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1. INTRODUCTION

The polynomials ®,,(p, ¢; z) are studied in [1]. In this note we consider these polynomials
for p = 0 and ¢ = —1. Namely, we introduce the polynomials U, (z) = ®,(0,—1;z) with
Up(xz) = 0,Us(z) = 1,Us(z) = z, and V,,(z) = ®,(0,—1;2) with Vy(x) = 2,Vi(x) = x and
Va(x) = 2%. So we have the following recurrence relations:

Un(z) = 2Up_1(z) + Up—3(x),n > 3,Up(x) = 0,U1(z) = 1,Us(z) =, (1.1)

and
Vi(2) = 2Vi_1(2) + Vis(2),n > 3, Vo(2) = 2, Vi(z) = 2, Va(z) = 2. (1.2)

Let’s note that U, (x) are the generalized Fibonacci polynomials, and V;,(z) are the gen-
eralized Lucas polynomials.

Using the standard method, we can prove that the polynomials U, (z) and V,,(x) possess
generating functions as follows

Ut)=1—at—£)"' = Uppa(a)t", (1.3)
n=0
and
V(t)=(2—at)/(1 —at —t3) = iVn(m)t”. (1.4)
n=0

Using (1.3) and (1.4), respectively, we find that

L Py .
Upi1(z) = Z < ' >xn2j

=0 N 7

is an explicit representation of the polynomials U, (), and

N TA A

is an explicit representation of V,,(z).
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If  =11in (1.1) and (1.2), we get two sequences of numbers: {U,, (1)} and {V,,(1)}. These
sequences we denote by {U,} and {V,,}, respectively. Obviously, these sequences satisfy the
recurrence relations

Un: n—1+Un—37n>3aU1 :U2:U3:]-7

and
Vn :anl+vn737n>37vl :‘/2 = 17‘/3 = 3.

It is easy to prove the relation
Vn = Unp+1 + Un—2-

The incomplete Fibonacci and Lucas numbers are studied in [3]. Namely, the correspond-
ing generating functions of these numbers are found. Similarly, the incomplete generalized
Fibonacci numbers and generalized Lucas numbers are discussed in this note and the corre-
sponding generating functions are found.

2. INCOMPLETE NUMBERS

The incomplete generalized Fibonacci numbers {U,, (k)} are defined by

k .
Un(k) =" ("‘ 1,_2]), n=1,2...,0<k<[(n—1)/3], (2.1)

i=0 J

and the incomplete generalized Lucas numbers {V,,(k)} are defined by

k . .
Vi, (k) :ZS__;J, (”;,2]>, n=1,2,...,0<k<[n/3]. (2.2)

JFrom (2.1) and (2.2), we see that
Un([(n =1)/3]) = U and  Vio([n/3]) = Va,

where U,, and V,, are the generalized Fibonacci and generalized Lucas numbers, respectively.
The purpose of this paper is to derive the generating functions for these classes of numbers.
First, we are going to prove the following statement.

Lemma 1: Let {s,}nen be a complex sequence satisfying the recurrence relation
Sp = 8n—1+Sp—3+ 7", N> 2)
where r,, : N — C is a given sequence. Then the generating function F(t) of s, is

G(t) + 59 — 1o +t(s1 — 89 — 1) +t2(50 — 51 — 72)
F(t) = T :

where G(t) denotes the generating function of r.,.

107



GENERATING FUNCTIONS OF THE INCOMPLETE GENERALIZED FIBONACCI ...

Proof: This statement is a special case of a known result [3, p. 592, Lemma with
a = b = 1], so the proof will be omitted.
Now we are going to prove the following theorem.

Theorem 1: Let k be a positive integer. Then

> 4 A t3
- N\t — 43k+1 o
o) = 3 Ui = ¢ = =
where
A = Usj, + t(Usgy1 — Usi) + t2(Uskr2 — Usgy1),
and
= : B t3(2 —t)
t) = )t = 3k — 2.4
Sk() ;Vk(ﬂ)t 3 (1—t—t3 (1_t)k+1(1_t_t3)>a ( )
where

B = Vg1 +t(Vag — Vap_1) + t*(Vare1 — Var).

