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Abstract. In this paper, we obtain important combinatorial identities
of generalized harmonic numbers using symmetric polynomials. We also
obtain the matrix representation for the generalized harmonic numbers
whose inverse matrix can be computed recursively.

1. Introduction and preliminaries

The ordinary harmonic numbers are denoted by Hn and are defined as

H0 = 0 and Hn =
n∑

k=1

1
k

, n = 1, 2, . . . .

The first few harmonic numbers are 1, 3
2 , 11

6 , 25
12 , 137

60 , . . .. These harmonic num-
bers were studied in antiquity and are important in various branches of number
theory and combinatorial problems. They are closely related to the Riemann
zeta function defined by

ζ(s) =
∞∑

n=1

1
ns

=
∏
p

(1− p−s)−1,

where the product is over all primes p, and appear in various expressions for
various special functions. It is well known that

(1) Hn =
|s(n + 1, 2)|

n!
,

where s(n, k) denotes the Stirling numbers of the first kind defined by

(x)n :=
n∏

r=1

(x− r + 1) =
n∑

k=0

s(n, k)xk.

For a notational convenience, we denote c(n, k) = |s(n, k)|, i.e., c(n, k) is the
unsigned Stirling number of the first kind which counts the permutations of n
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elements that are the product of k disjoint cycles. Further, It is known [9] that

ζ(k + 1) =
∞∑

n=k

c(n, k)
n · n!

.

In many recent works (see for example [1]-[5],[7]-[10]), the harmonic numbers
have been generalized by several ways and the related identities were obtained.
Our observations suggest that the generalized harmonic numbers can be viewed
combinatorially.

For instance, the generalized harmonic numbers H
(r)
n of order r are defined

to be partial sums of the Riemann zeta function:

(2) H
(r)
0 = 0 and H(r)

n =
n∑

k=1

1
kr

, n, r ≥ 1.

It is known (p.217 in [6]) that the numbers H
(r)
n and c(n, r) are connected by

c(n + 1, 1) = n!,
c(n + 1, 2) = n!Hn,

c(n + 1, 3) =
n!
2

(H2
n −H(2)

n ),

c(n + 1, 4) =
n!
6

(H3
n − 3HnH(2)

n + 2H(3)
n ),

and so on. In [1], Adamchik obtained the general formula for c(n, m) in terms
of generalized harmonic numbers H

(r)
n :

(3) c(n,m) =
(n− 1)!
(m− 1)!

w(n,m− 1),

where the w-sequence is defined recursively by

(4) w(n, 0) = 1, w(n,m) =
m−1∑

k=0

(−1)k(m− 1)kH
(k+1)
n−1 w(n,m− 1− k).

And he showed the w-sequence can be rewritten through a multiple sum:

w(n,m) =
n−1∑

i1=1

n−1∑

i2=i1+1

· · ·
n−1∑

im=im−1+1

m!
i1i2 · · · im .

In [5], Chu and Donno defined the generalized harmonic numbers Hn(r) by

(5) H0(r) = 0 and Hn(r) =
n∑

k=1

1
k + r

, n ≥ 1,

and they obtained several striking identities on the ordinary harmonic numbers.
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For the rising factorial [x]n = x(x + 1) · · · (x + n − 1) (n ≥ 1), by writing
1

[r]p+1
as the sum of p + 1 partial fractions we obtain:

(6)
1

[r]p+1
=

p∑

k=0

A
(p)
k

k + r
=

1
p!

p∑

k=0

(
p

k

)
(−1)k

k + r
,

where A
(p)
k = 1/

∏p
t=0(t − k), t 6= k. It is easy to show that (6) can also be

obtained by using the fact that

∆n(
1
x

) = (E − 1)n(
1
x

) = (−1)n n!
[x]n+1

,

where ∆ and E are the forward and the shift operators with unit step, re-
spectively. The rising factorial [r]p+1 satisfies the following identity, typically
proved by induction or telescoping sums [11]:

(7)
n∑

r=1

1
[r]p+1

=

(
n+p

p

)− 1

p(p!)
(
n+p

p

) , p ≥ 1.

Using (6) and (7), we can establish an interesting identity for the generalized
harmonic numbers Hn(r):

p∑
r=0

(−1)r

(
p

r

)
Hn(r) =

(
n+p

p

)− 1

p
(
n+p

p

) .

