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Abstract

We introduce an integer sequence based construction of invertible centrally sym-

metric number triangles, which generalize Pascal’s triangle. We characterize the row

sums and central coefficients of these triangles, and examine other properties. Links

to the Narayana numbers are explored. Use is made of the Riordan group to elucidate

properties of a special one-parameter subfamily. An alternative exponential approach

to constructing generalized Pascal triangles is briefly explored.

1 Introduction

In this article, we look at two methods of using given integer sequences to construct gener-
alized Pascal matrices. In the first method, we look at the number triangle associated with
the square matrix BDB′, where B is the binomial matrix

(

n
k

)

and D is the diagonal matrix
defined by the given integer sequence. We study this construction in some depth, and char-
acterize the sequences related to the central coefficients of the resulting triangles in a special
case. We study the cases of the Fibonacci and Jacobsthal numbers in particular. The second
construction is defined in terms of a generalization of exp(M), where M is a sub-diagonal
matrix defined by the integer sequence in question. Our look at this construction is less
detailed. It is a measure of the ubiquity of the Narayana numbers that they arise in both
contexts.

The plan of the article is as follows. We begin with an introductory section, where we
define what this article will understand as a generalized Pascal matrix, as well as looking
at the binomial transform, the Riordan group, and the Narayana numbers, all of which will
be used in subsequent sections. The next preparatory section looks at the reversion of the
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expressions x
1+αx+βx2 and x(1−ax)

1−bx , which are closely related to subsequent work. We then
introduce the first family of generalized Pascal triangles, and follow this by looking at those
elements of this family that correspond to the “power” sequences n→ rn, while the section
after that takes the specific cases of the Fibonacci and Jacobsthal numbers. We close the
study of this family by looking at the generating functions of the columns of these triangles
in the general case.

The final section briefly studies an alternative construction based on a generalized matrix
exponential construction.

2 Preliminaries

Pascal’s triangle, with general term
(

n
k

)

, n, k ≥ 0, has fascinated mathematicians by its
wealth of properties since its discovery [3]. Viewed as an infinite lower-triangular matrix, it
is invertible, with an inverse whose general term is given by (−1)n−k

(

n
k

)

. Invertibility follows
from the fact that

(

n
n

)

= 1. It is centrally symmetric, since by definition,
(

n
k

)

=
(

n
n−k
)

. All
the terms of this matrix are integers.

By a generalized Pascal triangle we shall understand a lower-triangular infinite integer
matrix T = T (n, k) with T (n, 0) = T (n, n) = 1 and T (n, k) = T (n, n − k). We shall index
all matrices in this paper beginning at the (0, 0)-th element.

We shall use transformations that operate on integer sequences during the course of this
note. An example of such a transformation that is widely used in the study of integer
sequences is the so-called binomial transform [21], which associates to the sequence with
general term an the sequence with general term bn where

bn =
n
∑

k=0

(

n

k

)

ak. (1)

If we consider the sequence with general term an to be the vector a = (a0, a1, . . .) then we
obtain the binomial transform of the sequence by multiplying this (infinite) vector by the
lower-triangle matrix B whose (n, k)-th element is equal to

(

n
k

)

:

B =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 3 3 1 0 0 . . .
1 4 6 4 1 0 . . .
1 5 10 10 5 1 . . .
...

...
...

...
...

...
. . .























This transformation is invertible, with

an =
n
∑

k=0

(

n

k

)

(−1)n−kbk. (2)
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We note that B corresponds to Pascal’s triangle. Its row sums are 2n, while its diagonal
sums are the Fibonacci numbers F (n + 1). If Bm denotes the m−th power of B, then the
n−th term of Bma where a = {an} is given by

∑n
k=0m

n−k(n
k

)

ak.
If A(x) is the ordinary generating function of the sequence an, then the generating func-

tion of the transformed sequence bn is 1
1−xA( x

1−x). The binomial transform is an element of
the Riordan group, which can be defined as follows.

The Riordan group [11], [16] is a set of infinite lower-triangular integer matrices, where
each matrix is defined by a pair of generating functions g(x) = 1 + g1x + g2x

2 + . . . and
f(x) = f1x + f2x

2 + . . . where f1 6= 0 [16]. The associated matrix is the matrix whose
i-th column is generated by g(x)f(x)i (the first column being indexed by 0). The matrix
corresponding to the pair f, g is denoted by (g, f) or R(g, f). The group law is then given
by

(g, f) ∗ (h, l) = (g(h ◦ f), l ◦ f).
The identity for this law is I = (1, x) and the inverse of (g, f) is (g, f)−1 = (1/(g ◦ f̄), f̄)
where f̄ is the compositional inverse of f .

If M is the matrix (g, f), and a = {an} is an integer sequence with ordinary generating
function A (x), then the sequence Ma has ordinary generating function g(x)A(f(x)).
Example 1. As an example, the Binomial matrix B is the element ( 1

1−x ,
x

1−x) of the Riordan

group. More generally, Bk is the element ( 1
1−kx ,

x
1−kx) of the Riordan group. It is easy to

show that the inverse B−k of Bk is given by ( 1
1+kx

, x
1+kx

).

The row sums of the matrix (g, f) have generating function g(x)/(1 − f(x)) while the
diagonal sums of (g, f) have generating function g(x)/(1− xf(x)).

We shall frequently refer to sequences by their sequence number in the On-Line Ency-
lopedia of Integer Sequences [13], [14]. For instance, Pascal’s triangle is A007318 while the
Fibonacci numbers are A000045.

Example 2. An example of a well-known centrally symmetric invertible triangle that is not
an element of the Riordan group is the Narayana triangle Ñ, defined by

Ñ(n, k) =
1

k + 1

(

n

k

)(

n+ 1

k

)

=
1

n+ 1

(

n+ 1

k + 1

)(

n+ 1

k

)

for n, k ≥ 0. Other expressions for Ñ(n, k) are given by

Ñ(n, k) =

(

n

k

)2

−
(

n

k + 1

)(

n

k − 1

)

=

(

n+ 1

k + 1

)(

n

k

)

−
(

n+ 1

k

)(

n

k + 1

)

.

This triangle begins

Ñ =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 20 10 1 0 . . .
1 15 50 50 15 1 . . .
...

...
...

...
...

...
. . .
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We shall characterize this matrix in terms of a generalized matrix exponential construction
later in this article. Note that in the literature, it is often the triangle Ñ(n − 1, k − 1) =
1
n

(

n
k

)(

n
k−1

)

that is referred to as the Narayana triangle. Alternatively, the triangle Ñ(n −
1, k) = 1

k+1

(

n−1
k

)(

n
k

)

is referred to as the Narayana triangle. We shall denote this latter
triangle by N(n, k). We then have

N =























1 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 6 6 1 0 0 . . .
1 10 20 10 1 0 . . .
...

...
...

...
...

...
. . .























Note that for n, k ≥ 1, N(n, k) = 1
n

(

n
k

)(

n
k+1

)

. We have, for instance,

Ñ(n−1, k−1) = 1

n

(

n

k

)(

n

k − 1

)

=

(

n

k

)2

−
(

n− 1

k

)(

n+ 1

k

)

=

(

n

k

)(

n− 1

k − 1

)

−
(

n

k − 1

)(

n− 1

k

)

.

The last expression represents a 2× 2 determinant of adjacent elements in Pascal’s triangle.
The Narayana triangle is A001263.

