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and second kind classical Chebyshev ones, which are related to its real and imaginary

part. This point of view permits to derive a lot of generating functions and relations

between the two kinds Chebyshev families, which are essentially new, as exponential

generating functions, bilinear and bilinear exponential generating functions. We also

deduce relevant relations of products of Chebyshev polynomials and the related gen-

erating functions.
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1 Introduction

The Chebyshev polynomials and their nice properties permitting applications

in Approximation theory, Quadrature rules, etc. are well known [1], [2], [3]. In

this article the introduction of the twin families of the first and second kind

Chebyshev polynomials is performed starting by their complex representation.

This original point of view was first applied by G. Dattoli and his group in [4]

and [5].

This allows to derive, in a constructive way, many identities involving un-

usual generating functions of exponential, bilinear, and mixed type [6].

There are a number of distinct families of polynomials that go by the name

of Chebyshev Polynomials. The Chebyshev Polynomials par excellence can be

defined by:
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Definition 1 – Let x a real variable, we say Chebyshev Polynomials of first

kind, the polynomials defined by the following relation:

Tn(x) = cos n(arccos(x)). (1.1)

In the same way we can also introduce the second kind Chebyshev polyno-

mials, by using again the link with the circular functions.

Definition 2 – Let x a real variable, we say Chebyshev Polynomials of second

kind, the polynomials

Un(x) =
sin [(n + 1) arccos(x)]√

1− x2
. (1.2)

The study of the properties of the Chebyshev polynomials can be simplified

by introducing the following complex quantity:

Tn(x) = exp [in(arccos(x)] (1.3)

so that:

Re [Tn(x)] = cos n(arccos(x)) (1.4)

Im [Tn(x)] = sin n(arccos(x)).

The above relations can be recast directly in terms of the Chebyshev Poly-

nomials of the first and second kind. In fact, by noting that the second kind

Chebyshev polynomials of degree n− 1 reads:

Un−1(x) =
sin [n arccos(x)]√

1− x2
(1.5)

we can immediately conclude that:

Tn(x) = Re [Tn(x)] (1.6)

Un−1(x) =
Im [Tn(x)]√

1− x2
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2 Generating functions

To derive the related generating functions of the Chebyshev polynomials of the

first and second kind [1], [6], we can consider the generating functions of the

complex quantity, introduced in the (1.3); let, in fact, the real number ξ, such

that |ξ| < 1, we can immediately write:

+∞∑
n=0

ξnTn(x) =
+∞∑
n=0

(
ξei arccos(x)

)n

=
1

1− ξei arccos(x)
. (2.1)

Proposition 1 – Let ξ ∈ R, such that |ξ| < 1; the generating function of the

first kind Chebyshev polynomials reads:

+∞∑
n=0

ξnTn(x) =
1− ξx

1− 2ξx + ξ2
. (2.2)

Proof – By using the link stated in equation (1.6) and by the (1.7), for a real

number ξ, such that |ξ| < 1, we can write:

+∞∑
n=0

ξnTn(x) =
+∞∑
n=0

ξnRe [Tn(x)] = Re
[

1
1− ξei arccos(x)

]
. (2.3)

By manipulating the r.h.s. of the previous relation, we find:

Re
[

1
1− ξei arccos(x)

]
= Re

{
[1− ξ cos(arccos(x))] + iξ sin(arccos(x))

[1− ξ cos(arccos(x))]2 + ξ2 sin2(arccos(x))

}

(2.4)

that is:

Re
[

1
1− ξei arccos(x)

]
=

1− ξ cos(arccos(x))
1− 2ξ cos(arccos(x)) + ξ2

(2.5)

and then, we immediately obtain the (1.8).

By following the same procedure, we can also derive the related generating

function for the Chebyshev polynomials Un(x).

It is easy in fact to note, from the second of (1.6) and (1.7) that:

+∞∑
n=0

ξnUn−1(x) =
+∞∑
n=0

ξn Im [Tn(x)]√
1− x2

=
1√

1− x2
Im

[
1

1− ξei arccos(x)

]
. (2.6)
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By using the same manipulation exploited in the previous proposition, we

end up with:

+∞∑
n=0

ξnUn−1(x) =
ξ

1− 2ξx + ξ2
(2.7)

which is the generating function of the Chebyshev polynomials of second kind

of degree n− 1, with again |ξ| < 1.

It is also possible to derive different generating functions for these families

of Chebyshev polynomials, by using the complex quantity in (1.7). In fact by

noting that:

+∞∑
n=0

ξn

n!
Tn(x) =

+∞∑
n=0

1
n!

