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Abstract

We evaluate several binomial transforms by using Euler’s transform for power series.

In this way we obtain various binomial identities involving power sums with harmonic

numbers.

1 Introduction and prerequisites

Given a sequence {ak}, its binomial transform {bk} is the sequence defined by

bn =
n
∑

k=0

(

n

k

)

ak, with inversion an =
n
∑

k=0

(

n

k

)

(−1)n−kbk,

or, in the symmetric version

bn =
n
∑

k=0

(

n

k

)

(−1)k+1ak with inversion an =
n
∑

k=0

(

n

k

)

(−1)k+1bk

(see [7, 12, 14]). The binomial transform is related to the Euler transform of series defined
in the following lemma. Euler’s transform is used sometimes for improving the convergence
of certain series [1, 8, 12, 13].

Lemma 1. Given a function analytical on the unit disk

f(t) =
∞
∑

n=0

ant
n, (1)
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then the following representation is true

1

1 − t
f

(

t

1 − t

)

=
∞
∑

n=0

tn

(

n
∑

k=0

(

n

k

)

ak

)

. (2)

(Proof can be found in the Appendix.)
If we have a convergent series

s =
∞
∑

n=0

an, (3)

we can define the function

f(t) =
∞
∑

n=0

ant
n, |t| < 1. (4)

Then, with t = 1

2
in (2) we obtain

s =
∞
∑

n=0

(

n
∑

k=0

(

n

k

)

ak

)

1

2n+1
. (5)

This formula is a classical version of Euler’s series transformation. Sometimes the new series
converges faster, sometimes not – see the examples in [10].

We shall use Euler’s transform for the evaluation of several interesting binomial trans-
formations, thus obtaining binomial identities of combinatorial and analytical character.
Evaluating a binomial transform is reduced to finding the Taylor coefficients of the function
on the left hand side of (2). In Section 2 we obtain several identities with harmonic numbers.
In Section 3 we prove Dilcher’s formula via Euler’s transform.

This paper is close in spirit to the classical article [7] of Henry Gould.

Remark 2. The representation (2) can be put in a more flexible equivalent form

1

1 − λt
f

(

µt

1 − λt

)

=
∞
∑

n=0

tn

(

n
∑

k=0

(

n

k

)

µkλn−kak

)

, (6)

where λ, µ are appropriate parameters.
To show the equivalence of (2) and (6) we first write

f

(

µt

λ

)

=
∞
∑

n=0

an

(µ

λ

)n

tn, (7)

and then apply (2) to the function g(t) = f(µ

λ
t). This provides

1

1 − t
f

(

µ

λ

t

1 − t

)

=
∞
∑

n=0

tn

(

n
∑

k=0

(

n

k

)

(µ

λ

)k

ak

)

. (8)

Replacing here t by λt yields (6).
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With λ = 1 and µ = −1 we have

1

t − 1
f

(

t

t − 1

)

=
∞
∑

n=0

tn

(

n
∑

k=0

(

n

k

)

(−1)k+1ak

)

, (9)

corresponding to the symmetrical binomial transform.

Lemma 3. Given a formal power series

g(t) =
∞
∑

n=0

bnt
n, (10)

we have
g(t)

1 − t
=

∞
∑

n=0

(

n
∑

k=0

bk

)

tn. (11)

This is a well-known property. To prove it we just need to multiply both sides of (11)
by 1 − t and simplify the right hand side.

2 Identities with harmonic numbers

Proposition 4. The following expansion holds in a neighborhood of zero

log(1 − αt)

1 − βt
= −

∞
∑

n=1

(

αβn−1 +
1

2
α2βn−2 + · · · +

1

n
αn

)

tn (12)

where α, β are appropriate parameters.

Proof. It is sufficient to prove (12) when β = 1 and then rescale the variable t, i.e. we only
need

log(1 − αt)

1 − t
= −

∞
∑

n=1

(

α +
1

2
α2 + · · · +

1

n
αn

)

tn. (13)

This follows immediately from Lemma 3.

Corollary 5. With α = 1 in (13) we obtain the generating function of the harmonic numbers

−
log(1 − t)

1 − t
=

∞
∑

n=0

Hnt
n, Hn = 1 +

1

2
+ · · · +

1

n
. (14)

The next proposition is one of our main results

Proposition 6. For every positive integer n and every two complex numbersλ, µ,

n
∑

k=1

(

n

k

)

Hkλ
n−kµk = Hn(λ + µ)n −

(

λ(λ + µ)n−1 +
λ2

2
(λ + µ)n−2 + · · · +

λn

n

)

. (15)
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Proof. We apply (6) to the function

f(t) = −
log(1 − t)

1 − t
=

∞
∑

n=0

Hnt
n. (16)

On the left hand side we obtain

−1

1 − λt

log(1 − µt

1−λt
)

1 − µt

1−λt

= −
log(1 − (λ + µ)t)

1 − (λ + µ)t
+

log(1 − λt)

1 − (λ + µ)t
, (17)

which equals, according to Corollary 5 and Proposition 4,

∞
∑

n=1

Hn(λ + µ)ntn −
∞
∑

n=1

(

λ(λ + µ)n−1 +
λ2

2
(λ + µ)n−2 + · · · +

λn

n

)

tn. (18)

At the same time, by Euler’s transform the right hand side is

∞
∑

n=1

tn

(

n
∑

k=1

(

n

k

)

Hnλ
n−kµk

)

. (19)

Comparing coefficients in (18) and (19) we obtain the desired result.