A related identity is the following, [2], [1]:

n−1
∑

k=0

1

n

(

n

k

)(

n

k + 1

)

xk =

bn−1
2

c
∑

k=0

(

n− 1

2k

)

c(k)xk(1 + x)n−2k−1 (3)

where c(n) is the n-th Catalan number c(n) =
(

2n
n

)

/(n + 1), A000108. This identity can
be interpreted in terms of Motzkin paths, where by a Motzkin path of length n we mean a
lattice path in Z2 between (0, 0) and (n, 0) consisting of up-steps (1, 1), down-steps (1,−1)
and horizontal steps (1, 0) which never goes below the x-axis. Similarly, a Dyck path of
length 2n is a lattice path in Z2 between (0, 0) and (2n, 0) consisting of up-paths (1, 1) and
down-steps (1,−1) which never go below the x-axis. Finally, a (large) Schröder path of
length n is a lattice path from (0, 0) to (n, n) containing no points above the line y = x, and
composed only of steps (0, 1), (1, 0) and (1, 1).

For instance, the number of Schröder paths from (0, 0) to (n, n) is given by the large
Schröder numbers 1, 2, 6, 22, 90, . . . which correspond to z = 2 for the Narayana polynomials
[17], [19]

Nn(z) =
n
∑

k=1

1

n

(

n

k − 1

)(

n

k

)

zk.

3 On the series reversion of x
1+αx+βx2 and

x(1−ax)
1−bx

A number of the properties of the triangles that we will study are related to the special cases
of the series reversions of x

1+αx+βx2 and x(1−ax)
1−bx where b = a − 1, α = a + 1 and β = b + 1.
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We shall develop results relating to these reversions in full generality in this section and
specialize later at the appropriate places.

Solving the equation
y

1 + αy + βy2
= x

yields

y1 =
1− αx−

√

1− 2αx+ (α2 − 4β)x2

2βx

while solving the equation
y(1− ay)

1− by
= x

leads to

y2 =
1 + bx−

√

(1 + bx)2 − 4ax

2a
.

We shall occasionally use the notation y1(α, β) and y2(a, b) where relevant for these functions.

Note for instance that y2(1,0)
x

= 1−
√
1−4x
2x

is the generating function of the Catalan numbers.

Proposition 3. Let α = a+1, β = b+1, and assume that b = a−1 (and hence, β = α−1).
Then

y2
x
− y1 = 1.

Proof. Straight-forward calculation.

Note that 1 is the generating function of 0n = 1, 0, 0, 0, . . ..

Example 4. Consider the case a = 2, b = 1. Let α = 3 and β = 2, so we are considering
x

1+3x+2x2 and x(1−2x)
1−x . We obtain

y1(3, 2) =
1− 3x−

√
1− 6x+ x2

4x
y2(2, 1)

x
=

1 + x−
√
1− 6x+ x2

4x
y2(2, 1)

x
− y1(3, 2) = 1.

Thus y1(3, 2) is the generating function for 0, 1, 3, 11, 45, 197, 903, 4279, . . . while y2(2,1)
x

is
the generating function for 1, 1, 3, 11, 45, 197, 903, 4279, . . .. These are the little Schröder
numbers A001003.

Example 5. We consider the case a = 1, b = 1− r, that is, the case of x(1−x)
1−(1−r)x . We obtain

y2(1, 1− r)

x
=

1− (r − 1)x−
√

(1 + (1− r)x)2 − 4x

2x

=
1− (r − 1)x−

√

1− 2(r + 1)x+ (r − 1)2x2

2x
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Example 6. We calculate the expression y2(1,1−r)
rx

− 1−r
r
. We get

y2(1, 1− r)

rx
− 1− r

r
=

1− (r − 1)x−
√

1− 2(r + 1)x+ (r − 1)2x2

2rx
+

2(r − 1)x

2rx

=
1 + (r − 1)x−

√

1− 2(r + 1)x+ (r − 1)2x2

2rx

=
y2(r, r − 1)

x
.

In other words,
y2(r, r − 1)

x
=
y2(1, 1− r)

rx
− 1− r

r
.

A well-known example of this is the case of the large Schröder numbers with generating func-
tion 1−x−

√
1−6x+x2

2x
and the little Schröder numbers with generating function 1+x−

√
1−6x+x2

4x
.

In this case, r = 2. Generalizations of this “pairing” for r > 2 will be studied in a later
section. For r = 1 both sequences coincide with the Catalan numbers c(n).

Proposition 7. The binomial transform of

y1 =
1− αx−

√

1− 2αx+ (α2 − 4β)x2

2βx2

is
1− (α+ 1)x−

√

1− 2(α + 1)x+ ((α + 1)2 − 4β)x2

2βx2
.

Proof. The binomial transform of y1 is

1

1− x

{

1− αx

1− x
−
√

1− 2αx

1− x
+ (α2 − 4β)

x2

(1− x)2

}

/(2β
x2

(1− x)2
)

= (1− x− αx−
√

(1− x)2 − 2αx(1− x) + (α2 − 4β)x2)/(2βx2)

= (1− (α+ 1)x−
√

1− 2(α + 1)x+ (α2 + 2α + 1− 4β2)x2)/(2βx2)

=
1− (α+ 1)x−

√

1− 2(α + 1)x+ ((α + 1)2 − 4β)x2

2βx2
.

Example 8. The binomial transform of 1, 3, 11, 45, 197, 903, . . . with generating function
1−3x−

√
1−6x+x2

4x2 is 1, 4, 18, 88, 456, 2464, 13736, . . ., A068764, with generating function
1−4x−

√
1−8x+8x2

4x2 . Thus the binomial transform links the series reversion of x/(1 + 3x + 2x2)
to that of x/(1 + 4x+ 2x2). We note that this can be interpreted in the context of Motzkin
paths as an incrementing of the colours available for the H(1, 0) steps.

We now look at the general terms of the sequences generated by y1 and y2. We use the
technique of Lagrangian inversion for this. We begin with y1. In order to avoid notational
overload, we use a and b rather than α and β, hoping that confusion won’t arise.
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Since for y1 we have y = x(1 + ay + by2) we can apply Lagrangian inversion to get the
following expression for the general term of the sequence generated by y1:

[tn]y1 =
1

n
[tn−1](1 + at+ bt2)n.

At this point we remark that there are many ways to develop the trinomial expression, and
the subsequent binomial expressions. Setting these different expressions equal for different
combinations of a and b and different relations between a and b can lead to many interesting
combinatorial identities, many of which can be interpreted in terms of Motzkin paths. We
shall confine ourselves to the derivation of two particular expressions. First of all,

[tn]y1 =
1

n
[tn−1](1 + at+ bt2)n

=
1

n
[tn−1]

n
∑

k=0

(

n

k

)

(at+ bt2)k

=
1

n
[tn−1]

n
∑

k=0

(

n

k

)

tk
k
∑

j=0

(

k

j

)

ajbk−jtk−j

=
1

n
[tn−1]

n
∑

k=0

k
∑

j=0

(

n

k

)(

k

j

)

ajbk−jt2k−j

=
1

n

n
∑

k=0

(

n

k

)(

k

n− k − 1

)

a2k−n+1bn−k−1

=
1

n

n
∑

k=0

(

n

k

)(

k

2k − n+ 1

)

a2k−n+1bn−k−1.

Of the many other possible expressions for [tn]y1, we cite the following examples:

[tn]y1 =
1

n

n
∑

k=0

(

n

k

)(

k + 1

2k − n− 1

)

b2k−n+1bn−k−1

=
1

n

n
∑

k=0

(

n

k

)(

k

2k − n+ 1

)

bn−k−1a2k−n+1

=
1

n

n
∑

k=0

(

n

k

)(

n− k

k − 1

)

bk−1an−2k+1

=
1

n

n
∑

k=0

(

n

k + 1

)(

n− k − 1

k + 1

)

bkan−2k.

We shall be interested at a later stage in generalized Catalan sequences. The following
interpretation of [tn]y1 is therefore of interest.

Proposition 9.

[tn]y1 =

bn−1
2

c
∑

k=0

(

n− 1

2k

)

c(k)an−2k−1bk.
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Proof.

