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Abstract

By observing that the infinite triangle obtained from some generalized harmonic numbers follows a
Riordan array, we obtain very simple connections between the Stirling numbers of both kinds and other
generalized harmonic numbers. Further, we suggest that Riordan arrays associated with such generalized
harmonic numbers allow us to find new generating functions of many combinatorial sums and many gener-
alized harmonic number identities.
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1. Introduction

The harmonic numbers are defined by

H0 = 0 and Hn =
n∑

k=1

1

k
for n = 1,2, . . . ,

and it is well known that the generating function is − ln(1−x)
1−x

. The first few harmonic numbers are

1, 3
2 , 11

6 , 25
12 , 137

60 , . . . . These numbers have been generalized by several authors (see for example
[2,4–7,10]), which reduce to the ordinary harmonic numbers when r = 0 or r = 1:
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• H
(r)
0 = 0 and H(r)

n =
n∑

k=1

1

kr
for n, r � 1 [2,5], (1)

• H 0
n = 1

n
and Hr

n =
n∑

k=1

Hr−1
k for n, r � 1 [4], (2)

• Hn,0 = 1 and Hn,r =
∑

1�n1<···<nr�n

1

n1n2 · · ·nr

for n, r � 1 [7], (3)

• H(n, r) =
∑

1�n0+n1+···+nr�n

1

n0n1 · · ·nr

for n � 1, r � 0 [6,10]. (4)

Like the Pascal triangular array, some of these generalized harmonic numbers define infinite
lower triangular arrays. If the array is characterized by two analytic functions, the first is invert-
ible and the second has a compositional inverse, then it corresponds to a Riordan array of the
Riordan group introduced by Shapiro et al. [11]. Riordan arrays constitute a practical device for
solving combinatorial sums by means of generating functions. Further, many traditional applica-
tions of the Lagrange inversion formula can be approached from a Riordan array concept. Thus
it is worthwhile to investigate that an infinite triangle obtained from the generalized harmonic
numbers is Riordan array or not. Motivated by this concept, we are interested in triangular arrays
of generalized harmonic numbers. In Section 2, we give a brief description of the concept of a
Riordan array.

In this paper, by observing that the infinite triangle obtained from H(n, r) given by (4) fol-
lows a Riordan array, we obtain very simple connections between H

(r)
n , Hr

n , Hn,r , H(n, r) and
the Stirling numbers of both kinds. Further, we suggest that Riordan arrays associated with such
generalized harmonic numbers allow us to find new generating functions of many combinatorial
sums and many generalized harmonic number identities. Finally, we observe the harmonic poly-
nomials Hn(z) with the generalized harmonic numbers H(n, r) as the coefficients. As a result,
we show that such polynomials may be expressed by means of the Bernoulli polynomials, and
we generate a great deal of new rational sequences related to the harmonic numbers.

2. Riordan array and its structure

We begin this section by describing the concept of a Riordan array. A Riordan array is de-
fined by a couple of analytic functions or formal power series D = (g(x), f (x)) = [dn,k]n,k�0,
g(0) �= 0, such that the generic element of D is

dn,k = [
xn

]
g(x)

(
xf (x)

)k
, (5)

where [xn]f (x) denotes the coefficient operator of xn obtained from f (x). From this definition,
D = (g(x), f (x)) is an infinite, lower triangular array. If f (0) �= 0, the Riordan array is called
proper. A common example of a Riordan array is the Pascal triangle

[(
n
k

)]
n,k�0 for which we

have g(x) = f (x) = 1/(1−x). We denote by R the set of proper Riordan arrays. It is known [11]
that (R,∗) forms a group under matrix multiplication ∗ with the identity I = (1,1):

(
g(x), f (x)

) ∗ (
h(x), �(x)

) = (
g(x)h

(
xf (x)

)
, f (x)�

(
xf (x)

))
. (6)
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Basically, the concept of a Riordan array is used in a constructive way to find the generat-
ing function of many combinatorial sums. For any sequence {hk} having h(x) as its generating
function, we have

n∑
k=0

dn,khk = [
xn

]
g(x)h

(
xf (x)

)
. (7)

For example, if D = ( −1
1−x

, −1
1−x

) and h(x) = − ln(1−x)
1−x

we obtain

n∑
k=0

(−1)k+1
(

n

k

)
Hk = [

xn
]( −1

1 − x

)
h

( −x

1 − x

)
= [

xn
]

ln
1

1 − x
= 1

n
, n � 1.