(
ξei arccos(x)

)n

= exp
[
ξei arccos(x)

]

we have:

Proposition 2 – For the first and second kind Chebyshev polynomials, the

following results hold:

+∞∑
n=0

ξn

n!
Tn(x) = eξx cos

(
ξ
√

1− x2
)

(2.8)

+∞∑
n=0

ξn

n!
Un−1(x) = eξx sin

(
ξ
√

1− x2
)

√
1− x2

where |ξ| < 1.

Proof – From the identity:

+∞∑
n=0

ξn

n!
Tn(x) = Re

{
exp

[
ξei arccos(x)

]}
(2.9)

after setting:

ψ = arccos(x)

we can rearranging the r.h.s. in the following from:

Re {exp [ξ (cos(ψ) + i sin(ψ))]} = exp (ξ cos(ψ))Re [exp (iξ sin(ψ))] . (2.10)

By noting that:

4



Re [exp (iξ sin(ψ))] = Re [cos (ξ sin(ψ)) + i sin (ξ sin(ψ))] = cos (ξ sin(ψ))

(2.11)

we immediately obtain the first of the (1.14).

For the second kind Chebyshev polynomials, by using the complex quantity

Tn(x), we write:

+∞∑
n=0

ξn

n!
Un−1(x) =

1√
1− x2

Im
{

exp
[
ξei arccos(x)

]}
. (2.12)

By using the same position ψ = arccos(x), we can write the r.h.s. of the

above identity in the form:

1√
1− x2

Im {exp [ξ (cos(ψ) + i sin(ψ))]} =
1√

1− x2
exp (ξ cos(ψ)) sin (ξ sin(ψ))

(2.13)

and then the second of the (1.14) immediately follows.

The use of the complex representation of Chebyshev polynomials can be also

exploited to derive less trivial relations involving first and second kind Cheby-

shev polynomials. From definition of the first kind Chebyshev polynomials,

given in (1.1), we can generalize it, by putting:

Tn+l(x) = [cos(n + l) arccos(x)] (2.14)

and, from the (1.3), we can immediately write:

Tn+l(x) = exp [i(n + l) arccos(x)] (2.15)

then:

Re [Tn+l(x)] = Tn+l(x) (2.16)

Im [Tn+l(x)] =
Un−1+l(x)√

1− x2
.

By using the same procedure exploited in the propositions 1 and 2 to derive

the generating functions of the polynomials Tn(x) and Un(x) , help us to state

the following results [4], [6].
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Proposition 3 – Let ξ ∈ R, such that |ξ| < 1; the following identities hold:

+∞∑
n=0

ξnTn+l(x) =
(1− ξx)Tl(x)− ξ

(
1− x2

)
Ul−1

1− 2ξx + ξ2
(2.17)

and:
+∞∑
n=0

ξnUn−1+l(x) =
ξTl(x) + (1− ξx)Ul−1

1− 2ξx + ξ2
. (2.18)

Proof – From the previous results, it is easy to note that:

+∞∑
n=0

ξnTn+l(x) =
+∞∑
n=0

ξnein arccos(x)eil arccos(x) = eil arccos(x) 1
1− ξei arccos(x)

.

(2.19)

Otherwise:

eil arccos(x) = cos(l arccos(x)) + i sin(arccos(x)) (2.20)

and so:

+∞∑
n=0

ξnTn+l(x) =
+∞∑
n=0

ξnRe [Tn+l(x)] = Re
[
cos(l arccos(x)) + i sin(arccos(x))

1− ξei arccos(x)

]
.

(2.21)

The r.h.s. can be rearranged in the more convenient form:

Re
[
cos(l arccos(x)) + i sin(arccos(x))

1− ξei arccos(x)

]
= (2.22)

= Re
{

[cos(l arccos(x)) + i sin(arccos(x))] [1− ξx + iξ sin(arccos(x)]
1− 2ξx + ξ2

}

to give:

Re
[
cos(l arccos(x)) + i sin(arccos(x))

1− ξei arccos(x)

]
=

(1− ξx)Tl(x)− ξ
(
1− x2

)
Ul−1

1− 2ξx + ξ2

(2.23)

which prove the first statement.

In an analogous way, we note that:

+∞∑
n=0

ξnUn−1+l(x) =
1√

1− x2

+∞∑
n=0

ξnIm [Tn+l(x)] = (2.24)

= Im
[
cos(l arccos(x)) + i sin(arccos(x))

1− ξei arccos(x)

]
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and by following the same procedure, we immediately obtain the (1.24).