[tn]y1 =
1

n
[tn−1](1 + at+ bt2)n

=
1

n
[tn−1](at+ (1 + bt2))n

=
1

n
[tn−1]

n
∑

j=0

ajtj(1 + bt2)n−j

=
1

n
[tn−1]

n
∑

j=0

n−j
∑

k=0

(

n

j

)(

n− j

k

)

ajbkt2k+j

=
1

n

∑

k=0

(

n

n− 2k − 1

)(

2k + 1

k

)

an−2k−1bk

=
1

n

n
∑

k=0

(

n

2k + 1

)(

2k + 1

k

)

an−2k−1bk

=
1

n

∑

k=0

n

2k + 1

(

n− 1

n− 2k − 1

)

2k + 1

k + 1

(

2k

k

)

an−2k−1bk

=
∑

k=0

(

n− 1

2k

)

c(k)an−2k−1bk.

Corollary 10.

c(n) = 0n +

bn−1
2

c
∑

k=0

(

n− 1

2k

)

c(k)2n−2k−1

c(n+ 1) =

bn
2
c

∑

k=0

(

n− 1

2k

)

c(k)2n−2k.

Proof. The sequence c(n)− 0n, or 0, 1, 2, 5, 14, . . ., has generating function

1−
√
1− 4x

2x
− 1 =

1− 2x−
√
1− 4x

2x

which corresponds to y1(2, 1).

This is the formula of Touchard [20], with adjustment for the first term.

Corollary 11.

[tn]y1(r + 1, r) =
n−1
∑

k=0

1

n

(

n

k

)(

n

k + 1

)

rk.
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Proof. By the proposition, we have

[tn]y1(r + 1, r) =

bn−1
2

c
∑

k=0

(

n− 1

2k

)

c(k)(r + 1)n−2k−1rk.

The result then follows from identity (3).

This therefore establishes a link to the Narayana numbers.

Corollary 12. Let sn(a, b) be the sequence with general term

sn(a, b) =

bn
2
c

∑

k=0

(

n

2k

)

c(k)an−2kbk.

Then the binomial transform of this sequence is the sequence sn(a+ 1, b) with general term

sn(a+ 1, b) =

bn
2
c

∑

k=0

(

n

2k

)

c(k)(a+ 1)n−2kbk.

Proof. This is a re-interpretation of the results of Proposition 7.

We now take a quick look at [tn]y2. In this case, we have

y = x
1− by

1− ay

so we can apply Lagrangian inversion. Again, various expressions arise depending on the
order of expansion of the binomial expressions involved. For instance,

[tn]y2 =
1

n
[tn−1]

(

1− bt

1− at

)n

=
1

n
[tn−1](1− bt)n(1− at)−n

=
1

n
[tn−1]

n
∑

k=0

∑

j=0

(

n

k

)(

n+ j − 1

j

)

aj(−b)ktk+j

=
1

n

n
∑

k=0

(

n

k

)(

2n− k − 2

n− 1

)

an−k−1(−b)k.
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A more interesting development is given by the following.

[tn]
y2
x

= [tn+1]y2

=
1

n+ 1
[tn](1− bt)n+1(1− at)−(n+1)

=
1

n+ 1
[tn]

n+1
∑

k=0

(

n+ 1

k

)

(−bt)n+1−k
∑

j=0

(−n− 1

j

)

(−at)j

=
1

n+ 1
[tn]

n+1
∑

k=0

∑

j=0

(

n+ 1

k

)(

n+ j

j

)

(−b)n−k+1ajtn+1−k+j

=
1

n+ 1

∑

j=0

(

n+ 1

j + 1

)(

n+ j

j

)

(−b)n−jaj

=
n
∑

j=0

1

j + 1

(

n

j

)(

n+ j

j

)

aj(−b)n−j.

An alternative expression obtained by developing for k above is given by

[tn]
y2
x

=
n+1
∑

k=0

1

n− k + 1

(

n

k

)(

n+ k − 1

k − 1

)

ak−1(−b)n−k+1.

Note that the underlying matrix with general element 1
k+1

(

n
k

)(

n+k
k

)

is A088617, whose general
element gives the number of Schröder paths from (0, 0) to (2n, 0), having k U(1, 1) steps.
Recognizing that

∑n
j=0

1
j+1

(

n
j

)(

n+j
j

)

aj(−b)n−j is a convolution, we can also write

[tn]
y2
x

=
n
∑

k=0

1

k + 1

(

n

k

)(

n+ k

k

)

ak(−b)n−k

=
n
∑

k=0

1

n− k + 1

(

n

n− k

)(

2n− k

n− k

)

an−k(−b)k

=
n
∑

k=0

1

n− k + 1

(

n

k

)(

2n− k

n

)

an−k(−b)k

=
n
∑

k=0

1

n− k + 1

(

2n− k

k

)(

2n− k − k

n− k

)

an−k(−b)k

=
n
∑

k=0

(

2n− k

k

)

1

n− k + 1

(

2n− 2k

n− k

)

an−k(−b)k

=
n
∑

k=0

(

2n− k

k

)

c(n− k)an−k(−b)k

=
n
∑

k=0

(

n+ k

2k

)

c(k)ak(−b)n−k.

10



Again we note that the matrix with general term
(

n
k

)(

2n−k
k

)

1
n−k+1

is A060693, whose general

term counts the number of Schröder paths from (0, 0) to (2n, 0), having k peaks.
(

n+k
2k

)

c(k)
is another expression for A088617. Gathering these results leads to the next proposition.

Proposition 13. [tn]y2(a,b)
x

is given by the equivalent expressions

n
∑

k=0

1

k + 1

(

n

k

)(

n+ k

k

)

ak(−b)n−k

=
n
∑

k=0

(

n+ k

2k

)

c(k)ak(−b)n−k

=
n
∑

k=0

(

2n− k

k

)

c(n− k)an−k(−b)k.

We summarize some of these results in Table 1, where cn = c(n) = 1
n+1

(

2n
n

)

, and

P (x) = 1 − 2(r + 1)x + (r − 1)2x2, and N(n, k) = 1
n

(

n
k

)(

n
k+1

)

. We use the terms “Little
sequence” and “large sequence” in analogy with the Schröder numbers. In [12] we note that
the terms “Little Schröder”, “Big Schröder” and “Bigger Schröder” are used. For instance,
the numbers 1, 3, 11, 45, . . . appear there as the “Bigger Schröder” numbers.

Table 1. Summary of section results

Large sequence, Sn Little sequence, sn Larger sequence sn − 0n

e.g. 1, 2, 6, 22, 90, . . . e.g. 1, 1, 3, 11, 45, . . . e.g. 0, 1, 3, 11, 45, . . .
x(1−x)

1−(1−r)x
x(1−rx)
1−(r−1)x

x
1+(r+1)x+rx2

1−(r−1)x−
√

P (x)

2x

1+(r−1)x−
√

P (x)

2rx

1−(r+1)x−
√

P (x)

2rx

a0 = 1, an = 1
n

∑n
k=0

(

n
k

)(

n
k−1

)

rk a0 = 1, an =
∑n

k=0N(n, k)rk
∑n−1

k=0 N(n, k)rk
∑n

k=0

(

n+k
2k

)

ck(r − 1)n−k
∑n

k=0

(

n+k
2k

)

ckr
k(1− r)n−k

∑

k=0

(

n−1
2k

)

ck(r + 1)n−2k−1rk
∑n

k=0

(

2n−k
k

)

cn−k(r − 1)k
∑n

k=0

(

2n−k
k

)

cn−kr
n−k(1− r)k -

Table 2. Little and Large sequences in OEIS

r sn Sn Triangle
1 A000984 A000984 A007318
2 A001003 A006318 A008288
3 A007564 A047891 A081577
4 A059231 A082298 A081578
5 A078009 A082301 A081579
6 A078018 A082302 A081580
7 A081178 A082305
8 A082147 A082366
9 A082181 A082367
10 A082148

Note that by Example 6 we can write

sn =
1

r
Sn +

(r − 1)0n

r
.
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4 Introducing the family of centrally symmetric invert-

ible triangles

The motivation for the construction that follows comes from the following easily established
proposition.