Also, Riordan arrays have special structure. If D = (g(x), f (x)) = [dn,k]n,k�0 is a proper
Riordan array, then every element dn+1,k+1 of D can be expressed as a linear combination of the
elements in the preceding row starting from the preceding column, and every element in column 0
can be expressed as a linear combination of all the elements of the preceding row (see [8,9]):

(i) dn+1,k+1 = ∑∞
j=0 ajdn,k+j , k,n = 0,1, . . . ,

(ii) dn+1,0 = ∑∞
j=0 zj dn,j , n = 0,1, . . . .

The coefficients a0, a1, a2, . . . and z0, z1, z2, . . . appearing in (i) and (ii) are called by the A-
sequence and the Z-sequence of the Riordan array, respectively. If A(x) and Z(x) are the
generating functions of the corresponding sequences then it can be proven (see [8,13]) that f (x)

and g(x) are the solutions of the functional equations, respectively:

f (x) = A
(
xf (x)

)
, (8)

g(x) = g(0)/
(
1 − xZ

(
xf (x)

))
. (9)

The relations can be inverted to formulas for the A-sequence and Z-sequence, respectively.

3. Connection with the Riordan array

Now, we consider the generating function of the generalized harmonic numbers H(n, r) de-
fined in (4). It is known that the numbers H(n, r) can be calculated by the formula (see [6,10])

H(n, r) = (−1)r+1

n!
(

dn

dxn

[ln(1 − x)]r+1

1 − x

∣∣∣∣
x=0

)
. (10)

Some values of H(n, r) are shown in Table 1.
From (10), the generating function of H(n, r) can be expressed by

(−1)r+1(ln(1 − x))r+1

1 − x
=

(− ln(1 − x)

1 − x

)(− ln(1 − x)
)r

. (11)

Since
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Table 1
Generalized harmonic numbers H(n, r)

n \ r 0 1 2 3 4 5

1 1

2 3
2 1

3 11
6 2 1

4 25
12

35
12

5
2 1

5 137
60

15
4

17
4 3 1

6 49
20

203
45

49
8

35
6

7
2 1

ĝ(x) := − ln(1 − x)

1 − x
= x

(
1 + 3

2
x + 11

6
x2 + 25

12
x3 + · · ·

)
,

by setting ĝ(x) = xg(x), we obtain the following proper Riordan array corresponding to the
function (11):

H := (
g(x), f (x)

) =
(− ln(1 − x)

x(1 − x)
,
− ln(1 − x)

x

)
. (12)

Hence the generic element hn,k of H is given by

hn,k = [
xn

]
g(x)

(− ln(1 − x)
)k = [

xn+1](− ln(1 − x)

1 − x

)(− ln(1 − x)
)k

= H(n + 1, k), n, k � 0. (13)

We will call H the generalized harmonic array.

Theorem 3.1. Let H be the generalized harmonic array. Then both A-sequence and Z-sequence
of H may be expressed by means of the Bernoulli numbers Bn:

(i) A(x) = x +
∞∑

n=0

Bn

n! xn,

(ii) Z(x) =
∞∑

n=0

(−1)n+1(Bn+1 − 1)

(n + 1)! xn.

