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1. INTRODUCTION

in this paper we are concerned with developing and establishing further identities for the generalized Fibonacci
sequence §H,{, with particular emphasis on summation properties. First we ohtain a number of power identities
by substitution into some knewn identities and then we establish a number of summation identities. Next we pro-
ceed to derive some further summation identities involving the fourth power of generalized Fibonacei numbers

H,¢ from aconsideration of the ordinary Pascal triangle. Finaily, we arrive at some additional summation identi-
ties by applying standard difference equation theory tg the sequence an}- Motation and definitions of Walton
and Horadam [9] are assumed.

2. POWER IDENTITIES FOR THE SEQUENCE ‘g H, !

f
in this section a number of new power identities for the generalized Fibonaeei numbers ¢ 4, } have heen ob-
tained by following the reasoning of Zeitlin [10], for similar identities relating to the ordinary Fibonacei sequence
Fot.
Use will be made of identities {11} and {12) of Horadam [6], viz.,

(2.1) HoHpio—HZps = (=17 Ty
(2.2) HeitHste = BinHmeie = (=11 200 Fp -

{where we have substituted #n = m+4, # = 5 and k = r+5+7), and the identity
(2.3) Hict 18—+ HxHmg—1 = (20— g)Hpy — dF

where the right-hand side of (2.3} is derived from (3} of Horadam [6].
Re-writing {2.1) in the form

(2.4) H2=HE ey = (=1 d — H ey

yields 5 Y 2 5
(2.5) HE g+ HE = (H2 - 12,02 + 2HEHZ = 0P +2(~1)"aH H e + BHZ HE 4
(2.6) —2H3 oy~ H2 e HE 4 2H i HE = 2HH g (=17 d = HpH g ] — HEHZ 4

= 2~1)"dH Hppg — 3HEHZ 7

Adding (2.5} and (2.6} gives
(2.7) Hipe1 = 2His 1y = HEs g HE # 2H sy B3+ HE = 02

If we now substitute the identities

*Part of the substance of an M.Sc. thesis presented to the University of New England in 1968.
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Hﬂi+4 = 3Hn+7 ZH
(2.8) Hppz = 2Hpry + H,

Hpiz = Haprpt Hy
into the expression

Hifvq = H g — 19H 10— 4HF g + HE

we have —§ times the left-hand side of (2.7}, 4
(2.9) H,,+4 4w,,,3— 19HE o —aHE, + HE = —642
Re-arranging (2.9) and substituting » = n + 7 vyields

{2.10) His = dHE + 19HS o+ 4HE 1 — HE s — 607
so that substitution for —602 from (2.9} gives

(2.19) Hig = 5HE 4+ 18HE g — 15HE 5 - 5HE . + HE

We note here that {2.9) is a verification of 4.6} of Zeitlin [11].
If we now let V, = Hf—[-;l - Hff, we may re-write (2.9) in the form

(2.12) Vierg — 3Vipo — 22V ierg — 26V — 25HF = —Bd?
where

E Vierj = H§+j+1 - Hfz

k=0
Summing both sides of {(2.12) over &, where k = 0, 1, -, n, gives

(2.13) 25 E HE = HE g —3HR = 22H 15— 26HE s + 6(n+ 1)0? +5

where
8 = 9p% — 200% — 6p%9% + 4pg® + 284
{6 = 9 for the Flhonaccn numbers an§.}
Substituting for #;7.4 in (2.13) by using (2.9) gives

I
{2.14) 25 3" HE = Hiwg— 3Hra = 22H g — Hi + 6nd? +8
which yields the chvious msuit
{2.15) HE s — 3t o~ 2207 — B 6na® +5"= 0 mod 25,
where

8§ = 9,@4 - Zﬁpgq’ - 6,02572 + 4pq3 +3g%
(8" = 9 forthe Fibonacei numbers fg v
Multiplying (2.11) by (~7)7 *5 and repiacmg n by k gives

(2.16) Wirq + EWisg — Wiyrg — 2Wirq — 190y = 18(-1/%HE
where .
(2.17) Wy = (~HTHE (1) HE
Summing over both sides of (2.18) for & = H 1, -, 0, and using
n
{2.18) 5 Wirp = (=0T g — (= 1V
k=0

gives
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n
(2.19) 18 D (~TKHE = (—1)" [-H} 15+ 6H g + GH vz — 28H frep + 19H 1] + 6e
k=0
= (1) [HE g = 6H sg— GHE o+ 2482, — A ] +6e by (2.11)
= (1) [<2H 5+ 1007 5 + 28H3 ., — 2 — 64%] + 6 by (2.9),
where

€ =205 - 30247 - 200° +3¢% (= 9120° - 30% — 209° +3¢%1 ) .