Proof: In the proof of this theorem we use Lemma 1. Namely, let k£ be a fixed positive
integer. From (2.1) and (2.2) it follows that U, (k) = 0 for 0 < n < 3k + 1,Usgy1(k) =
Usk, Usk+2(k) = Uskt1, Usk+3(k) = Usp2, and

n—4—2k

Un(k) = Up—1(k) + Un—3(k) — (n —4— 3k

), if n > 3k + 4. (2.5)
Let S0 = U3k+1(]€), S1 — U3k+2(k>, So — U3k+3(k3) and Sn = n+3k+1(l{i)(’l’b > 2), and
ro=ry=ry=0andr, = (”*3+k).

n—3

It is simple to prove that G(t) = t3(1 —t)~(**+1) is the generating function of the sequence
= (25,
JFrom Lemma 1 and (2.5), it follows that the generating function ®(t) of the sequence

sp, satisfies the equality

_ Usp + t(Uspr1 — Usg) + 12 (Uspr2 — Usky1) t3

1—¢t—1t3 (1—t)kt1(1—t—1t3)

(1)

Finally, the generating function Ry (t) of the sequence {U, (k)} is t3¥*1®,(¢), and it im-
mediately yields (2.3).

For the sequence {V,,(k)} we have that: V,,(k) = 0 for n < 3k, Vai(k) = Var_1, Vary1(k) =
Vai, Vagq2(k) = Vapq1 and

Vo(k) = Vi1 (k) + Vi—s(k) —

n—3—k (n—3-—2k
n—3—2k\n—3-—3k

), for n > 3k + 3. (2.6)

Let
so = Vai(k),s1 = Vary1(k), s2 = Varqa(k), sn = Vigar(k) (n > 2). (2.7)
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Also, let

ro=1r1=re=0,r, =

n—3+2k/n—-3+k
n—3+k n—3 /)

Thus, we find that the generating function of the sequence r,, is
Gt) =132 —t)(1 — )~ F+D),

and the generating function Wy (t) of s, satisfies the equality

t3(2 —t)

m =50 — 1o+ t(s1 — so _7“1)+t2(82 — 81 —Ta).

T (t)(1—t —t3) +

So, by (2.7) and (2.8), it follows that

Var(k) + t(Varga (k) — Var(k)) + t*(Varga(k) — Varga(K))

U, (t) =
k(t) 1—t—¢3

t3(2 —t)
(A=) (1=t —13)

Finally, the generating function Sy (t) of the sequence {V;,(k)} is t3* W (¢).
3. GENERALIZATION

In this section we introduce the generalized Fibonacci polynomials f,, ., (x) and generalized
Lucas polynomials I, ., (x) by:

fnm(@) = 2fn1m(@) + faomm(z), n>m, (3.1)
with fm(z) =2 1 if n=1,2,...,m, and

Lym (%) = @lp—1,m(x) + lomm (), n>m, (3.2)
with [, p(z) = 2", ifn=1,2,...,m

Remark: For m =2 and m = 3, we have:

fn2(x) = F,,(x) (Fibonacci polynomials),
ln,2(x) = Ly(z) (Lucas polynomials),
fn3(@) = Un(2),ln3(x) = Va(2).

Using the standard methods, we find that
[(n—1)/m] .
n—1—(m-—=1)7\ ,_1_mi
fam(@) = 3 ( ( ))x 1, (3.3)
j=0 J
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and
—y o me 2 = m =7 g
ln,m(x) - = n— (m — 1)] ( ] ) ’ (34)

are explicit representations of the polynomials f, ., (x) and [,, »,,(z), respectively.
For z = 1 in (3.3) and (3.4), we obtain two sequences of numbers {f, »} and {l, m}.
Hence, we get

k .
Fam(k) =3 (n_1_<,m_1>‘7),n:1,3,...,0§k§ [(n —1)/m], (3.5)

=0 J

which are the incomplete generalized Fibonacci numbers, and

k . .
zn,m(k:)=Zw<”_(m_1)j>,n:1,2,...,0gkg n/m],  (3.6)

which are the incomplete generalized Lucas numbers.
Therefore, we can observe that f,, ,,([(n — 1)/m]) = fn,m and l, m([n/m]) = I, m; where
fn,m and [, ,,, denote generalized Fibonacci and generalized Lucas numbers, respectively.
Our main purpose is to determine generating functions of the sequences { f, n(k)} and

{nm (F)}-

First, we can prove the following statement.

Lemma 2: Let {s,} be a complex sequence satisfying the recurrence relation
Sn = Sn—1+ Sn—m + (0 >m),
where v, : N — C' is a given sequence. Then the generating function ©(t) of s, is

H(t) +so— 10+ Zfi_ll ti(si — si1 —14)
o) = 1—¢—¢tm ’

where H(t) is generating function of the sequence r,.

Proof: This proof is similar to the proof of Lemma 1.
The following satement represents the main result of this note.