Proof. Let H = (g(x), f (x)) be the same Riordan array as (12). Applying the functional equa-
tion (8) to f (x), we have

− ln(1 − x) = A
(− ln(1 − x)

)
.

x
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By setting y = − ln(1 − x) or x = (ey − 1)/ey , we have

A(y) = yey

ey − 1
= y + y

ey − 1
= y +

∞∑
n=0

Bn

n! yn,

which proves (i). Similarly, applying the functional equation (9) to (12), we have

− ln(1 − x)

x(1 − x)
= 1

1 − xZ(− ln(1 − x))
,

which leads us to

Z(y) = −y + e−y − e−2y

y(e−y − 1)
= 1

y

(
yey

ey − 1
− e−y

)
=

∞∑
n=0

(−1)n+1(Bn+1 − 1)

(n + 1)! yn.

Hence the proof is completed. �
It is interesting to observe that the A-sequence and Z-sequence of H are appearing in the

Euler–Maclaurin summation formula (see 3.6.28 in [1]) given by

n−1∑
k=1

fk =
n∫

0

f (k) dk − 1

2

[
f (0) + f (n)

] +
n−1∑
k=1

B2k

(2k)!
[
f (2k−1)(n) − f (2k−1)(0)

]
.

Theorem 3.2. Let H(n, r) be the generalized harmonic numbers given by (4). Then

(i)
n−1∑
r=0

1

(r + 1)!H(n, r) = n,

(ii)
n−1∑
r=0

(−1)r

(r + 1)!H(n, r) = 1,

(iii)
n∑

r=1

(−1)r+1

r! H(n + 1, r) = Hn,

(iv)

n−2∑
r=0

(−1)r+1 Br+1 − 1

(r + 1)! H(n − 1, r) = Hn.

Proof. Let h(x) = ex−1
x

= ∑∞
n=0

1
(n+1)!x

n. From (7) we have

n−1∑ H(n, r)

(r + 1)! = [
xn−1]( ln (1 − x)

x(x − 1)

)(
x

(x − 1) ln(1 − x)

)
= [

xn−1] 1

(x − 1)2
= n,
r=0
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which proves (i). Similarly, if we take

h(x) = 1 − e−x

x
=

∞∑
n=0

(−1)n
1

(n + 1)!x
n,

and

h(x) = 1 − e−x =
∞∑

n=0

(−1)n
1

(n + 1)!x
n+1

respectively, from (7) we can get (ii) and (iii).
The identity (iv) is an immediate consequence of Z-sequence of Theorem 3.1. �
Another interesting identities can be derived from (7) by suitable choice of a generating func-

tion h(x). As noted in [13], the Riordan array concept is particularly important because identities
involving Stirling numbers cannot be treated by methods related to hypergeometric functions,
such as Gosper’s algorithm or WZ-pairs.

We now turn to the Stirling numbers of the first kind s(n, r) and of the second kind S(n, r),
which may be defined by

(i) (x)n =
n∑

r=0

s(n, r)xr ,

(ii) xn =
n∑

r=0

S(n, r)(x)r

where (x)n = ∏n
r=1(x − r + 1), (x)0 = 1, is the Pochhammer symbol. The s(n, r) are not all

positive, their sign is given by |s(n, r)| = (−1)n−r s(n, r). For convenience, we use c(n, r) as the
notation for |s(n, r)|.

By applying (6), the generalized harmonic array H can be factored by

H =
(− ln(1 − x)

x(1 − x)
,1

)
∗

(
1,

− ln(1 − x)

x

)
. (14)

Noticing that (1,
− ln(1−x)

x
) is the Riordan array associated to the unsigned Stirling numbers

k!
n!c(n, k), (14) suggests that the harmonic numbers may be expressed by means of the Stirling
numbers of both kinds (also see, for example, [2,10]).

4. Connections between the generalized harmonic numbers

In this section, by using the concept of Riordan arrays we obtain very simple connections
between different generalized harmonic numbers H(n, r), H

(r)
n , Hr

n and Hn,r given in Section 1.
First, we observe that the generalized harmonic numbers Hn,r defined in (3) can be expressed

by
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Hn,r = σ (n)
r

(
1,

1

2
, . . . ,

1

n

)
= 1

n!σ
(n)
n−r (1,2, . . . , n), (15)

where σ
(n)
r is the r th elementary symmetric function on {x1, x2, . . . , xn} given by

σ (n)
r (x1, x2, . . . , xn) =

∑
1�s1<s2<···<sr�n

xs1xs2 · · ·xsr .