e = 0 for the Fibonacci numbers { Fn } .4
Therefore, on using (2.11), we have

(2.20) 18 Z (~1)}UE = (—1)7 [HE g — 6H g — 9H o+ 24H7 ., — HET + 6e
k=0
= 2 { (=107 [HE 3+ 5HE g+ 14H ey — B~ 3071 + 3¢}

on using (2.9). Now (2.20} implies that

{2.21) Hirg— 6HE i3 — GHE o+ 24671~ HE = 0 mod 6
from which we conclude that

(2.22) HE g —9HR o —HE = 0 mod 6

50 that

(2.23) HEg—HE =0 mod 3

We will now use the identity

(2.24) Hir1HiezHiraHis = Hl?+3 -2

{which is a generalization of an identity for the sequence { F,.,} stated by Gelin and proved by Cesaro — see
Dickson [2]) to establish the two results

1
(2.25) 25 3 HiwtHreoHiraHies = 26H g+ 22H by + 3H g — H = 19n0% - 2502 + 6 — 5002
k=0

(2.26) 9 Z (~1)X Hienqg HieroHiraHirs = (=1 [—H o+ 5H S 15+ 1H 2 g ~ HE 15 — 302 ]

k=0 — 36— 9d%(m) + 18y ,
where

30 it m=2n~-1n
Mm}'{]ifm=2n, "

D&
s

and

{ v = g%+ 20% +35%% +2gp°( = alg®+29% + 3gp2 + 295 )}
t = pStpgty

for the Fibonacci numbers {F t' v=4 t=1

Proof: Sun both sides of (2. 24) with respect to k& Then

]

(2.2) 25 E Hir1 HiroHgsabiis = 25 Z Hiz — 25(n + 1)d?
k=0 k=0
m m
(2.28) 9 3 (=1 iy HicwaHratlirs = 9 3 (-1 Hsg - 99 %g(m]
k=0 =0
where

m
glm) = 3 (~1)% .
=0
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Now,
n n+3
S Hz = 3 Hi-2?
=0 =0

where !

t = p2epgrq?,
so that on using (2.14), with »n replaced by n + 3, the right-hand side of (2.27) reduces to

HE - 3H 5 — 220 g~ H g — 19002 = 70° + & - 50¢°

Eliminating H g, Hi5 and Hi .4 by using (2.9) gives (2.25). Since

m m+3 .
E i'~7)kﬁ/f+3 = - E (~-7)’Hj4+2"y )
k=0 =0

where
v = q%+24% +35%%+ 2047
use of (2.20), where m + 3 replaces n, and of {2.28) yields {2.26).
From (2.2) with m = n—j, h = j and &k = 7, we obtain
(2.29) HoHp_jig = HoiHpes = (1" TdFiFy = (=1)™TdF; .
Now
Hp=Hprz—Hysq,

so that (2.29) simplifies to

(2.30) HpsoHoe1—j~HuriHpeo—j = (=1)"7dF; .

Frem (2.3);with m=2n+4—] and k = n+2 we obtain

(2.31) (2p — gl apsa—j— dF2pea—j = HpigHnioj* HpeoHnr1—j .
Substituting for H,42Hp+7—; in (2.30) by means of {2.31) gives

(20 — QM 2pea—— dFonea—g = Hprahpeoi* Hper ey # (=10 dF;
{2.32)

(0lpta* qLprolf proj (- 7)“+idFj
which may be written as
- 7)j+1/7'j+1 g (Zp — g 20445~ OF 2044 }

{2.33) = f— 7}j+1{an+3+an+2}Hn+2—~jHi+1 + {—7}”+70’Hj+1fj .

From (2.2} with m = j+7, h = n+7~j and k = n+2—f, we ohtain

(2.34) Hpt2Hes — HirtHagea—y = (=17 0F piq iFrroy
so that
(2.38) (~1)7" T Hipg (20 — I oppay = (=1)77 (20 = QIH pioH ez — A2 = @) pa1—iFreo—j -

Substituting (2,35} into (2.33) gives

)
§

(Zp — q}an+7_an+2_j + (..]V}j"‘? {an.;.s +ql’;ﬂ+2} ‘an./.Q__jI"lj—[.i + {—7}J+7de+]F2n+4—j

{2.36)

The following identities may be proved by induction:

=0T g Fy = (=1 (20 — i sol ez
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11
{2.37) 2 3 (=1 FH gk = (=1 Hpegper # Hmez (= 2,3,)
k=0
124
{2.38) 3 Z (“7,}/(/"/”#4,1'( = (—7}”Hm+4n+2+/'/m_2 {m = 2}3, Ny
k=0
i
{2.39) 11 2 (=15t ppsgge = (=117 [5H st + 2Himesn] + 4H = 5Hp g
=0
fm=12 )
n
{2.40) 4 Y HiMoger = HanegHn+ HopHonsez — 2072
k=0
n
(2.41) 3 3 ~1RHZ ok = (=1 H g onHian sz * HHim—o  (m = 2,3, )
k=0
n
(2.42) 7Y =D¥HE g = (=1 HppranHmianta # HpHm—g (1 = 4,5,)
k=0
n
(2.43) 23 HisoHirr = HosaHpsoH pes — palp +q)
k=0
zd
(2.44) 2 3 (~1) HHEre = (~1)"HprgH peg Ho # palp —a) .

k=0

Zeitlin [11] has also examined numerous power identities for the sequence { Hpy } as special cases of even power
identities found for the generalized sequence ’, w, 1 used in Horadam [7], and earlier by Tagiuri {Dickson [2]).

As seen in Horadam [71, the generalized Fibonacei sequence {H, { isa particular case of generalized sequence

Wy % for a=g, b=p r=1 and s=~—7. Hence applying these results to (3.1}, Theorem I, of Zeitlin [11]
yields, for n = 0, 1, - (see {2.47) below):

2t
(2.45) (~me 5" (- pymrtpld (-%)H§7n+2t_k;+no (i==1)
k=0 )

t
= (—gfnotmtldre1)/2 ( 2:) (5JET " kHT F2, .
However,
(__Hthr-tJ}/Z = (- 7[;2mtr—mt('t+1//2
- f__7)2mtr~mtf’t+f}+mt{r+7}/2
- (_”fﬂt(f""?)/z

since Zmir and mifr+ 7)* are always even. Hence, we may rewrite (2.45) as

*This result for mi(t + ) may be easily verified by considering the table

m ¢ v+ 7 meft + 1)
ocid—— odd even——._
gvern -~ aven edd —" even
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2
(2.46) (—7)mm E (—1)mrtpf2y ( -3 ) HEnt2tkcr4n,

¢
= (__Umo*mt(t+7)/2 ( 2rr ) (-5)E kg thik ]
where ng= 0,7, -, mt =12, r =401, -, and where the
b,((zﬂ(——i}, k=01 2,
2
are defined (as a special case of {2.9) of Zeitlin [11]) by

2t t
(2.47) 3 b,@f’(_#) v = T 2 =1 Loy + 1)
2 L=7

If we now consider r = ¢ = 7 in (2.46) and then (2.47), then {2.46) reduces to
(2.48) (=)™ [HEns2i4n, — LomHneim, * Honin, | = A~1)"* 00 dFE .

on calculation, This corresponds to (4.5) of Zeitdin [11].

Similarly, we can obtain (4.6} to {4.16) of Zeitlin [11] by the correct substitutions into {(2.48) and (2.47), where
as already mentioned, (4.6) is our previous identity, (2.9). Identities (4.7) to (4.16) of Zeitlin should be neted for
reference and comparison.

3. FOURTH POWER GEMNERALIZED FIBONACC!I IDENTITIES

Hoggatt and Bicknell [5] have derived numerous identities invelving the fourth power of Fibonacci numbers
{ Fn¢ from Pascai’s triangle.
By considering the same matrices § and &/ where vy = Hg=¢ andus=Hy=p, ie.,

g 0 ¢ 0 71
g 0 0 1 4
(3.1) S=lg g0 1 3 6
g 1 2 3 4
i 7 1 11

and U = faj;) is the column matrix defined by
(3.2) a,—1=( 2 >H%iHi;7 , i=12-8

the fellowing identities for the fourth power of generalized Fibonacci numbers may easily be verified by proceeding
as in Hoggatt and Bicknel! [5]:

4n+7

(3.3) E (-1}’ ( an* 7) T 25" (H2n+/—H2n+!+7} A say)
=0
4n+2 )

(3.4) > (—7}'( 2 ) ity = 25" (Wt ~ 2Hipyaia1 # Hopeina) = Aj—Ajre
=0

4n+3
(3.5) Z - 7)'(4”3) i = 257 (Hipyss — SHSpysa1 + SHonaivn — Hobting ) = Aj— 2Aieg + Ajra

4n+4
(3.6) E (-1 ( nrd ) Hitj = = 257 {H2n+/ - 4H2n+/+1 * bH2n+j'I‘2 4H2n+!+3 * H?n+]+4}
= Al - 314/.;-1 ""3/4]4-2 —'Aj+3 .
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Noting that the coefficients of the terms involving the A’ on the right-hand side of the above equations are the
first four rows of Pascal’s triangle, we deduce the general identity