Besides, in [2], Benjamin et. al. showed that the generalized harmonic
numbers H<r>

n defined by

(8) H<0>
n =

1
n

and H<r>
n =

n∑
r=1

H<r−1>
k , n, r ≥ 1

can be expressed in terms of r-Stirling numbers. In 1997, Santmyer [10] defined
the generalized harmonic numbers Hn,r of rank r by

(9) Hn,r =
∑

k0+···+kr≤n

1
k0k1 · · · kr

, n ≥ 1, r ≥ 0.

Note that these generalized harmonic numbers H
(r)
n , Hn(r), H<r>

n and Hn,r

reduce to the ordinary harmonic numbers Hn when r = 1 or r = 0.

In this paper, we define other generalized harmonic numbers

H(n, r) :=
c(n + 1, r + 1)

n!
which are direct generalization of (1). The purpose of this paper is to obtain
some interesting identities involving H(n, r). These results are derived from
symmetric polynomials. Further, we give a matrix representation for H(n, r).
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2. Symmetric polynomials

In this section, we are going to consider the so-called symmetric polynomials
which are not only important tool in mathematics but also play considerable
roles in computer science, physics and statistics.

A polynomial P (x1, x2, . . . , xn) in the variables x1, x2, . . . , xn is called a
symmetric polynomial or symmetric function if it is invariant under all possible
permutations of the variables x1, x2, . . . , xn. Especially, important symmetric
polynomials that will be considered in the current paper are the elementary
symmetric polynomial σ

(n)
k , the complete symmetric polynomial τ

(n)
k , and the

power sum symmetric polynomial S
(n)
k on the variables x1, x2, . . . , xn. These

polynomials for integers n, k with n ≥ k ≥ 0 are defined by:

• σ
(n)
k (x1, x2, . . . , xn) =

∑

1≤r1<···<rk≤n

xr1xr2 · · ·xrk
,(10)

• τ
(n)
k (x1, x2, . . . , xn) =

∑

1≤r1≤···≤rk≤n

xr1xr2 · · ·xrk
,(11)

• S
(n)
k (x1, x2, . . . , xn) =

n∑
r=1

xk
r ,(12)

where σ
(n)
0 (x1, x2, . . . , xn) = 1 and τ

(n)
0 (x1, x2, . . . , xn) = 1.

Lemma 1. (Newton-Girard identity [13]) For positive integers m,n such that
1 ≤ m ≤ n, the following holds:

m σ
(n)
m (x1, . . . , xn)

=
∑m

r=1(−1)r+1S
(n)
r (x1, . . . , xn)σ(n)

m−r(x1, . . . , xn).(13)

It is worthy to mention that two polynomials σ
(n)
k and τ

(n)
k can be written

through multiple sums as follow:

σ
(n)
k (x1, x2, . . . , xn) =

n∑

rk=k

rk−1∑

rk−1=k−1

· · ·
r2−1∑
r1=1

xr1xr2 · · ·xrk
,(14)

τ
(n)
k (x1, x2, . . . , xn) =

n∑
r1=1

n∑
r2=r1

· · ·
n∑

rk=rk−1

xr1xr2 · · ·xrk
.(15)

It is known that two generating functions E(t) and F (t) for σ
(n)
k and τ

(n)
k are

given respectively by

E(t) =
n∏

i=1

(1 + xit) =
n∑

r=0

σ(n)
r (x1, x2, . . . , xn)tr,(16)

F (t) =
n∏

i=1

1
1− xit

=
∞∑

r=0

τ
(n)
k (x1, x2, . . . , xn)tr.(17)
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These functions satisfy E(t)F (−t) = F (t)E(−t) = 1 and

(18)
r∑

m=0

(−1)mσ(r)
m τ

(r)
r−m = δr0

for specific non-negative integers n and r such that 0 ≤ r ≤ n, where δnk

is the Kronecker symbol. The unsigned Stirling numbers of the first kind
c(n, k) and the Stirling numbers of the second kind S(n, k) defined by xn =∑n

k=0 S(n, k)(x)k are related to σ
(n)
k and τ

(n)
k by

c(n, k) = σ
(n−1)
n−k (1, 2, . . . , n− 1),(19)

S(n, k) = τ
(k)
n−k(1, 2, . . . , k).(20)

Before we consider more generalized harmonic number identities it may be
useful to give the following result.