Since c(n, r) = σ
(n−1)
n−r (1,2, . . . , n − 1), from (15) we obtain

Hn,r = c(n + 1, r + 1)

n! . (16)

Now, let us define H1 = [Hn,r ]n�r�1 to be an infinite lower triangular array. It is easy to show
that H1 does not constitute a Riordan array but

H̄1 =
[
(r + 1)!
(n + 1)

Hn,r

]
n,r�0

=
((− ln(1 − x)

x

)2

,
− ln(1 − x)

x

)

is a Riordan array. Thus we obtain

Hn,r = n + 1

(r + 1)!
[
xn+1](− ln(1 − x)

)r+1
. (17)

Theorem 4.1. Let Hn,r be generalized harmonic numbers given by (3). Then

H(n, r) = (r + 1)!Hn,r+1, r � 0. (18)

Proof. Since

d

dx

(− ln(1 − x)
)r+1 = (r + 1)

(− ln(1 − x)
)r

1 − x
,

from (17) we have

[
xn

] (− ln(1 − x))r

1 − x
= r!Hn,r .

Hence we obtain

H(n, r) = [
xn

] (− ln(1 − x))r+1

1 − x
= (r + 1)!Hn,r+1,

which completes the proof. �
From (16) and (18), we obtain immediately

H(n, r) = (r + 1)!
c(n + 1, r + 2), (19)
n!
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which proves Theorem 3.5 in [10]. The formula (19) can be viewed as the general formula for
the Stirling numbers of the first kind in terms of the generalized harmonic numbers H(n, r).

In [2], Adamchik obtained the general formula for c(n, r) in terms of the generalized harmonic
numbers H

(r)
n given by (1):

c(n, r) = (n − 1)!
(r − 1)!w(n, r − 1), (20)

where w(n, r) is defined recursively by

w(n, r) =
r−1∑
k=0

[1 − r]kH (k+1)
n−1 w(n, r − 1 − k), w(n,0) = 1, (21)

and

[x]n =
n∏

r=1

(x + r − 1) =
[
tn

n!
]

1

(1 − t)x
, [x]0 = 1. (22)

Comparing (19) with (20), we obtain immediately

H(n, r) = w(n + 1, r + 1).

Hence (21) can be expressed by

H(n, r) =
r∑

k=0

[−r]kH (k+1)
n H(n, r − k − 1), H(n,−1) = 1, (23)

which means H(n, r) can be connected with H
(r)
n .

Next, we consider the hyperharmonic numbers Hr
n in (2) defined by taking repeated partial

sums of harmonic numbers. In [4], Benjamin et al. expressed the numbers Hr
n in terms of r-

Stirling numbers leading to combinatorial interpretations of many interesting identities. We note
that the hyperharmonic numbers Hr

n are defined only for r � 1. In Section 5, we will generalize
the numbers in polynomials defined for any real number r .

Let us define H2 = [Hr
n−r+1]n�r�1 to be an infinite lower triangular array. It is easy to show

that H2 is the Riordan array with

H2 =
(− ln(1 − x)

x(1 − x)
,

1

1 − x

)
. (24)

Theorem 4.2. Let Hr
n be hyperharmonic numbers given by (2). Then

(i) H(n, r) =
n−1∑
k=r

r!
k! s(k, r)Hk+1

n−k ,

(ii) Hr
n =

n+r−2∑ r!
k!S(k, r − 1)H(n + r − 1, k).
k=r−1
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Proof. Applying (6), we have

(− ln(1 − x)

x(1 − x)
,
− ln(1 − x)

x

)
=

(− ln(1 − x)

x(1 − x)
,

1

1 − x

)
∗

(
1,

ln(1 + x)

x

)
. (25)

Noticing that (1,
ln(1+x)

x
) and its inverse (1, ex−1

x
) are the Riordan arrays associated to the Stirling

numbers k!
n! s(n, k) of the first kind and k!