4n+k
(3.7) > =1y (4",”‘) Hj = 25" (HSsj — (k= DHEsjag + -+ +(=1)%T W pin)
=0

= Aj= k= 1)Ajsg+ - +(~1)*T Ajpg .
Similarly, we have

4n+5

(3.8) > =) (4”;,* 5") Hi = 25" (H3psjvo— Hnajra) = 254542,
=0

which results in the recurrence relation

.(3.9) A;j—dAp g+ 6Ajro— 4Ajr3+ Ajrg = 25A542

ie.,

(3.10) Aj—4Asg— 19Aj12 ~ 4Aj13+ Ajrg = 0

on equating (3.8) and (3.7) with k=5 Defining

(3.11) Glj) = Hipri~ WHisieq — 19H 1100~ BH sz + Hirieg

yields

(3.12) 25" {Gli) — 6+ 1)} = Aj— 4Ajsq — 19500 — 4Aje3 + Ajrg

=0 onusing {3.10} .
Hence, Gfj) is a constant.
When n = j = G, (3.11) reduces to

(3.13) 60} = —6d2

which leads to identity (2.9} which is in turn a generalization of a result due to Zeitlin {10] while also being a ver-
ificatien of a result due to Hoggatt and Bicknell [5] and also Zeitlin [11].

4. FURTHER GENERALIZED FIBONACCI IDENTITIES

In addition to the numerous identities of, say, Carlitz and Ferns [11, lyer [4], Zietlin [10], [11], Subba Rao [8]
and Hoggatt and Bicknell [51, Harris [3] has alse listed many identities for the Fibonacci sequence { £, ¢ which
may be generalized to yield new identities for the generalized Fibonacei sequence § A, }

n
(4.1) D kHi = nHpiz— Hpsgt Hz
k=0
Proof: i
upAvi = Alugvpe) = Viry Auige
{A is the difference operator) then

n n
Z ukAVk = [ukvk]Z” - Z vk+1Auk
k=0 k=0
Let up = k and Avg = Hg. Then

k-1

Auk= 7 and Vk:z H,'=Hk+1—-p.
=0

Omitting the constant —p from vy, we find
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n n
D kb = [kHgsq 1§77 = Y 1Hgaz = 0+ s —Hpsg=p = Hy = Ho = nHpsz = Hpezt (20 +4).
=0 =y

Using this technigue, we also have the following identities:

n
(4.2) 3o =1k = (=1)" 0+ H g # (1) i Hog
=0
n
{4.3) E KkHop = (n+ 1 Hoptq7~ Hopnsez+Hg
k=0
n
(4.4) D kHary = (n+ 1Hapso— Hapsg+ Hy
k=0
n
(4.5) D k2Hyy = (0% +2)Hapes — (20 + VHp — (20— q)
k=0
n
(4.6) > KPHogsr = (0% + 2Hapsa— (20 + DHaper — (p + 29)
=0
n k
{(4.7) Z E Hi=H,,+4—(n+3}p-q
k=0 j=0
n
(4.8) 3 k2Hg = (02 + 2Hpsa— (20 = 3Hpiz— He
k=0
n
(4.9) S k3Hk = (0 + 60— 12)Hpp2— (30° ~ 9n + 19)H 43+ (500 + 31q)
k=0
n
{#.10) S0 k*Hi = (0% + 1207 — 48 + 98)H va
k=0

+(4n° — 1802 + 76n — 159)H p43 — (416p + 257q)

7
(411} 59— Hy = (=1)"(Haps2* Han) = (0 = 30)
k=0
n
(4.12) 59 (=1 Hayrs = (~1)"Hons+ Haper) + (20 — g)
k=0
n
(4.13) 530 (=1 kHyy = (—1)"(aHgpe2+ (0 + 1H2n) — 4

k=0
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n
(4.14) 5 (=1 kHgrr = (=) (0K g3+ (0 + Hoper) = p
k=0

1
(0150 43 (=1 Kt ez = 21"+ DH o~ (~TH o= Hmy (= 2,3,-)
k=0
and so on.
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{Continued from Page 271.]

where X is the largest root of
(3) s =x¥ 3P +x+1 = 0.

The astonishing appearance of (1) stems from a peculiarity of (3). The Galois group of this quartic is the octic
group (the symmetries of a square), and its resolvent cubic is therefore reducible:

(4) 2287 =(z+1)2~2-7) = 0

The comman discriminant of (3) and {4) equals 725 = 52. 29, While the quartic field G(X) contains Q(/5) as a
subfield it does not contain Qf\/25). Yet X can be computed from any root of (4). The rational root z = —7
gives X=(A+1)/4 while z=(7+./29)/2 gives X=(B+ 1)/4.

It is clear that we can construct any number of such incredible identities from other guartics having an octic groun.
For example

KPP x+1 =0
has the discriminant 4205 = 292 . 5, and so the two expressions invelve </5 and /29 once again. But this time
0(\/29) isin O(X) and O(\/5) isnot .
Yedesindeede



