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DELYNG..

Arthur T. Benjamin and Jennifer J. Quinn

Revisiting Fibonacci and

Related Sequences

e fully concur with Richard Askey’s Febru-

ary 2004 “Delving Deeper” column. Discov-

ering and proving identities containing Fi-
bomnacci numbers can be satisfying for students and
teachers alike. His article touched on multiple strate-
gies including induction, linear algebra, and a hefty
dose of algebraic manipulation to derive many interest-
ing identities. However, a single method can be em-
ployed to explain all of these identities more con-
cretely, leading to deeper understanding and intuition.
We are referring to the method of combinatorial proof.

A combinatorial proof explains an identity by

counting—by counting a set in two different ways
or by counting two sets and providing a correspon-
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dence between them. To apply this method, we
need to know what the Fibonacci numbers count.
We define the Fibonacci numbers by fy=1, f,=1,
andforn>2, f,=f,_, +f,_,. Then the nth Fibonacci
number counts the ways to tile a 1 x n board with
squares and dominoes. Letting s represent a square,
which has length 1, and d represent a domino,
which has length 2, f; = 3 counts the tilings

sss, sd, ds,
and f, = 5 counts the tilings
5858, ssd, sds, dss, dd.

A tiling of length 5 (called a 5-tiling) can be created
by appending a square to a 4-tiling or a domino to a
3-tiling. So there are

fi=fitfi=8

5-tilings. In general an n-tiling can be created by ap-
pending a square to an (i — 1)-tiling or a domino to
an (n - 2)-tiling. Hence the number of tilings will
continue to grow like the Fibonacci numbers.

Now comnsider the Fibonacci numbers and the
squares of Fibonacci numbers given in table 1.
Interestingly, the sum of the squares of two
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Fig. 1 A10-tiling that is breakable in the middle can be cut
into two tilings of length 5. A 10-tiling that is unbreakable
in the middle must have a domino on celis 5 and 6; it can
be cut into a 4-tiling, a domino, and another 4-tiling.
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Fig. 2 There are 7 tilings of an n-board and an (n + 1)-
board with the last common break occuring at cell k.

consecutive Fibonacci numbers appears to be an-
other Fibonacci number. More experimentation
suggests that forall n > 1,

(1) f;zz—1+ff=f2u'

This can be seen directly by a combinatorial argu-
ment that counts the set of tilings of length 2# in two
different ways. On one hand, there are f;, such
tilings. On the other hand, either a 2n-tiling is break-
able in the middle or it is not, as illustrated in figure
1. A breakable tiling can be created in fZways. An
unbreakable tiling can be created in f , ways. Hence
the set of 2x-tilings is also counted by the sum

2 2
-fn + ‘f:lfl.

However, there is nothing special about the middle
of an even length board. We can take this idea further
by investigating the breakability after any cell. This
time let’s count the tilings of length m + n in two dif-
ferent ways. There are certainly f,, , , such tilings. But
now ask whether the tiling is breakable after cell m2.
Here, a breakable tiling can be created in f, f, ways.
An unbreakable tiling has a domino covering cells m
and m + 1; it can be created in f,, , f, _, ways. So
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2) fn,+,, = fmf:;, + f:uflf:x—l’

generalizing the Fibonacci pattern given in equa-
tion (1).

Now consider the partial sum of the squares of
the Fibonacci numbers. For example:

12 +12 = 2 = 1.2
P+12+28 = 6 = 2-3
P+17+2°+3° = 15 = 3.5

P+12+2°+32+5° = 40 = 58

The pattern suggests that
f;)2 +f12 ++~fnl = jll .f‘n+1'

To “see” why this is true, we count the ways to
tile a board of length » and another board of length
i+ 1. Naturally, this can be done in f,f,, , ways. How
many of these tilings have their last common break,
called a fault, at cell k? From figure 2 we see the an-
swer is f,” since after the last fault, there is just one
way to tile the two boards in a fault-free way. The
index k can be as small as 0, since both tilings have a
common fault before the first cell, and k can be as
large as 5, when the second tiling ends with a square.
Summing over all values of k shows that there are

i

> f? tilings,
k=0 '
as desired.
As an exercise, we invite the reader to show that

Skt f ==

by counting the tilings of a board of length n + 2
with at least one domino, and considering the loca-
tion of the last domino. Additionally, by tiling
boards of length 2n or 21 + 1 and considering the
location of the last square, derive

f0+f2+f4+"'+fzn =f2n+l

and

hrfit et fy = f -1

Returning to table 1, we see that the square of a Fi-
bonacci number and the product of its neighboring Fi-
bonacci numbers always differs by 1. For example, 5° -
3+8=1,8-5+13=-1, and in general it appears that

(3) f;zz - f:z—lfnn = (=1

To understand this identity, we illustrate that every
pair of n-tilings can be easily transformed into two
tilings of length n + 1 and length n - 1.