n!S(n, k) of the second respectively, the formulas (i)
and (ii) are immediate consequences of the matrix multiplication from (24) and (25). �
Theorem 4.3. Let Hr

n be hyperharmonic numbers given by (2). Then

n∑
r=1

(−1)r rH r
n−r+1 = 1

n(n − 1)
(n � 2). (26)

Proof. Let H2 be the generalized harmonic array given by (24) and let

h(x) := −1

(x + 1)2
=

∞∑
k=0

(−1)k+1(k + 1)xk. (27)

By setting k + 1 = r in (27), from (7) we obtain

n∑
r=1

(−1)r rH r
n−r+1 = [

xn
] (1 − x) ln(1 − x)

x
= 1

n(n − 1)
(n � 2),

which completes the proof. �
Note that the sequence 2,6,12,20,30,42, . . . appearing in the denominator of (26) are called

by oblong numbers, n(n + 1) (see A002378 in [12]).

5. Further generalization of the harmonic numbers

In this section, we observe the polynomials in z with the generalized harmonic number coeffi-
cients H(n, r) given in (4). These polynomials generate the most generalized harmonic numbers
presented in this paper.

Let us define the harmonic polynomials Hn(z) of degree n in z by

− ln(1 − x)

x(1 − x)1−z
=

∞∑
n=0

Hn(z)x
n, (28)

with the alternative representation

Hn(z) =
n∑ (−1)kH(n + 1, k)

k! zk. (29)

k=0
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By setting z = 0 and z = 1 − r for r � 1, the harmonic polynomials Hn(z) are deduced
to ordinary harmonic numbers Hn+1 and the hyperharmonic numbers Hr

n defined by (2), re-
spectively. The numbers H(n, r) and Hn,r defined by (3) may be obtained from (18) by
H(n + 1, r) = (−1)r dr

dzr Hn(z)|z=0 and Hn+1,r+1 = (−1)r

(r+1)!
dr

dzr Hn(z)|z=0 for n, k � 0, respec-
tively.

First we observe that the polynomials Hn(z) are closely related to the generalized Stirling
polynomials of the first kind Pn,k(z) (see [3]) defined by

Pn,k(z) =
n∑

j=k+1

(−z)j−k−1
(

j − 1

k

)
c(n, j) (30)

where c(n, j) are the unsigned Stirling numbers of the first kind.
In [3], Adamchik expressed the multiple gamma function in terms of the derivatives of the

Hurwitz zeta function together with the polynomials Pn,k(z). Further, he obtained the following
two alternative forms of representation:

Pn,k(z) = (−1)k

k!
(

∂n−1

∂xn−1

[ln(1 − x)]k
(1 − x)1−z

∣∣∣∣
x=0

)
(31)

and

Pn,k(z) =
n∑

j=k+1

(−1)n−j

(
z

n − j

)
(n − 1)!
(j − 1)!c(j, k + 1), (32)

where
(

z
n−j

) = (z)n−j /(n − j)!.
One can establish that the polynomials Hn(z) and Pn,k(z) are related by Hn(z) =
1

(n+1)!Pn+2,1(z) from (28) and (31). Hence by setting j − 2 = k, it follows immediately from
(30) that the polynomials Hn(z) may be expressed by means of the unsigned Stirling numbers of
the first kind

Hn(z) = 1

(n + 1)!
n∑

k=0

(k + 1)c(n + 2, k + 2)(−z)k.

Again, by setting j − 2 = k, it follows from (19) and (32) that the polynomials Hn(z) may be
expressed by means of the harmonic numbers

Hn(z) =
n∑

k=0

(−1)n−k

(
z

n − k

)
Hk+1. (33)

The first few harmonic polynomials are

H0(z) = 1,

H1(z) = 3 − z,

2
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H2(z) = 11

6
− 2z + 1

2
z2,

H3(z) = 25

12
− 35

12
z + 5

4
z2 − 1

6
z3.