The corresponding generating functions stated in the Proposition 2, for the

Chebyshev polynomials are also easily obtained.

Proposition 4 – For a real ξ, |ξ| < 1, the polynomials Tn(x) and Un(x) satisfy

the following relations:

+∞∑
n=0

ξn

n!
Tn+l(x) = eξx

[
cos

(
ξ
√

1− x2
)

Tl(x)−
√

1− x2 sin
(
ξ
√

1− x2
)

Ul−1(x)
]

(2.25)

and:

+∞∑
n=0

ξn

n!
Un−1+l(x) = eξx

[√
1− x2 cos

(
ξ
√

1− x2
)

Ul−1(x) + sin
(
ξ
√

1− x2
)

Tl(x)
]
.

(2.26)

Proof – From the (1.15) it follows that:

+∞∑
n=0

ξn

n!
Tn+l(x) = Re

[
eil arccos(x)eξei arccos(x)

]
(2.27)

or in a more convenient form, by setting ψ = arccos(x):

+∞∑
n=0

ξn

n!
Tn+l(x) = Re

{
[cos (lψ) + i sin (lψ)]

[
eξ cos ψeξi sin ψ

]}
. (2.28)

By exploiting the r.h.s., we obtain:

Re
{
[cos (lψ) + i sin (lψ)]

[
eξ cos ψeξi sin ψ

]}
= (2.29)

= Re
{

cos (lψ) eξ cos(ψ) [cos (ξ sin(ψ)) + i sin (ξ sin(ψ))]+

+ sin (lψ) eξ cos(ψ) [cos (ξ sin(ψ)) + i sin (ξ sin(ψ))]
}

and then, after substituting the previous position of ψ:

Re
{

[cos (l arccos(x)) + i sin (l arccos(x))]
[
eξxeξi sin(arccos(x))

]}
= (2.30)

= eξx
[
cos

(
ξ
√

1− x2
)

Tl(x)−
√

1− x2 sin
(
ξ
√

1− x2
)

Ul−1(x)
]
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that is equation (1.31).

Regarding the second statement, we have:

+∞∑
n=0

ξn

n!
Un−1+l(x) =

1√
1− x2

Im
[
eil arccos(x)eξei arccos(x)

]
(2.31)

and it is easy, by following the same procedure previous outlined, to state

the second identity (1.32).

In the next sections it will be shown that the simple method we have pro-

posed in these introductory remarks offers a fairly important tool of analysis for

wide classes of properties of the Chebyshev polynomials.

3 Products of Chebyshev polynomials.

In this section we will show some important identities related to the generating

functions of products of Chebyshev polynomials. We permit the following results

[1], [5].

Proposition 5 – For the polynomials Tn(x) and Un(x) and for their complex

representation Tn(x), the following identities are true:

|Tn(x)|2 = [Tn(x)]2 +
(
1− x2

)
[Un−1(x)]2 = 1, (3.1)

Re [Tn(x)]2 = [Tn(x)]2 − (
1− x2

)
[Un−1(x)]2 ,

Im [Tn(x)]2 = 2
√

1− x2Tn(x)Un−1(x).

Proof – By noting that:

|Tn(x)|2 = ReTn(x)2 + ImTn(x)2 (3.2)

that is:

|Tn(x)|2 = [Tn(x)]2 +
(
1− x2

)
[Un−1(x)]2 . (3.3)

After substituting the explicit forms of the polynomials Tn(x) and Un(x),

we obtain the first of the (2.1).

We can also note that:

[Tn(x)]2 =
[
Tn(x) + i

√
1− x2Un−1(x)

]2

(3.4)

8



and by exploiting the r.h.s.:

[Tn(x)]2 = [Tn(x)]2 + i2
√

1− x2Tn(x)Un−1(x)− (
1− x2

)
[Un−1(x)]2 (3.5)

which once explicated as real and imaginary part allows us to recognize the

second and the third identities of the statement.

From the (2.1) it also immediately follows that:

+∞∑
n=0

ξn

n!
|Tn(x)|2 = exp (ξ) (3.6)

+∞∑
n=0

ξn

n!
|Tn(x)|2 = exp [ξ exp (2i arccos(x))] .