Proposition 14.
(

n

k

)

=
n−k
∑

j=0

(

k

j

)(

n− k

j

)

=
k
∑

j=0

(

k

j

)(

n− k

j

)

.

Proof. We consider identity 5.23 of [4]:
(

r + s

r − p+ q

)

=
∑

j

(

r

p+ j

)(

s

q + j

)

itself a consequence of Vandermonde’s convolution identity. Setting r = k, s = n − k,
p = q = 0, we obtain

(

n

k

)

=
∑

j

(

k

j

)(

n− k

j

)

.

Now let an represent a sequence of integers with a0 = 1. We define an infinite array of
numbers for n, k ≥ 0 by

T (n, k) =
n−k
∑

j=0

(

k

j

)(

n− k

j

)

aj.

and call it the triangle associated with the sequence an by this construction. That it is a
number triangle follows from the next proposition.

Proposition 15. The matrix with general term T (n, k) is an integer-valued centrally sym-
metric invertible lower-triangular matrix.

Proof. All elements in the sum are integers, hence T (n, k) is an integer for all n, k ≥ 0.
T (n, k) = 0 for k > n since then n− k < 0 and hence the sum is 0. We have

T (n, n) =
n−n
∑

j=0

(

n

j

)(

n− n

j

)

aj =
0
∑

j=0

(

n

j

)(

0

j

)

aj =

(

n

0

)(

0

0

)

a0 = 1

which proves that the matrix is invertible. Finally, we have

T (n, n− k) =

n−(n−k)
∑

j=0

(

n− k

j

)(

n− (n− k)

j

)

aj

=
k
∑

j=0

(

n− k

j

)(

k

j

)

aj

= T (n, k).
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It is clear that Pascal’s triangle corresponds to the case where an is the sequence 1, 1, 1, . . ..
Occasionally we shall use the above construction on sequences an for which a0 = 0. In

this case we still have a centrally symmetric triangle, but it is no longer invertible, since for
example T (0, 0) = 0 in this case.

By an abuse of notation, we shall often use T (n, k; an) to denote the triangle associated
to the sequence an by the above construction, when explicit mention of an is required.

The associated square symmetric matrix with general term

Tsq(n, k) =
n
∑

j=0

(

k

j

)(

n

j

)

aj

is easy to describe. We let D = D(an) = diag(a0, a1, a2, . . .). Then

Tsq = BDB′

is the square symmetric (infinite) matrix associated to our construction. Note that when
an = 1 for all n, we get the square Binomial or Pascal matrix

(

n+k
k

)

.
Among the attributes of the triangles that we shall construct that interest us, the family of

central sequences (sequences associated to T (2n, n) and its close relatives) will be paramount.
The central binomial coefficients

(

2n
n

)

, A000984, play an important role in combinatorics. We
begin our examination of the generalized triangles by characterizing their ‘central coefficients’
T (2n, n). We obtain

T (2n, n) =
2n−n
∑

j=0

(

2n− n

j

)(

n

j

)

aj

=
n
∑

j=0

(

n

j

)2

aj.

For the case of Pascal’s triangle with an given by 1, 1, 1, . . . we recognize the identity
(

2n
n

)

=
∑n

j=0

(

n
j

)2
. In like fashion, we can characterize T (2n+ 1, n), for instance.

T (2n+ 1, n) =
2n+1−n
∑

j=0

(

2n+ 1− n

j

)(

n

j

)

aj

=
n+1
∑

j=0

(

n+ 1

j

)(

n

j

)

aj

which generalizes the identity
(

2n+1
n

)

=
∑n+1

j=0

(

n+1
j

)(

n
j

)

. This is A001700. We also have

T (2n− 1, n− 1) =
2n−1−n+1
∑

j=0

(

2n− 1− n+ 1

j

)(

n− 1

j

)

aj

=
n
∑

j=0

(

n− 1

j

)(

n

j

)

aj.
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This generalizes the equation
(

2n−1
n−1

)

+ 0n =
∑n

j=0

(

n−1
j

)(

n
j

)

. See A088218.

In order to generalize the Catalan numbers c(n), A000108, in our context, we note that
c(n) =

(

2n
n

)

/(n+ 1) has the alternative representation

c(n) =

(

2n

n

)

−
(

2n

n− 1

)

=

(

2n

n

)

−
(

2n

n+ 1

)

.

This motivates us to look at T (2n, n)− T (2n, n− 1) = T (2n, n)− T (2n, n+ 1). We obtain

T (2n, n)− T (2n, n− 1) =
n
∑

j=0

(

n

j

)2

aj −
2n−n+1
∑

j=0

(

n− 1

j

)(

2n− n+ 1

j

)

aj

=
n
∑

j=0

(

n

j

)2

aj −
n+1
∑

j=0

(

n− 1

j

)(

n+ 1

j

)

aj

= δn,0an +
n
∑

j=0

(

(

n

j

)2

−
(

n− 1

j

)(

n+ 1

j

)

)aj

= δn,0a0 +
n
∑

j=0

Ñ(n− 1, j − 1)aj

where we use the formalism
(

n−1
n+1

)

= −1, for n = 0, and
(

n−1
n+1

)

= 0 for n > 0. We assume that

Ñ(n,−1) = 0 and Ñ(−1, k) =
(

1
k

)

−
(

0
k

)

in the above. For instance, in the case of Pascal’s
triangle, where an = 1 for all n, we retrieve the Catalan numbers. We have also established
a link between these generalized Catalan numbers and the Narayana numbers. We shall use
the notation

c(n; a(n)) = T (2n, n)− T (2n, n− 1) = T (2n, n)− T (2n, n+ 1)

for this sequence, which we regard as a sequence of generalized Catalan numbers.

Example 16. We first look at the case an = 2n. Thus

T (n, k) =
n−k
∑

j=0

(

k

j

)(

n− k

j

)

2j

with matrix representation























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 3 1 0 0 0 . . .
1 5 5 1 0 0 . . .
1 7 13 7 1 0 . . .
1 9 25 25 9 1 . . .
...

...
...

...
...

...
. . .
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which is the well-known Delannoy number triangle A008288. We have

T (n, k) =
k
∑

j=0

(

k

j

)(

n− j

k

)

.

We shall generalize this identity later in this note.
As a Riordan array, this is given by

(
1

1− x
,
x(1 + x)

1− x
).

Anticipating the general case, we examine the row sums of this triangle, given by

n
∑

k=0

n−k
∑

j=0

(

k

j

)(

n− k

j

)

2j.

Using the formalism of the Riordan group, we see that this sum has generating function
given by

1
1−x

1− x(1+x)
1−x

=
1

1− 2x− x2
.

In other words, the row sums in this case are the numbers Pell(n + 1), A000129, [29]. We
look at the inverse binomial transform of these numbers, which has generating function

1

1 + x

1

1− 2 x
1+x

− x2

(1+x)2

=
1 + x

1− 2x2
.

This is the generating function of the sequence 1, 1, 2, 2, 4, 4, . . ., A016116, which is the
doubled sequence of an = 2n.

Another way to see this result is to observe that we have the factorization

(
1

1− x
,
x(1 + x)

1− x
) = (

1

1− x
,

x

1− x
)(1,

x(1 + 2x)

1 + x
)

where ( 1
1−x ,

x
1−x) represents the binomial transform. The row sums of the Riordan array

(1, x(1+2x)
1+x

) are 1, 1, 2, 2, 4, 4, . . ..
For this triangle, the central numbers T (2n, n) are the well-known central Delannoy num-

bers 1, 3, 13, 63, . . . or A001850, with ordinary generating function 1√
1−6x+x2 and exponential

generating function e3xI0(2
√
2x) where In is the n-th modified Bessel function of the first

kind [28]. They represent the coefficients of xn in the expansion of (1+ 3x+2x2)n. We have

T (2n, n; 2n) =
n
∑

k=0

(

n

k

)2

2k =
n
∑

k=0

(

n

k

)(

n+ k

k

)

.