Corollary 7. Setting λ = µ = 1 in (15) yields the well-known identity (see, for instance,
[6, 14]):

n
∑

k=1

(

n

k

)

Hk = 2n

(

Hn −

n
∑

k=1

1

k2k

)

. (20)

Corollary 8. Setting λ = 1 in (15) reduces it to

n
∑

k=1

(

n

k

)

Hkµ
k = Hn(1 + µ)n −

(

(1 + µ)n−1 +
(1 + µ)n−2

2
+ · · · +

1 + µ

n − 1
+

1

n

)

. (21)

We shall use this last identity to obtain a representation for the combinatorial sum

n
∑

k=1

(

n

k

)

Hkk
mµk, (22)

by applying the operator (µ d
dµ

)m to both sides in (21). First, however, we need the following
lemma.

Lemma 9. For every positive integer m define the quantities

a(m,n, µ) =

(

µ
d

dµ

)m

(1 + µ)n =
n
∑

k=0

(

n

k

)

kmµk. (23)
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Then

a(m,n, µ) =
n
∑

k=0

(

n

k

)

k!S(m, k)µk(1 + µ)n−k. (24)

This is a known identity that can be found, for example, in [6].
From Lemma 9 we obtain another of our main results.

Proposition 10. For every two positive integers m and n,

n
∑

k=1

(

n

k

)

Hkk
mµk = a(m,n, µ)Hn −

n−1
∑

p=1

1

n − p
a(m, p, µ). (25)

Proof. Apply (µ d
dµ

)m to both sides of (21) and note that (µ d
dµ

)mµk = kmµk.

The sums (22) were recently studied by M. Coffey [3] by using a different method (a
recursive formula) and a representation was given in terms of the hypergeometric function

3 Stirling functions of a negative argument. Dilcher’s

formula

Some time ago Karl Dilcher obtained the nice identity

n
∑

k=1

(

n

k

)

(−1)k−1

km
=
∑ 1

j1j2 · · · jm

, 1 ≤ j1 ≤ j2 ≤ · · · ≤ jm ≤ n, (26)

as a corollary from a certain multiple series representation [4, Corollary 3]; see also a similar
result in [5]. As this is one binomial transform, it is good to have a direct proof by Euler’s
transform method. Before giving such a proof, however, we want to point out one interesting
interpretation of the sum on the left hand side in (26).

Let S(m,n) be the Stirling numbers of the second kind [9]. Butzer et al. [2] defined
an extension S(α, n) for any complex number α 6= 0. The functions S(α, n) of the complex
variable α are called Stirling functions of the second kind. The extension is given by the
formula

S(α, n) =
1

n!

n
∑

k=1

(

n

k

)

(−1)n−kkα, (27)

with S(α, 0) = 0. Thus, for m,n ≥ 1,

(−1)n−1n!S(−m,n) =
n
∑

k=1

(

n

k

)

(−1)k−1

km
. (28)
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For the next proposition we shall need the polylogarithmic function [11]

Lim(t) =
∞
∑

n=1

tn

nm
. (29)

Proposition 11. For any integer m ≥ 1 we have

(−1)n−1n!S(−m,n) =
∑ 1

j1j2 · · · jm

, 1 ≤ j1 ≤ j2 ≤ · · · ≤ jm ≤ n. (30)

Proof. The proof is based on the representation

Lim

(

−t

1 − t

)

= −
∑ tjm

j1j2 · · · jm

, 1 ≤ j1 ≤ j2 ≤ · · · ≤ jm, (31)

(see [15]) from which, in view of Lemma 2,

−1

1 − t
Lim

(

−t

1 − t

)

=
∞
∑

n=1

Antn, (32)

with coefficients

An =
∑ 1

j1j2 · · · jm

, 1 ≤ j1 ≤ j2 ≤ · · · ≤ jm ≤ n. (33)

The assertion now follows from (9).

In conclusion, many thanks to the referee for a correction and for some interesting com-
ments.

4 Appendix

We prove Euler’s transform representation (2) by using Cauchy’s integral formula, both for
the Taylor coefficients of a holomorphic function and for the function itself. Thus, given a
holomorphic function f as in (1), we have

ak =
1

2πi

∮

L

1

λk

f(λ)

λ
dλ, (34)

for an appropriate closed curve L around the origin. Multiplying both sides by
(

n

k

)

and
summing for k we find

n
∑

k=0

(

n

k

)

ak =
1

2πi

∮

L

(

n
∑

k=0

(

n

k

)

1

λk

)

f(λ)

λ
dλ =

1

2πi

∮

L

(

1 +
1

λ

)n
f(λ)

λ
dλ. (35)

Multiplying this by tn (with t small enough) and summing for n we arrive at the desired
representation (2), because

∞
∑

n=0

tn
(

1 +
1

λ

)n

=
1

1 − t(1 + 1

λ
)

=
1

1 − t

λ

λ − t
1−t

, (36)
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and therefore,

∞
∑

n=0

tn

(

n
∑

k=0

(

n

k

)

ak

)

=
1

1 − t

1

2πi

∮

L

f(λ)

λ − t
1−t

dλ =
1

1 − t
f

(

t

1 − t

)

. (37)
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