The (2.1) and the (2.6) can be used to state further relations linking the

Chebyshev polynomials of the first and second kind [1], [2], [6]. We have in fact:

Proposition 6 – The polynomials Tn(x) and Un(x) satisfy the following iden-

tities:

+∞∑
n=0

ξn

n!
|Tn(x)|2 =

1
2

[
eξ + eξ(2x2−1) cos

(
2ξx

√
1− x2

)]
(3.7)

and:

+∞∑
n=0

ξn

n!
|Un−1(x)|2 =

1
2 (1− x2)

[
eξ − eξ(2x2−1) cos

(
2ξx

√
1− x2

)]
. (3.8)

Proof – By summing term to term the first two identities of the (2.1), we have:

2T 2
n(x) = |Tn(x)|2 + ReT2

n(x). (3.9)

By multiplying both sides of the previous relation by ξn

n! and then summing

up, we find:

+∞∑
n=0

2
ξn

n!
T 2

n(x) =
+∞∑
n=0

ξn

n!
|Tn(x)|2 +

+∞∑
n=0

ξn

n!
ReT2

n(x) (3.10)

and by using the (2.6), we can write:
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+∞∑
n=0

2
ξn

n!
T 2

n(x) = exp (ξ) + Re exp [ξ exp (2i arccos(x))] . (3.11)

By expanding the r.h.s. of the above identity, we obtain:

+∞∑
n=0

2
ξn

n!
T 2

n(x) = exp (ξ) + exp
[
ξ
(
2x2 − 1

)]
Re

[
exp

(
i2ξx

√
1− x2

)]
(3.12)

that is:

+∞∑
n=0

2
ξn

n!
T 2

n(x) = (3.13)

= exp (ξ) + exp
[
ξ
(
2x2 − 1

)]
Re

[
cos

(
2ξx

√
1− x2

)
+ i sin

(
2ξx

√
1− x2

)]
,

which proves equation (2.7).

The second identity of the statement can be derived in the same way; in fact

it is enough to note, that by subtracting term to term the first two relations of

the (2.1), we find:

2
(
1− x2

)
U2

n−1(x) = |Tn(x)|2 − ReT2
n(x) (3.14)

and by following the same procedure we obtain the (2.8).

The last equation of the (2.1) allows us to state the further identity:

+∞∑
n=0

ξn

n!
Tn(x)Un−1(x) =

exp
[
ξ
(
2x2 − 1

)]

2
√

1− x2
sin

(
2ξx

√
1− x2

)
. (3.15)

In the previous section we have derived different generating functions for the

Chebyshev polynomials Tn(x) and Un−1(x); we can generalize those results for

their products. We firstly note that, from (2.1) and from the choice of ξ, |ξ| < 1,

that:

ξ|Tn(x)|2 < 1

which implies:

+∞∑
n=0

ξn|Tn(x)|2 =
1

1− ξ
. (3.16)
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Otherwise, can also be noted that:

T2
n(x) = [exp (i arccos(x))n]2 ≤ 1

and since |ξ| < 1, it follows that:

+∞∑
n=0

ξnT2
n(x) =

1
1− ξ exp (2i arccos(x))

. (3.17)

Proposition 7 – Let ξ ∈ R, |ξ| < 1; the following identities hold:

+∞∑
n=0

ξnT 2
n(x) =

1
2

1
1− ξ

[
1 +

(1− ξ)
(
1− ξ

(
2x2 − 1

))

1− 2ξ (2x2 − 1) + ξ2

]
(3.18)

and:

+∞∑
n=0

ξnU2
n−1(x) =

1
2 (1− x2)

1
1− ξ

[
1− (1− ξ)

(
1− ξ

(
2x2 − 1

))

1− 2ξ (2x2 − 1) + ξ2

]
. (3.19)

Proof – By multiplying both sides of the (2.9) by ξn and then summing up, we

find:

2
+∞∑
n=0

ξnT 2
n(x) =

+∞∑
n=0

ξn|Tn(x)|2 +
+∞∑
n=0

ξnReT2
n(x) (3.20)

and from the (2.16) and (2.17), we can write:

2
+∞∑
n=0

ξnT 2
n(x) =

1
1− ξ

+ Re
[

1
1− ξ exp (2i arccos(x))

]
. (3.21)

Let set ψ = arccos(x), the r.h.s. of the above relation can be recast in the

form:

1
1− ξ

+ Re
[

1
1− ξ exp (2i arccos(x))

]
=

1
1− ξ

+ Re
[

1− ξe−iψ

(1− ξeiψ) (1− ξe−iψ)

]
.