The numbers T (2n+1, n) in this case are A002002, with generating function ( 1−x√
1−6x+x2 −

1)/(2x) and exponential generating function e3x(I0(2
√
2x) +

√
2I1(2

√
2x)). We note that
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T (2n− 1, n− 1) represents the coefficient of xn in ((1− x)/(1− 2x))n. It counts the number
of peaks in all Schröder paths from (0, 0) to (2n, 0).

The numbers T (2n, n)−T (2n, n−1) are 1, 2, 6, 22, 90, 394, 1806, . . . or the large Schröder

numbers. These are the series reversion of x(1−x)
1+x

. Thus the generating function of the

sequence 1
2
(T (2n, n; 2n)− T (2n, n− 1; 2n)) is

y2(1,−1) =
1− x−

√
1− 6x+ x2

2x
.

We remark that in [23], the author states that “The Schröder numbers bear the same
relation to the Delannoy numbers as the Catalan numbers do to the binomial coefficients.”
This note amplifies on this statement, defining generalized Catalan numbers for a family of
number triangles.

Example 17. We take the case an = (−1)n. Thus

T (n, k) =
n−k
∑

j=0

(

k

j

)(

n− k

j

)

(−1)j

with matrix representation






















1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 0 1 0 0 0 . . .
1 −1 −1 1 0 0 . . .
1 −2 −2 −2 1 0 . . .
1 −3 −2 −2 −3 1 . . .
...

...
...

...
...

...
. . .























As a Riordan array, this is given by

(
1

1− x
,
x(1− 2x)

1− x
).

Again, we look at the row sums of this triangle, given by

n
∑

k=0

n−k
∑

j=0

(

k

j

)(

n− k

j

)

(−1)j.

Looking at generating functions, we see that this sum has generating function given by

1
1−x

1− x(1−2x)
1−x

=
1

1− 2x+ 2x2
.

In other words, the row sums in this case are the numbers 1, 2, 2, 0,−4,−8,−8, . . . with ex-
ponential generating function exp(x)(sin(x)+cos(x)), A009545. Taking the inverse binomial
transform of these numbers, we get the generating function

1

1 + x

1

1− 2 x
1+x

+ 2 x2

(1+x)2

=
1 + x

1 + x2
.
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This is the generating function of the sequence 1, 1,−1,−1, 1, 1, . . . which is the doubled
sequence of an = (−1)n.

Another way to see this result is to observe that we have the factorization

(
1

1− x
,
x(1− 2x)

1− x
) = (

1

1− x
,

x

1− x
)(1,

x(1− x)

1 + x
)

where ( 1
1−x ,

x
1−x) represents the binomial transform. The row sums of the Riordan array

(1, x(1−x)
1+x

) are 1, 1,−1,−1, 1, 1, . . ..
The central terms T (2n, n) turn out to be an ‘aerated’ signed version of

(

2n
n

)

given by
1, 0,−2, 0, 6, 0,−20, . . . with ordinary generating function 1√

1+4x2 and exponential generating

function I0(2
√
−1x). They represent the coefficients of xn in (1− x2)n. We have

T (2n, n; (−1)n) =
n
∑

k=0

(

n

k

)2

(−1)k =
n
∑

k=0

(

n

k

)(

n+ k

k

)

(−1)k2n−k.

The terms T (2n+ 1, n) turn out to be a signed version of
(

n
bn/2c

)

, namely

1,−1,−2, 3, 6,−10,−20, 35, 70, . . .

with ordinary generating function ( 1+2x√
1+4x2 − 1)/(2x) and exponential generating function

I0(2
√
−1x) +

√
−1I1(2

√
−1x).

The generalized Catalan numbers T (2n, n)− T (2n, n− 1) are the numbers

1,−1, 0, 1, 0,−2, 0, 5, 0,−14, 0, . . .

with generating function y2(1, 2) =
1+2x−

√
1+4x2

2x
. This is the series reversion of x(1−x)

1−2x
.

We note that the sequence T (2(n+1), n)−T (2(n+1), n+1) is (−1)n/2c(n/2)(1+(−1)n)/2
with exponential generating function I1(2

√
−1x)/(

√
−1x).

5 A one-parameter sub-family of triangles

The above examples motivate us to look at the one-parameter subfamily given by the set of
triangles defined by the power sequences n→ rn, for r ∈ Z. The case r = 1 corresponds to
Pascal’s triangle, while the case r = 0 corresponds to the ‘partial summing’ triangle with 1s
on and below the diagonal.

Proposition 18. The matrix associated to the sequences n → rn, r ∈ Z, is given by the
Riordan array

(

1

1− x
,
x(1 + (r − 1)x)

1− x

)

.
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Proof. The general term T (n, k) of the above matrix is given by

T (n, k) = [xn](1 + (r − 1)x)kxk(1− x)−(k+1)

= [xn−k](1 + (r − 1)x)k(1− x)−(k+1)

= [xn−k]
k
∑

j=0

(

k

j

)

(r − 1)jxj
∑

i=0

(

k + i

i

)

xi

= [xn−k]
k
∑

j=0

∑

i=0

(

k

j

)(

k + i

i

)

(r − 1)jxi+j

=
k
∑

j=0

(

k

j

)(

k + n− k − j

n− k − j

)

(r − 1)j

=
k
∑

j=0

(

k

j

)(

n− j

k

)

(r − 1)j

=
k
∑

j=0

(

k

j

)(

n− k

j

)

rj.

where the last equality is a consequence of identity (3.17) in [15].

Corollary 19. The row sums of the triangle defined by n→ rn are the binomial transforms
of the doubled sequence n→ 1, 1, r, r, r2, r2, . . ., i.e., n→ rb

n
2
c.

Proof. The row sums of ( 1
1−x ,

x(1+(r−1)x)
1−x ) are the binomial transform of the row sums of its

product with the inverse of the binomial matrix. This product is

(
1

1 + x
,

x

1 + x
)(

1

1− x
,
x(1 + (r − 1)x)

1− x
) = (1,

x(1 + rx)

1 + x
).

The row sums of this product have generating function given by

1

1− x(1+rx)
1+x

=
1 + x

1− rx2
.

This is the generating function of 1, 1, r, r, r2, r2 . . . as required.

We note that the generating function for the row sums of the triangle corresponding to
rn is 1

1−2x−(r−1)x2 .

We now look at the term T (2n, n) for this subfamily.

Proposition 20. T (2n, n; rn) is the coefficient of xn in (1 + (r + 1)x+ rx2)n.
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Proof. We have (1 + (r + 1)x+ rx2) = (1 + x)(1 + rx). Hence

[xn](1 + (r + 1)x+ rx2)n = [xn](1 + x)n(1 + rx)n

= [xn]
n
∑

k=0

n
∑

j=0

(

n

k

)(

n

j

)

rjxk+j

=
n
∑

j=0

(

n

n− j

)(

n

j

)

rj

=
n
∑

j=0

(

n

j

)2

rj.

Corollary 21. The generating function of T (2n, n; rn) is

1
√

1− 2(r + 1)x+ (r − 1)2x2
.

Proof. Using Lagrangian inversion, we can show that

[xn](1 + ax+ bx2)n = [tn]
1

√

1− 2at+ (a2 − 4b)t2

(see exercises 5.3 and 5.4 in [30]). Then

[xn](1 + (r + 1)x+ rx2)n = [tn]
1

√

1− 2(r + 1)t+ ((r + 1)2 − 4r)t2

= [tn]
1

√

1− 2(r + 1)t+ (r − 1)2t2

Corollary 22.

n
∑

k=0

(

n

k

)2

rk =
n
∑

k=0

(

n

2k

)(

2k

k

)

(r + 1)n−2krk =
n
∑

k=0

(

n

k

)(

n− k

k

)

(r + 1)n−2krk.