Theorem 2: Let k be a positive integer. Then

R - N gmk Am tm
RE0) =3 feni = e gy 6D

where

m—1
Am = fmk,m + Z ti(fmk—o—i,m - fmk—i—i—l,m)
=1
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and

S]Zl(t) .— Z lk,m(j)tj — tmk; <1 _Bm tm(2 — t) ) ’ (3.8)

__+m _ +\k+1 _ 4 _4m
prd t—tm (L= )1 —t —tm)
where

m—1

Bm = lmk—l,m + Z ti(lmk-i-i,m - lmk—i—i—l,m)-
i=1

Proof: The proof of Theorem 2 is based on Lemma 2. Namely, if

O(t) = so + s1t + 52t” + -+ F 85t - = Y spt",
n=0
then
tO(t) = spt" L tTO) = > st
n=0 n=0
and
H(t) =Y rot",
n=0
so we get

@(t)(]_—t—tm)—H(t) :SO—’I"0+t(81 —80—7‘1)—|—t2(82—81 —T‘2)—|—---
+ tm_l(sm_l — Sm—2 — Tm_l). (39)

Let k be a fixed positive integer. It is known (see [2]) that f,, (k) =0if 0 <n < mk +

17 fmk-l—l,m(k) = fmk,ma fmk+2,m(k) = fmk-l—l,mafmk—}-?,,m(k) = fmk+2,m, . 7fmk+m,m(k7) _
fmk+m—1,m, and that

n—1—m-—(m-1)k
n—m-—1—mk

fn,m(k):fn—l,m(k)+fn—m,m(k) = < ), n>mk+m+ 1.

Set
S0 = fmk—l—l,m(k)» S1 = fmk+2,m(k)7 vy Sm—1 = fmk+m,m(k)7
Sn = fn+mk+1,m(k)~ (310)
Also, let
— k
ro=11="=rp_1=0 and rn:(n m ) (3.11)
n—m
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The generating function of the sequence r, is H(t) = t™(1 — t)~*+1) Hence, from (3.9) and
using (3.10) and (3.11), we have

tm

O)(1—t—t™)+ A=t

- fmk,m + t(fmk—i—l,m - fmk,m)

+ t2<fmk+2,m - fmk+1,m) + -+ tmil(fmlwkmfl,m - fmk+mf2,m)-
Thus, we get

A tm

T 1—t—tm (I— )Rl —t—¢tm)’

where

Am = fmk,m + t(fmk—l—l,m - fmk,m) + t2<fmk:+2,m - fmk+1,m) + -

m—1

+ tm_l(fmk—l—m—l,m - fmk+m—2,m) = fmk,m + Z ti<fmk—|—i,m - fmk+i—1,m)-
i=1

The generating function R (t) of {fn m(k)} is t™F+1O(¢).
In the proof of (3.8), we use the following facts:
lnm(k) =01 0 <n <mk, Lypkgm(k) = lmk—1m,

lmk+1,m(k) = lmk,m; ceey lmk+m71,m(k) = lmk+m72,m and (312)
ln,m(k) = ln—l,m(k) - ln—m,m(k) — Qp, N2 mk + m,

where
n—m-—(m-=2k(n—m-—(m-1k
Qy, = .
n—m—(m-—1)k n—m —mk
Let
S0 = lmk,m(k)a §1 = lmk+1,m(k)7 ey Sm—1 = lmk—i—m—l,m(k)a Sn = ln—i—mk,m(k)'
Furthermore, let
n—m+2k/n—m+k
ro=mr=--="pm-1=0 and r, = ——— .
n—m-+k n—m

So, we find that K (t) = t™(2 —t)(1 — t)~*+1) is the generating function of the sequence
{rn}, and the generating function of the sequence {s, } satisfies the following equality

L(t)(l —t— tm) + K(t) = 8o + t(Sl — So) + tQ(SQ - 51) —+ e+ tmil(Smfl — Sm,Q),
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i.e.

lmk,m(k) + Z:i_ll ti(lmkwLi,m(k) B lmkﬂ'*l,m(k))

L(t) =
®) 1—-¢—¢tm

tm(2 —t)
(1 —t)k+1(1 —t —tm)’

Thus, using (3.12), we get

lmk—l,m + Z:';l ti(lmk—}—i,m

- lmk+i—1,m)

L(t) =
®) 1—¢t—tm

(2 —1)
(1 =)kt (1 -t —tm)’

The generating function S (¢) of the sequence {l,, ., (k)} is t™*L(¢) (see (3.8)). The proof of

Theorem 2 is complete.
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