Lemma 2. For all nonzero real numbers x1, x2, . . . , xn and for all nonnegative
integer i, we have

(21) σ
(n)
i (

1
x1

,
1
x2

, . . . ,
1
xn

) =
1

x1x2 · · ·xn
σ

(n)
n−i(x1, x2, . . . , xn).

Proof. Replacing each xi by 1
xi

in (16) gives:

n∑
r=0

σ(n)
r (

1
x1

,
1
x2

, . . . ,
1
xn

)tr =
1

x1x2 · · ·xn

n∏

i=1

(t + xi).

Hence
n∑

i=0

σ
(n)
i (

1
x1

,
1
x2

, . . . ,
1
xn

)ti =
1

x1x2 · · ·xn

n∑

i=0

σ
(n)
n−i(x1, x2, . . . , xn)ti.

The result follows. ¤

As a direct consequence of Lemma 2, we see that for specific positive integer
n, the special case xi = i for each i = 1, 2, . . . , n yields:

(22) σ
(n)
i (1,

1
2
, . . . ,

1
n

) =
1
n!

σ
(n)
n−i(1, 2, . . . , n).

Lemma 3. For integers n,m with n ≥ m ≥ 2, we have

(23) c(n,m) = (n− 1)! σ
(n−1)
m−1 (1,

1
2
, . . . ,

1
n− 1

).

Proof. With the help of (22) and (19) we obtain

c(n,m)
(n− 1)!

=
1

(n− 1)!
σ

(n−1)
n−m (1, 2, . . . , n− 1) = σ

(n−1)
m−1 (1,

1
2
, . . . ,

1
n− 1

),

which proves (23). ¤
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From Lemma 3 and (3), we immediately obtain a simple representation for
the w-sequence:

(24) w(n,m) = m!σ(n−1)
m (1,

1
2
, . . . ,

1
n− 1

).

Further, using the recurrence relation (25) enables us to compute the numbers
w(n,w) recursively as follows:

w(i, j) = w(i− 1, j) +
j

i− 1
w(i− 1, j − 1), i ≥ 2, j ≥ 1

so that w(i, i) = 0 and w(i, 0) = 1 for i ≥ 0, and w(i, 1) = Hi−1 for i ≥ 1.

3. Generalized harmonic numbers H(n, r)

We begin with the recurrence relation for the unsigned Stirling numbers of
the first kind c(n, r) in [6]:

(25) c(n, r) = c(n− 1, r − 1) + (n− 1)c(n− 1, r), n, r ≥ 1

with c(n, 0) = δn0, c(n, n) = 1, c(n, 1) = (n − 1)! for n ≥ 1. The relation (25)
also gives c(n + 1, 2) = c(n, 1) + nc(n, 2). Dividing both sides by n! taking into
account the fact that c(n, 1) = (n− 1)!, we obtain

(26) g(n) =
1
n

+ g(n− 1), n ≥ 1,

where g(n) = c(n+1, 2)/n!. Since Hn = 1
n +Hn−1, n ≥ 1, from (26) we obtain

g(n) = Hn which proves (1).
More generally, we may rewrite the recurrence relation (25) in the form:

(27)
c(n + 1, r + 1)

n!
=

1
n

c(n, r)
(n− 1)!

+
c(n, r + 1)
(n− 1)!

.

Let us define the generalized harmonic numbers H(n, r) by

(28) H(n, 0) = 1 and H(n, r) =
c(n + 1, r + 1)

n!
n, r ≥ 1.

First note that from (27) the numbers H(n, r) satisfy the recurrence relation:

(29) H(n, r) = H(n− 1, r) +
1
n

H(n− 1, r − 1).

Theorem 4. The generalized harmonic numbers H(n, r) satisfy

(30) H(n, r) =
∑

1≤k1<···<kr≤n

1
k1k2 · · · kr

.

Proof. From Lemma 3, we have

H(n, r) = σ(n)
r (1,

1
2
, . . . ,

1
n

).
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Hence using (10) yields

H(n, r) =
∑

1≤k1<···<kr≤n

1
k1k2 · · · kr

.