Proof. This follows since the coefficient of xn in (1 + ax+ bx2)n is given by [9]

n
∑

k=0

(

n

2k

)(

2k

k

)

an−2kbk =
n
∑

k=0

(

n

k

)(

n− k

k

)

an−2kbk.

Hence each term is equal to T (2n, n; rn).

We now look at the sequence T (2n− 1, n− 1).

Proposition 23. T (2n− 1, n− 1; rn) is the coefficient of xn in (1−(r−1)x
1−rx )n
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Proof. We have 1−(r−1)x
1−rx = 1−rx+x

1−rx = 1 + x
1−rx . Hence

[xn](
1− (r − 1)x

1− rx
)n = [xn](1 +

x

1− rx
)n

= [xn]
n
∑

k=0

n
∑

k=0

(

n

k

)

xk
∑

j=0

(

k + j − 1

j

)

rjxj

=
∑

j=0

(

n

n− j

)(

n− 1

j

)

rj

=
∑

j=0

(

n

j

)(

n− 1

j

)

rj.

Corollary 24.

n
∑

k=0

(

n

k

)(

n− 1

k

)

rk =
n
∑

k=0

(

n

k

)(

n+ k − 1

k

)

(1−r)n−krk =
n
∑

k=0

(

n

k

)(

2n− k − 1

n− k

)

(1−r)krn−k.

Proof. The coefficient of xn in (1−ax
1−bx )

n is seen to be

n
∑

k=0

(

n

k

)(

n+ k − 1

k

)

(−a)n−krk =
n
∑

k=0

(

n

k

)(

2n− k − 1

n− k

)

(−a)krn−k.

Hence all three terms in the statement are equal to T (2n− 1, n− 1; rn).

We can generalize the results seen above for T (2n, n), T (2n+1, n), T (2n− 1, n− 1) and
T (2n, n)− T (2n, n− 1) as follows.

Proposition 25. Let T (n, k) =
∑n−k

k=0

(

k
j

)(

n−k
j

)

rj be the general term of the triangle associ-
ated to the power sequence n→ rn.

1. The sequence T (2n, n) has ordinary generating function 1√
1−2(r+1)x+(r−1)2x2

, exponen-

tial generating function e(r+1)xI0(2
√
rx), and corresponds to the coefficients of xn in

(1 + (r + 1)x+ rx2)n.

2. The numbers T (2n+ 1, n) have generating function ( 1−(r−1)x√
1−2(r+1)x+(r−1)2x2

− 1)/(2x) and

exponential generating function e(r+1)x(I0(2
√
rx) +

√
rI1(2

√
rx)).

3. T (2n− 1, n− 1) represents the coefficient of xn in ((1− (r − 1)x)/(1− rx))n.

4. The generalized Catalan numbers c(n; rn) = T (2n, n) − T (2n, n − 1) associated to the

triangle have ordinary generating function
1−(r−1)x−

√
1−2(r+1)x+(r−1)2x2

2x
.

5. The sequence c(n+ 1; rn) has exponential generating function 1√
rx
e(r+1)xI1(2

√
rx).
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6. The sequence nc(n; rn) =
∑n

k=0

(

n
k

)(

n+k
k+1

)

rn−k

r+1
has exponential generating function

1√
rx
e(r+1)xI1(2

√
r).

7. The sequence c(n; rn)−0n is expressible as
∑bn−1

2
c

k=0

(

n−1
2k

)

c(k)(r+1)n−2k−1rk and counts
the number of Motzkin paths of length n in which the level steps have r+1 colours and
the up steps have r colours. It is the series reversion of x

1+(r+1)x+rx2 .

Pascal’s triangle can be generated by the well-know recurrence
(

n

k

)

=

(

n− 1

k − 1

)

+

(

n− 1

k

)

.

The following proposition gives the corresponding recurrence for the case of the triangle
associated to the sequence n→ rn.

Proposition 26. Let T (n, k) =
∑n−k

k=0

(

k
j

)(

n−k
j

)

rj. Then

T (n, k) = T (n− 1, k − 1) + (r − 1)T (n− 2, k − 1) + T (n− 1, k).

Proof. The triangle in question has Riordan array representation
(

1

1− x
,
x(1 + (r − 1)x)

1− x

)

Thus the bivariate generating function of this triangle is given by

F (x, y) =
1

1− x

1

1− y x(1+(r−1)x)
1−x

=
1

1− x− xy − (r − 1)x2y

In this simple case, it is possible to characterize the inverse of the triangle. We have

Proposition 27. The inverse of the triangle associated to the sequence n→ rn is given by
the Riordan array (1− u, u) where

u =

√

1 + 2(2r − 1)x+ x2 − x− 1

2(r − 1)
.

Proof. Let (g∗, f̄) = ( 1
1−x ,

x(1+(r−1)x)
1−x )−1. Then

f̄(1 + (r − 1)f̄)

1− f̄
= x⇒ f̄ =

√

1 + 2(2r − 1)x+ x2 − x− 1

2(r − 1)
.

Since g∗ = 1
g◦f̄ = 1− f̄ we obtain the result.

Corollary 28. The row sums of the inverse of the triangle associated with n → rn are
1, 0, 0, 0, . . ..

Proof. The row sums of the inverse (1− u, u) have generating function given by 1−u
1−u = 1. In

other words, the row sums of the inverse are 0n = 1, 0, 0, 0, . . ..

Other examples of these triangles are given by A081577, A081578, A081579, and A081580.

21



6 The Jacobsthal and the Fibonacci cases

We now look at the triangles generated by sequences whose elements can be expressed in
Binet form as a simple sum of powers. In the first example of this section, the powers are of
integers, while in the second case (Fibonacci numbers) we indicate that the formalism can
be extended to non-integers under the appropriate conditions.

Example 29. The Jacobsthal numbers J(n+1), A001045, have generating function 1
1−x−2x2

and general term J(n + 1) = 2.2n/3 + (−1)n/3. Using our previous examples, we see that
the triangle defined by J(n+ 1)



























1 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 . . .
1 2 1 0 0 0 0 . . .
1 3 3 1 0 0 0 . . .
1 4 8 4 1 0 0 . . .
1 5 16 16 5 1 0 . . .
1 6 27 42 27 6 1 . . .
...

...
...

...
...

...
...

. . .



























or A114202, is the scaled sum of the Riordan arrays discussed above, given by

2

3
(

1

1− x
,
x(1 + x)

1− x
) +

1

3
(

1

1− x
,
x(1− 2x)

1− x
).

In particular, the k-th column of the triangle has generating function

gk(x) =
xk

(1− x)k+1

(

2

3
(1 + x)k +

1

3
(1− 2x)k

)

=
xk

(1− x)k+1

k
∑

j=0

(

k

j

)

1

3
(2 + (−2)j)xj.

We recognize in the sequence 1
3
(2 + (−2)n) the inverse binomial transform of J(n+ 1).

Obviously, the inverse binomial transform of the row sums of the matrix are given by

2

3
2b

n
2
c +

1

3
(−1)bn

2
c

or 1, 1, 1, 1, 3, 3, 5, 5, . . ., the doubled sequence of J(n+ 1).
The terms T (2n, n) for this triangle can be seen to have generating function 2

3
1√

1−6x+x2 +
1
3

1√
1+4x2 and exponential generating function 2

3
e3xI0(2

√
2x) + 1

3
I0(2

√
−1x).

The generalized Catalan numbers for this triangle are

1, 1, 4, 15, 60, 262, 1204, 5707, 27724, . . .

whose generating function is 3−
√
1+4x2−2

√
1−6x+x2

6x
.
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To find the relationship between T (n, k) and its ‘previous’ elements, we proceed as follows,
where we write T (n, k) = T (n, k; J(n+ 1)) to indicate its dependence on J(n+ 1).

