

([

n + 1

k + 1

])

·
({

n

k

})

.

Thus

Lag(n, k) =
n
∑

j=0

[

n + 1

j + 1

]{

j

k

}

.

This is equivalent to the factorization

Lag = [
1

1 − x
,

x

1 − x
] = [

1

1 − x
, ln(

1

1 − x
)][1, ex − 1].

This implies (see Appendix A) that

Ln(x) =
1

n!

n
∑

k=0

n
∑

j=0

[

n + 1

j + 1

]{

j

k

}

(−x)k.

It is natural in this context to define as associated Stirling numbers of the first kind the
elements

[

n

k

]

α
of the matrices

[
1

(1 − x)α
, ln(

1

1 − x
)].

For instance,
[

n

k

]

0
=
[

n

k

]

and
[

n

k

]

1
=
[

n+1
k+1

]

. We note that signed versions of these numbers

have been documented by Lang (see for instance A049444 and A049458). To calculate
[

n

k

]

2
,

we proceed as follows:

([

n

k

]

2

)

= [
1

(1 − x)2
, ln(

1

1 − x
)]

= P · [ 1

1 − x
, ln(

1

1 − x
)]

=

(

[k ≤ n]
n!

k!

)([

n + 1

k + 1

])

.

Thus
[

n

k

]

2

=
n
∑

j=0

n!

j!

[

j + 1

k + 1

]

=
n
∑

j=0

n!

j!

[

n

k

]

1

.

More generally, since [ 1
(1−x)α , ln( 1

1−x
)] = P[ 1

(1−x)α−1 , ln( 1
1−x

)], we have

[

n

k

]

α

=
n
∑

j=0

n!

j!

[

n

k

]

α−1

.
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Lag(α)(n, k) =
n
∑

j=0

[

n

j

]

α+1

{

n

k

}

.

For example,

Lag(1) = [
1

(1 − x)2
, ln(

1

1 − x
)][1, ex − 1]

=

(

n
∑

j=0

[

n

j

]

2

{

j

k

}

)

=

(

n
∑

j=0

n
∑

i=0

n!

i!

[

n + 1

j + 1

]{

j

k

}

)

.

In general, we have

Lag(α) = [
1

(1 − x)α+1
,

x

1 − x
] = [

1

(1 − x)α+1
, ln(

1

1 − x
)][1, ex − 1].

This implies that

Lag(α)(n, k) =
n
∑

j=0

[

n

j

]

α+1

{

n

k

}

.

9 The generalized Lah, Laguerre and Stirling matrices

Given a parameter t define the generalized Stirling numbers of the first kind to be the
elements of the matrix

s[t] = [1,
1

t
ln(

1

1 − tx
)].

Similarly, we define the generalized Stirling numbers of the second kind to be the elements
of the matrix

S[t] = [1,
etx − 1

t
].

Then
S[t]−1 = s[−t].

For instance,

s[−t] · S[t] = [1,−1

t
ln(

1

1 + tx
)][1,

etx − 1

t
]

= [1,−1

t
ln(

1

1 + t etx
−1
t

)]

= [1,−1

t
ln(

1

etx
)]

= [1,
1

t
ln(etx)]

= [1, x] = I.
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The general term of s[t] is given by tn−k
[

n

j

]

and that of S[t] is given by tn−k
{

n

j

}

. An easy
calculation establishes that

Lah[t] = s[t]S[t].

From this we immediately deduce that

Lag[t] = P[t]s[t]S[t].

Similarly results for the generalized associated Laguerre transform matrices can be derived.

10 Appendix A - the Laguerre and associated Laguerre

functions

The associated Laguerre polynomials [16] are defined by

L(α)
n (x) =

1

n!

n
∑

k=0

n!

k!

(

n + α

n − k

)

(−x)k.

Their exponential generating function is

e
xz

1−z

(1 − z)α+1

The Laguerre polynomials are given by Ln(x) = L
(0)
n (x). The associated Laguerre polynomi-

als are orthogonal on the interval [0,∞) for the weight e−xxα.
Using the notation developed above, we have

L(α)
n (x) =

1

n!

n
∑

k=0

Lag(α)(n, k)(−x)k

=
1

n!

n
∑

k=0

n
∑

i=0

[

n

j

]

α+1

{

j

k

}

(−x)k.

In particular,

Ln(x) =
1

n!

n
∑

k=0

n
∑

i=0

[

n + 1

j + 1

]{

j

k

}

(−x)k.
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12 Appendix B - Lah and Laguerre transforms in the

OEIS

Table 1. Table of Lah transforms

an Lah transform bn

A000290 A103194
A104600 A121020
A000262 A025168
A000079 A052897
A000110 A084357
A000085 A049376
A000670 A084358

Table 2. Table of Laguerre transforms

an Laguerre transform bn

A000007 A000142
A000012 A002720
A000045 A105277
A000079 A087912
A001045 A129695
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