This completes the proof. ¤

The formula (30) can be used to find a formula for coefficients of powers of
m in the Stirling numbers S(m + n,m) of the second kind (see [8]).

At this stage it is convenient to obtain a generating function for the gener-
alized harmonic numbers H(n, r). From (16), we obtain

(31)
n∑

r=0

σ
(n)
n−r(x1, x2, . . . , xn)tr =

n∏

i=1

(t + xi).

Setting xm = m for each m = 1, 2, . . . , n in (31) gives
n∑

r=0

σ
(n)
n−r(1, 2, . . . , n)tr =

n∏

i=1

(t + i).

Thus from (19) we have

(32)
n∑

r=0

c(n + 1, r + 1)tr =
n∏

i=1

(t + i).

Using (28) together with (x)n = n!
(

x
n

)
and (32) proves that the generating

function we are looking for is given by

(33)
n∑

r=0

H(n, r)tr =
(

n + t

n

)
.

Since H(n, r) = 1
r!w(n+1, r), the generating function for w(n, k) in (3) can be

easily obtained.
The Bernoulli polynomials Bn(x) defined by

Bn(x) =
n∑

k=0

(
n

k

)
Bn−kxk

are important in obtaining closed form expressions for sum of powers of integers
[11] such as

(34)
n∑

r=0

rk =
1

k + 1
(Bk+1(n + 1)−Bk+1), k ≥ 0,

where Bn = Bn(0) is the n-th Bernoulli number.

Theorem 5. The generalized harmonic numbers H(n, r) satisfy the following
identities:

(i)
∑n

r=1 H(n, r) = n,
(ii)

∑n
r=1(−1)r+1H(n, r) = 1,
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(iii)
∑n

j=r
1
j H(j − 1, r − 1) = H(n, r),

(iv)
∑n

r=0(−1)rH(n, r)(Br+1(n + 1)−Br+1) 1
r+1 = 1,

(v)
∑n

r=0 H(n, r)(Br+1(n + 1)−Br+1) 1
r+1 =

(
2n+1

n

)
,

(vi)
∑n

r=1 rH(n, r) = (n + 1)(Hn+1 − 1),
(vii)

∑n
r=0(2

r − 1)H(n, r) =
(
n+1

2

)
.

Proof. Putting t = 1 in (33) and taking into account the fact that H(n, 0) = 1
gives (i). Similarly putting t = −1 in (33) yields the identity (ii). To prove
(iii), since

H(n, r) = σ(n)
r (1,

1
2
, . . . ,

1
n

) =
∑

1≤k1<···<kr≤n

1
k1k2 · · · kr

,

applying (14) gives

H(n, r) =
n∑

kr=r

kr−1∑

kr−1=r−1

· · ·
k2−1∑

k1=1

1
k1k2 · · · kr

=
1
r

r−1∑

kr−1=r−1

kr−1−1∑

kr−2=r−2

· · ·
k2−1∑

k1=1

1
k1k2 · · · kr−1

+
1

r + 1

r∑

kr−1=r−1

kr−1−1∑

kr−2=r−2

· · ·
k2−1∑

k1=1

1
k1k2 · · · kr−1

+ · · ·

+
1
n

n−1∑

kr−1=r−1

kr−1−1∑

kr−2=r−2

· · ·
k2−1∑

k1=1

1
k1k2 · · · kr−1

=
1
r
H(r − 1, r − 1) +

1
r + 1

H(r, r − 1) + · · ·

+
1
n

H(n− 1, r − 1)

=
n∑

j=r

1
j
H(j − 1, r − 1),

as required. To prove (iv), putting m = n and xk = k for each k = 1, 2, . . . , n
in (13) gives

nσ(n)
n (1, 2, . . . , n) =

n∑
r=1

(−1)r+1S(n)
r (1, 2, . . . , n)σ(n)

n−r(1, 2, . . . , n).

Hence we get
n∑

r=1

(−1)r+1S(n)
r (1, 2, . . . , n)σ(n)

n−r(1, 2, . . . , n)
1
n!

= n.
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Consequently, by using (34) and (13) we obtain

(35)
n∑

r=1

(−1)r+1H(n, r)(Br+1(n + 1)−Br+1)
1

r + 1
= n.

The identity (35) can also be written in the form:
n∑

r=0

(−1)rH(n, r)(Br+1(n + 1)−Br+1)
1

r + 1
= 1.