Suppose A and B are n-tilings where A covers
cells 1 through r and B covers cells 2 through n + 1,
as shown in figure 3. Suppose A and B have their
last fault at cell k. Then A can be decomposed into a
k-tiling A, followed by an n - k tiling A,. Similarly
B can be decomposed into a (k — 1)-tiling B,, fol-
lowed by an (n - k + 1)-tiling B,. We exchange A,
and B, (a process called tailswapping) to obtain the
tilings A" = A B, and B™ = B|A,, shown in figure 4,
with length n + 1 and » - 1, respectively. Notice
that tailswapping A* and B~ in figure 4 brings us
back to A and B. Hence there are almost as many
tiling pairs (A, B) where A and B have length n as
there are tiling pairs (C, D) where C has length n +
1 and D has length n — 1. We say almost because
the tiling that consists of all dominoes is the only
one that is fault-free. Since (A, B) can be fault-free
only when n is even and (C, D) can be fault-free
only when # is odd, we understand why

fr=f =1

Delving deeper into the technique of tailswap-
ping easily allows us to discover and prove more
general identities. For example, if A and B are n-
tilings with an offset of r (instead of 1) cells, then
tailswapping produces A” and B~ with respective
lengths n+ r and n — r. Thus £, is almost f,_.f..,.
Their difference is the number of fault-free tilings.
The pair (A, B7) can only be fault-free when n - r
is even, B has all dominoes, and A* has all domi-
noes on cells r through n + 1. The remaining cells
of A” (1 through r - 1 and n + 2 through n + r) can
be tiled f7 , ways. On the other hand (A, B) has f?,
fault-free tilings precisely when n - r is odd. Can
you find them? Consequently

fnz - f;r—rf;ﬁ-r = (_1),1”_" f;z—l

By changing the picture slightly and allowing
nonsymmetrical offsets as in figure 5 we can easily
“see” the following identity from Askey (2004):

foosvr = Fifes =GOS

Of course it is no surprise that combinatorial
proofs can be given to identities that involve bino-
mial coefficients. For example, the “diagonal sum of
Pascal’s Triangle” identity,

ni2 _k
Z[Hk jz f:l’

k=0

counts length » tilings by considering how many
dominoes are used. A length » tiling with k& domi-
noes must have n - 2k squares and therefore has
k+ (n - 2k) = n - k tiles, which from left to right are

named Tile 1, Tile 2, . . ., Tile n - k. Since there are

n—k
k

ways to choose k of these tiles to be dominoes, the
identity follows.

But it may come as a surprise to see other Fi-
bonacci identities proved this way. Recall the Eu-
clidean algorithm for finding the greatest common
divisor of two numbers. It is based on the fact that
if n=gm +r, then

ged(n, m) = ged(m, ),
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Fig. 3 Two n-tilings A and B, offset by one cell, with their
last fault occurring at cell k
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Fig. 4 Swapping the tails of the two n-tilings in figure 3,
i.e., the subtilings A, and B,, creates an (n + )-tiling A* and
an (n - 1)-tiling B'. This provides a bijection between offset
tiling pairs with faults.
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Fig. 5 An n-tiling and an (n + s — r)-tiling with asymmetric offsets can use tail swap-
ping to establish the identity f,. . f,., - f.f,,...= (1" 'f._f._,. The tilings that cannot
be swapped are pictured here.
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since ged(n, m) is unchanged by subtracting a mul-
tiple of m from n. For example, if we always choose
g to be as large as possible, then we can compute

gcd(978, 96) = ged(96, 18) = ged(18, 6) = ged(6, 0) = 6.

One of our favorite Fibonacei fun facts is best
described by the traditional definition of Fibonacci
numbers whereby F, =0, F, = 1 and in general, for
n=20,F,=f . Behold,

(4) ng(Fm Fm) = Fgr,d(u, m)e

We have already proved special cases of this equa-
tion. For instance, equation (3) demonstrates that con-
secutive Fibonacci numbers are relatively prime since
any number that divides F, and F,, , must also divide
£1. (This fact can also be proved by induction.) Thus:

ng(Fr1+17 Fu) = 1 = Fl =Fgcd(n+1,u)

Also observe that if » is a multiple of m, say n =
gm, then by equation (2):

‘F:z = qu = am=-1 = fEm—l)ﬂqfl)m
=f‘ma]f[q—l)nz+f‘m—2f;1,’~1)m—l
=F‘nzI:(q—l)mH+P‘m—1F‘(q—l)m

then so is F

aqm*

Thus if F(,_,,, is a multiple of F,,,
So by induction on ¢, we have that F,=F,, is a
multiple of F,. (For an inductionless proof, see
Benjamin and Quinn, June 2003, or Benjamin and