(3.22)

After exploiting the r.h.s., rewriting in terms of x, we obtain:

1
1− ξ

+ Re
[

1
1− ξ exp (2i arccos(x))

]
=

1
1− ξ

+
1− ξ

(
2x2 − 1

)

1− 2ξ [cos (2 arccos(x))] + ξ2

(3.23)

which gives the (2.18).
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From the equation written in the (1.14) and by using again the (2.16) and

(2.17), we have:

2
(
1− x2

) +∞∑
n=0

ξnU2
n−1(x) =

1
1− ξ

− Re
[

1
1− ξ exp (2i arccos(x))

]
(3.24)

which once exploited gives us the (2.19).

4 Further generalizations

In this section we show further identities and generating functions involving

products of first and second kind Chebyshev polynomials [1], [4].

By using the equation (2.15), we can state the further identity:

+∞∑
n=0

ξnTn(x)Un−1(x) =
xξ

[1− 2ξ (2x2 − 1) + ξ2]
. (4.1)

In fact, by multiplying both sides of the third equation of the (2.1) by ξn

and then summing up, we obtain:

2
√

1− x2

+∞∑
n=0

ξnTn(x)Un−1(x) = Im
[

1
1− ξ exp (2i arccos(x))

]
(4.2)

which, by using the same procedure exploited in the above proposition, gives

the (2.25).

In the first section (see (1.3)) we have introduced the complex quantity

Tn(x) to better derive the properties of the Chebyshev polynomials Tn(x) and

Un−1(x). To deduce further properties involving generating functions of Cheby-

shev polynomials, we will indicate with Tn(x) the complex conjugation of the

Chebyshev representation Tn(x).

By using the identities stated in (2.1), we can immediately obtain:

Re
[
Tn(x)Tn(y)

]
= Tn(x)Tn(y) +

√
(1− x2) (1− y2)Un−1(x)Un−1(y)

Im
[
Tn(x)Tn(y)

]
=

√
1− x2Un−1(x)Tn(y)−

√
1− y2Un−1(y)Tn(x)

and:
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Re [Tn(x)Tn(y)] = Tn(x)Tn(y)−
√

(1− x2) (1− y2)Un−1(x)Un−1(y)

Im [Tn(x)Tn(y)] =
√

1− x2Un−1(x)Tn(y)−
√

1− y2Un−1(y)Tn(x).

Proposition 8 – Let ξ ∈ R, |ξ| < 1, the polynomials Tn(x) and Un(x) satisfy

the following identities:

+∞∑
n=0

ξn

n!
Tn(x)Tn(y) =

1
2

[
eξF+ cos (ξG−) + eξF− cos (ξG+)

]
(4.3)

+∞∑
n=0

ξn

n!
Un−1(x)Un−1(y) = −1

2

[
eξF− cos (ξG+) + eξF+ cos (ξG−)

]
√

1− x2 (1− y2)

where:

F± = xy ±
√

(1− x2) (1− y2), (4.4)

G± = y
√

1− x2 ±
√

1− y2.

Proof – From the relations in the (2.27) and (2.28), we find:

2Tn(x)Tn(y) = Re
[
Tn(x)Tn(y)

]
+ Re [Tn(x)Tn(y)] . (4.5)

By multiplying both sides by ξn

n! and summing up, after setting ψ = arccos(x),

φ = arccos(y), it follows that:

2
+∞∑
n=0

ξn

n!
Tn(x)Tn(y) = Re

[
exp

(
ξ
(
eiψe−iφ

))]
+ Re

[
exp

(
ξ
(
eiψeiφ

))]
. (4.6)

By exploiting the r.h.s of the above equation we obtain:

Re
[
exp

(
ξ
(
eiψe−iφ

))]
+ Re

[
exp

(
ξ
(
eiψeiφ

))]
=

= Re {exp [ξ (cos ψ + i sinψ) (cos φ− i sin φ)]}+

+Re {exp [ξ (cos ψ + i sin ψ) (cos φ + i sin φ)]}
(4.7)

which gives, after substituting the values of x and y:

Re
[
exp

(
ξ
(
eiψe−iφ

))]
+ Re

[
exp

(
ξ
(
eiψeiφ

))]

= Re
{

exp
[
ξ
(
xy − ix

√
1− y2 + iy

√
1− x2 +

√
1− x2

√
1− y2

)]}
+

+Re
{

exp
[
ξ
(
xy + ix

√
1− y2 + iy

√
1− x2 −√1− x2

√
1− y2

)]}
.