To prove (v), from (33) we have
n∑

r=0

H(n, r)tr =
(

n + t

n

)
=

(n + t)n

n!
.

Hence

(36)
n∑

t=0

n∑
r=0

H(n, r)tr =
n∑

r=0

H(n, r)(
n∑

t=0

tr) =
n∑

t=0

(
n + t

n

)
=

(
2n + 1

n

)
.

Using (34) then (36) yields
n∑

r=0

H(n, r)(Br+1(n + 1)−Br+1)
1

r + 1
=

(
2n + 1

n

)
,

which is the required result. To prove (vi), using (33) we obtain

(37)
n∑

r=0

H(n, r)tr =
(t + n)n

n!
=

1
n!

n∏
r=1

(t + r).

Differentiating both sides of (37) with respect to t gives

(38)
n∑

r=1

rH(n, r)tr−1 =
(

n + t

n

) n∑
r=1

1
t + r

=
(

n + t

n

)
(Hn+t −Ht).

Putting t = 1 in (38) yields
n∑

r=1

rH(n, r) = (n + 1)(Hn+1 − 1),

as required. To prove (vii), by using the forward operator ∆ with unit step,
then (37) yields

∆(
n∑

r=0

H(n, r)tr) = ∆(
(t + n)n

n!
).

Hence
n∑

r=0

H(n, r)∆(tr) =
1
n!

∆((t + n)n).
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Consequently, we have

(39)
n∑

r=0

H(n, r)((t + 1)r − tr) =
n

n!
(t + n)n−1 =

(t + n)n−1

(n− 1)!
=

(
n + t

n− 1

)
.

Setting t = 1 in (39), we obtain
n∑

r=0

(2r − 1)H(n, r) =
(

n + 1
n− 1

)
=

(
n + 1

2

)
.

This completes the proof of the theorem. ¤

We list more new identities for the generalized harmonic numbers H(n, r)
without proofs.

(i) H(n, r) = 1
n

∑n
k=r

(
k
r

)
H(n− 1, k − 1),

(ii)
∑n

r=k H(n, r)S(r + 1, k + 1) =
(
n
k

)
n+1

(k+1)! ,

(iii)
∑n

k=0(−1)k+1H(n, k)Bk+1 = n+1
n+2 ,

(iv)
∑n−r+1

k=1
H(n−k,r−1)

k = rH(n, r).

4. Matrix representation

For the generalized harmonic numbers H(n, k) defined by (28) we define the
n× n matrix H = [hij ]1≤i,j≤n as follows:

hij =
{

H(i, j) if i ≥ j,
0 if i < j.

For example, the 5× 5 matrix H is given by

H =




1 0 0 0 0

3
2

1
2 0 0 0

11
6 1 1

6 0 0

25
12

35
24

5
12

1
24 0

137
60

15
8

17
24

1
8

1
120




.

Here the elements of the matrix H are computed recursively using (29). Using
(18) we see that the inverse matrix Q = [qij ]1≤i,j≤ of H is given by

qij =
{

(−1)i+jj!τ (j+1)
i−j (1, 2, . . . , j + 1) if i ≥ j,

0 if i < j.

Using (21) yields

qij =
{

(−1)i+jj!S(i + 1, j + 1) if i ≥ j,
0 if i < j.
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For example, we obtain the 5× 5 matrix Q as follows:

Q =




1 0 0 0 0
−3 2 0 0 0
7 −12 6 0 0
−15 50 −60 24 0
31 −180 390 −360 120




.

It is worthy to mention that the elements of the inverse matrix Q can also be
computed recursively using the recurrence relation

qij = jqi−1,j−1 − (j + 1)qi−1,j , i = 3, 4, . . . , n; j = 2, 3, . . . , i− 1,

with
qi1 = (−1)i+1(2i − 1) for i ≥ 1; qii = i! for i ≥ 1.

Due to the identity (i) of Theorem 5, the product DH is a stochastic matrix,
where D = diag(1, 1

2 , . . . , 1
n ).

We conclude this paper by describing that the matrix representation for the
generalized harmonic numbers may be used to get more identities and some
combinatorial connections with other combinatorial numbers.

Acknowledgment. The authors would like to thank the referee for valuable
comments and suggestions.
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