Quinn 2003.) Therefore, if n = gm, then
ng(F‘“, Fm) = ng(qu: Fm) = Fm = Fgud(n, )t

Now suppose that n = gm + r where r > 0. Then
by equation (3),

ged(F,,F ) =ged(F, . F, )=ged(F f )

m’ T gm+r
= ng(F:n’f;/m—lf;‘ * f;(mfzf;—l)
—ged(F ,F F_+F _F)

g™ r+1 gm=1"r
=ged(F ,F F)

T gm—1"

m—14r

where the last step follows, since F,, is a multiple
of F, and thus I, F,,, can be ignored when com-
puting the greatest common divisor with F,,. Also,
we know that F,, has no factors in common with
F,. , (since F, divides F,,, which is relatively prime

am?

to F,,_,) and therefore

ged(F,, F,

m

) = ged(F,, F)

But wait. This is just the Euclidean algorithm with
Fs inserted on top of everything. Let’s call this the
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FEuclidean FAlgorithm.
Consequently, to find ged(Fy;, Fo), FEuclid’s
FAlgorithm finds

god(Fyyy, Fg) = ged(Fyp, Fi) = ged (£, F)
= ged(F, F;) = F,,

since I, = 0. In general, if ged(n, m) = g, then Eu-
clid’s algorithm starts with ged (s, m) and eventu-
ally reduces it to ged(g, 0) =g. Thus FEuclid’s FAI-
gorithm begins with ged(F,, F,) and eventually
reduces it to ged(F,, Fy)) = F,. Thus for any » and m,
ged(F,, F,) = Fy.. . as promised.

We have only barely scratched the surface of
what is possible with combinatorial proofs. Going
further, if we allow ¢, colors for squares and c, col-
ors for dominoes, we can combinatorially explain
identities defined by initial conditions i, = 0 for
j<0,u,=1and by the recurrence u,=cuu, _, +
Cylt, o, for n > 1. Identities for kth order recurrences
W, =ct, ,+ - +cu,_, with the same initial condi-
tions are also easily explained by allowing colored
tiles with length at most k. Recurrences with other
initial conditions can be modeled by the same tiling
problems, but restrictions are placed on the initial
tile. For details, see Benjamin and Quinn (June
2003) or Benjamin and Quinn (2003). Finally, by
looking at random tilings, even identities that in-
volve the golden ratio

R

2

¢

such as Binet’s formula
1 " n 1
F,l=7[¢ —(-1/0))

5

can be given a combinatorial explanation.

We end this article with a comment from
Richard Askey, who was quoted in the preface of
Boros and Moll (2004) as saying,

If things are nice, there is probably a good reason
whyy they are nice: and if you do not know at least
one reason for this good fortune, then you still have
work to do.

So the next time you see a nice identity like

n—iln-j)_
53

or

S (n-1)f, = f_, ~(n+3)

=0

we hope you will ask yourself, “What is the under-



lying combinatorial explanation?”
At least that’s what we are counting on.

Editors’ notes: Arthur Benjamin and
Jennifer Quinn add one more approach
to the growing storehouse of methods
we have seen in “Delving Deeper” for
solving recurrence relations. This ap-
proach involves combinatorial proof,
what they call Proofs That Really Count
(Benjamin and Quinn 2003). We plan
an installment sometime next year to
summarize and catalogue the methods
that have appeared so far. Send us your
favorites.

Benjamin and Quinn include some
provocative questions. We have a few
more to add. The context of tiling a
wall leads to many interesting counting
problems.

¢ The authors describe how, if “triomi-
noes” (tiles of length 3) are allowed
in the tiling, the number of ways
there are to tile a length » wall satis-
fies the recurrence

2

= U, T U, T,

What are the initial conditions? What
properties do these numbers have?

e What if tiles of any length are al-
lowed in the tiling? How many ways
are there to tile a length » wall? Such
tilings are known as compositions of
n (see Benjamin and Quinn 2003 for
more details). Many teachers know
this as the Trains problem (Parker
1991): Count the number of trains
of length n that can be made from
Cuisinaire-like rods. There are many
related questions. For example:

(1) How many Cusineaire trains of
length n have exactly k cars?

(2) Suppose you lay out all the
Cusineaire trains of length n on
your desk. How many rods of
length k will there be on the desk?
(Connie Vann, a teacher in Dan-
vers, Massachusetts, came up with
this problem.)

There are many other questions one
could ask. Why not pick one and work
on it?
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