The basic properties for the harmonic polynomials are obtained from (28):

(i) Hn(z + 1) = Hn(z) − Hn−1(z),

(ii)

1∫
0

Hn(z) dz = 1,

(iii)

1∫
0

Hn(−z) dz = n + 1.

Interestingly, these polynomials are closely related to the Bernoulli polynomials Bn(z) defined
by

xezx

ex − 1
=

∞∑
n=0

Bn(z)
xn

n! .

Theorem 5.1. The harmonic polynomials Hn(z) may be expressed by means of the Bernoulli
polynomials

Hn(z) = 1

n!
n∑

k=0

(−1)kc(n + 1, k + 1)Bk(z). (34)

Proof. Applying (7), we have

n∑
k=0

(
(−1)k

n! c(n + 1, k + 1)k!
)

Bk(z)

k! =
n∑

k=0

(
1

1 − x
,

ln(1 − x)

x

)
n,k

[
xk

] xezx

ex − 1

= [
xn

]( 1

1 − x

)
ln(1 − x)ez ln(1−x)

eln(1−x) − 1

= [
xn

] − ln(1 − x)

x(1 − x)1−z
= Hn(z),

which completes the proof. �
Corollary 5.2. The Bernoulli polynomials Bn(z) may be expressed by means of the harmonic
polynomials

Bn(z) =
n∑

k=0

(−1)kk!S(n + 1, k + 1)Hk(z). (35)
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By setting z = 0 in (35), we deduce immediately that the Bernoulli numbers Bn := Bn(0) may
be expressed by means of the harmonic numbers

Bn =
n∑

k=0

(−1)kk!S(n + 1, k + 1)Hk+1.

Finally, we observe the specific values of the harmonic polynomials Hn(z). As a result, we
obtain a plenty of interesting rational sequences related to the harmonic numbers. Further, we
give a combinatorial interpretation for those sequences.

Lemma 5.3. For any real number m, we have

Hn(m) =
n∑

k=0

Hk(m + 1). (36)

Proof. Applying the convolution for coefficient operator, we have

Hn(m) = [
xn

] − ln(1 − x)

x(1 − x)1−m
=

n∑
k=0

[
xk

] − ln(1 − x)

x(1 − x)−m

[
xn−k

] 1

1 − x

=
n∑

k=0

[
xk

] − ln(1 − x)

x(1 − x)−m
=

n∑
k=0

Hk(m + 1),

which proves (36). �
The formula (36) suggests us to find a combinatorial interpretation for the sequence

{Hn(m)}n�0. In fact, the kth term of the sequence {Hn(m)} is obtained successively from first
k-partial sum of the sequence {Hn(m + 1)}. Consequently, each sequence {Hn(m)} for any real
number m may be expressed in terms of the harmonic numbers from (33). Of course, from (28)
such sequences have the ordinary generating function

G
({

Hn(m)
}) = − ln(1 − x)

x(1 − x)1−m
.

Further, we have the following theorem.

Theorem 5.4. For any real number m, the sequence {Hn(m)}n�0 has the closed form represen-
tation

Hn−1(m) =
n∑

k=1

(
n − m − k

n − k

)
1

k
, n � 1, (37)

where
(
n−m−k

) = (n − m − k)n−k/(n − k)!.

n−k
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Proof. Applying the convolution for coefficient operator, we have

Hn(m) = [
xn

] − ln(1 − x)

x(1 − x)1−m
=

n∑
k=0

[
xk

]− ln(1 − x)

x

[
xn−k

] 1

(1 − x)1−m

=
n∑

k=0

(
n − m − k

n − k

)
1

k + 1
,

which leads to (37). �
By setting m = 1 − r , r � 1, in (37), we deduce immediately Theorem 1 in [4].

6. Concluding remarks

A plenty of harmonic number identities including generalized harmonic numbers of several
types have been obtained by several authors. This paper addresses new approach to the study of
such harmonic numbers. It suggests that the concept of a Riordan array is used in a constructive
way to find the generating function of many combinatorial sums associated with generalized
harmonic numbers via (7), and also can be applied in the area of closed form summation of
certain classes of infinite series.
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