T (n, k; J(n+ 1)) =
∑

j=0

(

k

j

)(

n− k

j

)

(
2

3
2j +

1

3
(−1)j)

=
2

3

∑

j=0

(

k

j

)(

n− k

j

)

2j +
1

3

∑

j=0

(

k

j

)(

n− k

j

)

(−1)j

=
2

3
T (n, k; 2n) +

1

3
T (n, k; (−1)n)

=
2

3
(T (n− 1, k − 1; 2n) + T (n− 2, k − 1; 2n) + T (n− 1, k; 2n))

+
1

3
(T (n− 1, k − 1; (−1)n)− 2T (n− 2, k − 1; (−1)n) + T (n− 1, k; (−1)n))

=
2

3
T (n− 1, k − 1; 2n) +

1

3
T (n− 1, k − 1; (−1)n)

+
2

3
(T (n− 2, k − 1; 2n)− T (n− 2, k − 1; (−1)n))

+
2

3
T (n− 1, k; 2n) +

1

3
T (n− 1, k; (−1)n)

= T (n− 1, k − 1; J(n+ 1)) + 2T (n− 2, k − 1; J(n)) + T (n− 1, k; J(n+ 1)).

We see here the appearance of the non-invertible matrix based on J(n). This begins as


























0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 . . .
0 1 0 0 0 0 0 . . .
0 2 2 0 0 0 0 . . .
0 3 5 3 0 0 0 . . .
0 4 9 9 4 0 0 . . .
0 5 14 21 14 5 0 . . .
...

...
...

...
...

...
...

. . .



























Example 30. We briefly look at the case of the Fibonacci sequence

F (n+ 1) =

(

(
1 +

√
5

2
)(
1 +

√
5

2
)n − (

1−
√
5

2
)(
1−

√
5

2
)n

)

/
√
5.

Again, we can display the associated triangle


























1 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 . . .
1 2 1 0 0 0 0 . . .
1 3 3 1 0 0 0 . . .
1 4 7 4 1 0 0 . . .
1 5 13 13 5 1 0 . . .
1 6 21 31 21 6 1 . . .
...

...
...

...
...

...
...

. . .
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or A114197 as a sum of scaled ‘Riordan arrays’ as follows:

1 +
√
5

2
(

1

1− x
,
x(1 + (1+

√
5

2
− 1)x)

1− x
)− 1−

√
5

2
(

1

1− x
,
x(1 + (1−

√
5

2
− 1)x)

1− x
).

Hence the k-th column of the associated triangle has generating function given by

xk

(1− x)k+1
(
1 +

√
5

2
(1 + (

1 +
√
5

2
− 1)x)k +

1−
√
5

2
(1 + (

1−
√
5

2
− 1)x)k).

Expanding, we find that the generating function of the k-th column of the triangle associated
to F (n+ 1) is given by

xk

(1− x)k+1

k
∑

j=0

(

k

j

)

bjx
j

where the sequence bn is the inverse binomial transform of F (n+ 1). That is, we have

bn =
n
∑

k=0

(

n

k

)

(−1)n−kF (k + 1) = (φ(φ− 1)n +
1

φ
(− 1

φ
− 1)n)/

√
5

where φ = 1+
√
5

2
.

Again, the inverse binomial transform of the row sums is given by F (bn
2
c+ 1).

The term T (2n, n) in this case is
∑n

k=0

(

n
k

)2
F (k+1), or 1, 2, 7, 31, 142, 659, . . . (A114198).

This has ordinary generating function given by

1+
√
5

2
√
5

√

1− 2(1+
√
5

2
+ 1)x+ (1+

√
5

2
− 1)2x2

−
1−

√
5

2
√
5

√

1− 2(1−
√
5

2
+ 1)x+ (1−

√
5

2
− 1)2x2

and exponential generating function

1 +
√
5

2
√
5

exp(
3 +

√
5

2
x)I0(2

√

1 +
√
5

2
x)− 1−

√
5

2
√
5

exp(
3−

√
5

2
x)I0(2

√

1−
√
5

2
x).

T (n, k) satisfies the following recurrence

T (n, k;F (n+ 1)) = T (n− 1, k− 1;F (n+ 1)) + T (n− 2, k− 1;F (n)) + T (n− 1, k;F (n+ 1))

where the triangle associated to F (n) begins


























0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 . . .
0 1 0 0 0 0 0 . . .
0 2 2 0 0 0 0 . . .
0 3 5 3 0 0 0 . . .
0 4 9 9 4 0 0 . . .
0 5 14 20 14 5 0 . . .
...

...
...

...
...

...
...

. . .



























We note that all Lucas sequences [27] can be treated in similar fashion.
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7 The general case

Proposition 31. Given an integer sequence an with a0 = 1, the centrally symmetric invert-
ible triangle associated to it by the above construction has the following generating function
for its k-th column:

xk

1− x

k
∑

j=0

(

k

j

)

aj

(

x

1− x

)j

=
xk

(1− x)k+1

k
∑

j=0

(

k

j

)

bjx
j

where bn is the inverse binomial transform of an.

Proof. We have

[xn]
xk

1− x

k
∑

j=0

(

k

j

)

aj

(

x

1− x

)j

= [xn−k]
k
∑

j=0

(

k

j

)

aj
xj

(1− x)j+1

=
∑

j

(

k

j

)

aj[x
n−k−j](1− x)−(j+1)

=
∑

j

(

k

j

)

aj[x
n−k−j]

∑

i

(

j + i

i

)

xi

=
∑

j

(

k

j

)

aj

(

j + n− k − j

n− k − j

)

=
∑

j

(

k

j

)(

n− k

j

)

aj

= T (n, k).

Similarly,

[xn]
xk

(1− x)k+1

k
∑

j=0

(

k

j

)

bjx
j =

∑

j

(

k

j

)

bj[x
n−k−j ](1− x)−(k+1)

=
∑

j

(

k

j

)

bj[x
n−k−j ]

∑

i

(

k + i

i

)

xi

=
∑

j

(

k

j

)

bj

(

k + n− k − j

n− k − j

)

=
∑

j

(

k

j

)(

n− j

k

)

bj.
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Now

∑

j=0

(

k

j

)(

n− k

j

)

aj =
∑

j=0

(

k

j

)(

n− k

j

) j
∑

i=0

(

j

i

)

bi

=
∑

j

∑

i

(

k

j

)(

n− k

j

)(

j

i

)

bi

=
∑

j

∑

i

(

k

j

)(

j

i

)(

n− k

j

)

bi

=
∑

j

∑

i

(

k

i

)(

k − i

j − i

)(

n− k

j

)

bi

=
∑

i

(

k

i

)

bi
∑

j

(

k − i

k − j

)(

n− k

j

)

=
∑

i

(

k

i

)

bi

(

n− i

k

)

=
∑

j

(

k

j

)(

n− j

k

)

bj.

Corollary 32. The following relationship exists between a sequence an and its inverse bino-
mial transform bn:

∑

j

(

k

j

)(

n− k

j

)

aj =
∑

j

(

k

j

)(

n− j

k

)

bj.

It is possible of course to reverse the above proposition to give us the following:

Proposition 33. Given a sequence bn, the product of the triangle whose k-th column has
ordinary generating function

xk

(1− x)k+1

k
∑

j=0

(

k

j

)

bjx
j

by the binomial matrix is the centrally symmetric invertible triangle associated to the binomial
transform of bn.

8 Exponential-factorial triangles

In this section, we briefly describe an alternative method that produces generalized Pascal
matrices, based on suitably chosen sequences. For this, we recall that the binomial matrix
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B may be represented as

B = exp























0 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
0 2 0 0 0 0 . . .
0 0 3 0 0 0 . . .
0 0 0 4 0 0 . . .
0 0 0 0 5 0 . . .
...

...
...

...
...