(4.8)
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By using the identities in (2.30), the above relation can be recast in the more

convenient form:

Re
[
exp

(
ξ
(
eiψe−iφ

))]
+ Re

[
exp

(
ξ
(
eiψeiφ

))]
=

= eξF+Re
[
cos

(
ξy
√

1− x2
)
cos

(
ξx

√
1− y2

)
− i cos

(
ξy
√

1− x2
)
sin

(
ξx

√
1− y2

)
+

+ i cos
(
ξx

√
1− y2

)
sin

(
ξy
√

1− x2
)

+ sin
(
ξy
√

1− x2
)
sin

(
ξx

√
1− y2

)]
+

+eξF−Re
[
cos

(
ξx

√
1− y2

)
cos

(
ξy
√

1− x2
)

+ i cos
(
ξx

√
1− y2

)
sin

(
ξy
√

1− x2
)

+

+ i cos
(
ξy
√

1− x2
)
sin

(
ξx

√
1− y2

)
− sin

(
ξx

√
1− y2

)
sin

(
ξy
√

1− x2
)]

.

By remembering that:

cos(α) cos(β)− sin(α) sin(β) = cos(α + β)

cos(α) cos(β) + sin(α) sin(β) = cos(α− β)

we can rearrange the r.h.s. of the above equation in the form:

Re
[
exp

(
ξ
(
eiψe−iφ

))]
+ Re

[
exp

(
ξ
(
eiψeiφ

))]
= (4.9)

= eξF+ cos
[
ξ
(
y
√

1− x2 − x
√

1− y2
)]

+eξF− cos
[
ξ
(
y
√

1− x2 + x
√

1− y2
)]

and immediately follows the first one of the (2.29).

By using again the relations (2.27) and (2.28), we can write:

2
√

(1− x2) (1− y2)Un−1(x)Un−1(y) = (4.10)

= Re
[
Tn(x)Tn(y)

]− Re [Tn(x)Tn(y)]

which, once following the same procedure previous exploited, gives:

2
√

(1− x2) (1− y2)
+∞∑
n=0

ξn

n!
Un−1(x)Un−1(y) = exp

[
ξ
(
eiψe−iφ

)]−exp
[
ξ
(
eiψeiφ

)]

(4.11)

and then, the second of the (2.29) can easily be derived.

These results can be used to find similar identities linking products of the

polynomials Tn(x) and Un(x). We note in fact that the relations written in the

(2.27) and (2.28), for the imaginary part, can be combined to give:

2
√

1− x2Un−1(x)Tn(y) = Im [Tn(x)Tn(y)] + Im
[
Tn(x)Tn(y)

]
(4.12)

2
√

1− y2Un−1(y)Tn(x) = Im [Tn(x)Tn(y)]− Im
[
Tn(x)Tn(y)

]
.
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By using again the positions in the (2.30) and the above identities we can

state the following result:

Proposition 9 – Let ξ ∈ R, |ξ| < 1, the polynomials Tn(x) and Un(x) satisfy

the following identities, involving T − U products:

+∞∑
n=0

ξn

n!
Un−1(x)Tn(y) =

1
2

eξF+ sin (ξG−) + eξF− sin (ξG+)√
1− x2

(4.13)

+∞∑
n=0

ξn

n!
Un−1(y)Tn(x) =

1
2

eξF− sin (ξG+) + eξF+ sin (ξG−)√
1− y2

Proof – From the (2.38), we get:

+∞∑
n=0

ξn

n!
Un−1(x)Tn(y) =

1
2
√

1− x2
Im

[
exp

(
ξeiψe−iφ

)]
+ Im

[
exp

(
ξeiψeiφ

)]

(4.14)

+∞∑
n=0

ξn

n!
Un−1(y)Tn(x) =

1

2
√

1− y2
Im

[
exp

(
ξeiψeiφ

)]− Im
[
exp

(
ξeiψe−iφ

)]

(4.15)

where is ψ = arccos(x) and φ = arccos(y). By following the same procedure

used in the previous proposition we easily obtain the thesis.

The relations stated in the Proposition 7 can be extended to the two-variable

case. By noting in fact that:

|T(x)| = | exp (i arccos(x)) | = 1

and by choosing |ξ| < 1, we have:

ξ|T(x)||T| < 1

and finally:

+∞∑
n=0

ξnTn(x)Tn(y) =
1

1− ξ
(
ei arccos(x)

) (
ei arccos(y)

) (4.16)

+∞∑
n=0

ξnTn(x)Tn(y) =
1

1− ξ
(
ei arccos(x)

) (
ei arccos(y)

) .
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