...
. . .























while if we write a(n) = n then the general term
(

n
k

)

of this matrix can be written as

(

n

k

)

=

∏k
j=1 a(n− j + 1)
∏k

j=1 a(j)
.

Furthermore,

B =
∑

k=0

Mk

∏k
j=1 a(j)

where M is the sub-diagonal matrix formed from the elements of a(n).
We shall see that by generalizing this construction to suitably chosen sequences a(n)

where a(0) = 0 and a(1) = 1, we can obtain generalized Pascal triangles, some of which are
well documented in the literature. Thus we let T (n, k) denote the matrix with general term

T (n, k) =

∏k
j=1 a(n− j + 1)
∏k

j=1 a(j)
=

(

n

k

)

a(n)

.

Proposition 34. T (n, n−k) = T (n, k), T (n, 1) = a(n), T (n+1, 1) = T (n+1, n) = a(n+1)

Proof. To prove the first assertion, we assume first that k ≤ n− k. Then

T (n, k) =
a(n) . . . a(n− k + 1)

a(1) . . . a(k)

=
a(n) . . . a(n− k + 1)

a(1) . . . a(k)

a(n− k) . . . a(k + 1)

a(k + 1) . . . a(n− k)

= T (n, n− k).

Secondly, if k > n− k, we have

T (n, n− k) =
a(n) . . . a(k + 1)

a(1) . . . a(n− k)

=
a(n) . . . a(k + 1)

a(1) . . . a(n− k)

a(k) . . . a(n− k + 1)

a(n− k + 1) . . . a(k)

= T (n, k).
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Next, we have

T (n, 1) =

∏1
j=1 a(n− j + 1)
∏1

j=1 a(j)

=
a(n− 1 + 1)

a(1)
= a(n).

since a(1) = 1. Similarly,

T (n+ 1, 1) =

∏1
j=1 a(n+ 1− j + 1)

∏1
j=1 a(j)

=
a(n+ 1− 1 + 1)

a(1)
= a(n+ 1).

Thus for those choices of the sequence a(n) for which the values of T (n, k) are integers,
T (n, k) represents a generalized Pascal triangle with T (n, 1) = a(n + 1). We shall use the
notation Pa(n) to denote the triangle constructed as above.

We define the generalized Catalan sequence associated to a(n) by this construction to be
the sequence with general term

T (2n, n)

a(n+ 1)
.

Example 35. The Fibonacci numbers. The matrix PF (n) with general term

∏k
j=1 F (n− j + 1)
∏k

j=1 F (j)

which can be expressed as
∑

k=0

Mk
F

∏k
j=1 F (j)

where MF is the sub-diagonal matrix generated by F (n):

MF =























0 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 0 2 0 0 0 . . .
0 0 0 3 0 0 . . .
0 0 0 0 5 0 . . .
...

...
...

...
...

...
. . .























is the much studied Fibonomial matrix, A010048, [8], [6], [7], [10], [24]. For instance, the
generalized Catalan numbers associated to this triangle are the Fibonomial Catalan numbers,
A003150.

28



Example 36. Let a(n) = 2n

2
− 0n

2
. The matrix Pa(n) with general term

∏k
j=1 a(n− j + 1)
∏k

j=1 a(j)

which can be expressed as
∑

k=0

Mk

∏k
j=1 a(j)

where M is the sub-diagonal matrix generated by a(n):

M =























0 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
0 2 0 0 0 0 . . .
0 0 4 0 0 0 . . .
0 0 0 8 0 0 . . .
0 0 0 0 16 0 . . .
...

...
...

...
...

...
. . .























is given by






















1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 2 1 0 0 0 . . .
1 4 4 1 0 0 . . .
1 8 16 8 1 0 . . .
1 16 64 64 16 1 . . .
...

...
...

...
...

...
. . .























This is A117401. For this matrix, we have T (2n, n) = 2n
2
and c(n; a(n)) = 2n(n−1). This is

easily generalized to the sequence n→ kn

k
− 0n

k
. For this sequence, we obtain T (2n, n) = kn

2

and c(n) = kn(n−1).

Example 37. We take the case a(n) = bn+1
2
c. In this case, we obtain the matrix























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
1 2 2 1 0 0 . . .
1 2 4 2 1 0 . . .
1 3 6 6 3 1 . . .
...

...
...

...
...

...
. . .























which has general term
(bn

2
c

bk
2
c

)(dn
2
e

dk
2
e

)

.
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This triangle counts the number of symmetric Dyck paths of semi-length n with k peaks

(A088855). We note that for this triangle, T (2n, n) is
(

n
bn

2
c
)2

while T (2n, n) − T (2n, n − 1)

is the sequence
1, 0, 2, 0, 12, 0, 100, 0, 980, 0, 10584 . . .

Example 38. The Jacobsthal numbers. Let a(n) = J(n) = 2n

3
− (−1)n

3
. We form the matrix

with general term
∏k

j=1 J(n− j + 1)
∏k

j=1 J(j)

which can be expressed as
∑

k=0

Mk
J

∏k
j=1 J(j)

where MJ is the sub-diagonal matrix generated by J(n):

MJ =























0 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 0 3 0 0 0 . . .
0 0 0 5 0 0 . . .
0 0 0 0 11 0 . . .
...

...
...

...
...

...
. . .























We obtain the matrix

PJ(n) =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
1 3 3 1 0 0 . . .
1 5 15 5 1 0 . . .
1 11 55 55 11 1 . . .
...

...
...

...
...

...
. . .























We recognize in this triangle the unsigned version of the q-binomial triangle for q = −2,
A015109, whose k-th column has generating function

xk
1

∏k
j=0(1− (−2)jx)

.

Using the above notation, this latter signed triangle is therefore P(−1)nJ(n). Note that

x

(1− x)(1 + 2x)
=

x

1 + x− 2x2

is the generating function for (−1)nJ(n).
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The generating function of the k-th column of PJ(n) is given by

xk
k
∏

j=0

1

(1− (−1)(j+k mod 2)2jx)
.

The generalized Catalan numbers for PJ(n) are given by
PJ(n)(2n,n)

J(n+1)
. These are A015056

1, 1, 5, 77, 5117, 1291677, . . .

We can generalize these results to the following:

Proposition 39. Let a(n) be the solution to the recurrence

a(n) = (r − 1)a(n− 1) + r2a(n− 2), a(0) = 0, a(1) = 1.

Then Pa(n) is a generalized Pascal triangle whose k-th column has generating function given
by

xk
k
∏

j=0

1

(1− (−1)(j+k mod 2)rjx)
.

Example 40. The Narayana and related triangles. The Narayana triangle Ñ is a generalized
Pascal triangle in the sense of this section. It is known that the generating function of its
k-th column is given by

xk
∑k

j=0N(k, j)xj

(1− x)2k+1
.

Now a(n) = Ñ(n, 1) =
(

n+1
2

)

satisfies a(0) = 0, a(1) = 1. It is not difficult to see that, in

fact, Ñ = P(n+1
2 ). See [5]. T (2n, n) for this triangle is A000891, with exponential generating

function I0(2x)I1(2x)/x. We note that is this case, the numbers generated by Ñ(2n, n)/a(n+
1) do not produce integers. However the sequence Ñ(2n, n)− Ñ(2n, n + 1) turns out to be
the product of successive Catalan numbers c(n)c(n+ 1). This is A005568.

The triangle P(n+2
3 ) is A056939 with matrix

P(n+2
3 ) =























1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 4 1 0 0 0 . . .
1 10 10 1 0 0 . . .
1 20 50 20 1 0 . . .
1 30 175 175 30 1 . . .
...

...
...

...
...

...
. . .























The k-th column of this matrix has generating function

xk
∑k

j=0N3(k, j)x
j

(1− x)3k+1

where N3(n, k) is the triangle of 3-Narayana numbers, [18], A087647.
P(n+3

4 ) is the number triangle A056940.
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