Journal of Integer Sequences, Vol. 12 (2009), Article 09.6.1

Harmonic Number Identities Via Euler's Transform

Khristo N. Boyadzhiev
Department of Mathematics
Ohio Northern University
Ada, Ohio 45810
USA
k-boyadzhiev@onu.edu

Abstract

We evaluate several binomial transforms by using Euler's transform for power series. In this way we obtain various binomial identities involving power sums with harmonic numbers.

1 Introduction and prerequisites

Given a sequence $\left\{a_{k}\right\}$, its binomial transform $\left\{b_{k}\right\}$ is the sequence defined by

$$
b_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k}, \text { with inversion } a_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} b_{k},
$$

or, in the symmetric version

$$
b_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k+1} a_{k} \text { with inversion } a_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k+1} b_{k}
$$

(see $[7,12,14]$). The binomial transform is related to the Euler transform of series defined in the following lemma. Euler's transform is used sometimes for improving the convergence of certain series $[1,8,12,13]$.

Lemma 1. Given a function analytical on the unit disk

$$
\begin{equation*}
f(t)=\sum_{n=0}^{\infty} a_{n} t^{n}, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{1-t} f\left(\frac{t}{1-t}\right)=\sum_{n=0}^{\infty} t^{n}\left(\sum_{k=0}^{n}\binom{n}{k} a_{k}\right) . \tag{2}
\end{equation*}
$$

(Proof can be found in the Appendix.)
If we have a convergent series

$$
\begin{equation*}
s=\sum_{n=0}^{\infty} a_{n} \tag{3}
\end{equation*}
$$

we can define the function

$$
\begin{equation*}
f(t)=\sum_{n=0}^{\infty} a_{n} t^{n}, \quad|t|<1 \tag{4}
\end{equation*}
$$

Then, with $t=\frac{1}{2}$ in (2) we obtain

$$
\begin{equation*}
s=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k} a_{k}\right) \frac{1}{2^{n+1}} . \tag{5}
\end{equation*}
$$

This formula is a classical version of Euler's series transformation. Sometimes the new series converges faster, sometimes not - see the examples in [10].

We shall use Euler's transform for the evaluation of several interesting binomial transformations, thus obtaining binomial identities of combinatorial and analytical character. Evaluating a binomial transform is reduced to finding the Taylor coefficients of the function on the left hand side of (2). In Section 2 we obtain several identities with harmonic numbers. In Section 3 we prove Dilcher's formula via Euler's transform.

This paper is close in spirit to the classical article [7] of Henry Gould.
Remark 2. The representation (2) can be put in a more flexible equivalent form

$$
\begin{equation*}
\frac{1}{1-\lambda t} f\left(\frac{\mu t}{1-\lambda t}\right)=\sum_{n=0}^{\infty} t^{n}\left(\sum_{k=0}^{n}\binom{n}{k} \mu^{k} \lambda^{n-k} a_{k}\right), \tag{6}
\end{equation*}
$$

where λ, μ are appropriate parameters.
To show the equivalence of (2) and (6) we first write

$$
\begin{equation*}
f\left(\frac{\mu t}{\lambda}\right)=\sum_{n=0}^{\infty} a_{n}\left(\frac{\mu}{\lambda}\right)^{n} t^{n} \tag{7}
\end{equation*}
$$

and then apply (2) to the function $g(t)=f\left(\frac{\mu}{\lambda} t\right)$. This provides

$$
\begin{equation*}
\frac{1}{1-t} f\left(\frac{\mu}{\lambda} \frac{t}{1-t}\right)=\sum_{n=0}^{\infty} t^{n}\left(\sum_{k=0}^{n}\binom{n}{k}\left(\frac{\mu}{\lambda}\right)^{k} a_{k}\right) . \tag{8}
\end{equation*}
$$

Replacing here t by λt yields (6).

With $\lambda=1$ and $\mu=-1$ we have

$$
\begin{equation*}
\frac{1}{t-1} f\left(\frac{t}{t-1}\right)=\sum_{n=0}^{\infty} t^{n}\left(\sum_{k=0}^{n}\binom{n}{k}(-1)^{k+1} a_{k}\right) \tag{9}
\end{equation*}
$$

corresponding to the symmetrical binomial transform.
Lemma 3. Given a formal power series

$$
\begin{equation*}
g(t)=\sum_{n=0}^{\infty} b_{n} t^{n} \tag{10}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{g(t)}{1-t}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} b_{k}\right) t^{n} \tag{11}
\end{equation*}
$$

This is a well-known property. To prove it we just need to multiply both sides of (11) by $1-t$ and simplify the right hand side.

2 Identities with harmonic numbers

Proposition 4. The following expansion holds in a neighborhood of zero

$$
\begin{equation*}
\frac{\log (1-\alpha t)}{1-\beta t}=-\sum_{n=1}^{\infty}\left(\alpha \beta^{n-1}+\frac{1}{2} \alpha^{2} \beta^{n-2}+\cdots+\frac{1}{n} \alpha^{n}\right) t^{n} \tag{12}
\end{equation*}
$$

where α, β are appropriate parameters.
Proof. It is sufficient to prove (12) when $\beta=1$ and then rescale the variable t, i.e. we only need

$$
\begin{equation*}
\frac{\log (1-\alpha t)}{1-t}=-\sum_{n=1}^{\infty}\left(\alpha+\frac{1}{2} \alpha^{2}+\cdots+\frac{1}{n} \alpha^{n}\right) t^{n} \tag{13}
\end{equation*}
$$

This follows immediately from Lemma 3.
Corollary 5. With $\alpha=1$ in (13) we obtain the generating function of the harmonic numbers

$$
\begin{equation*}
-\frac{\log (1-t)}{1-t}=\sum_{n=0}^{\infty} H_{n} t^{n}, \quad H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n} \tag{14}
\end{equation*}
$$

The next proposition is one of our main results
Proposition 6. For every positive integer n and every two complex numbers λ, μ,

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{n}{k} H_{k} \lambda^{n-k} \mu^{k}=H_{n}(\lambda+\mu)^{n}-\left(\lambda(\lambda+\mu)^{n-1}+\frac{\lambda^{2}}{2}(\lambda+\mu)^{n-2}+\cdots+\frac{\lambda^{n}}{n}\right) \tag{15}
\end{equation*}
$$

Proof. We apply (6) to the function

$$
\begin{equation*}
f(t)=-\frac{\log (1-t)}{1-t}=\sum_{n=0}^{\infty} H_{n} t^{n} \tag{16}
\end{equation*}
$$

On the left hand side we obtain

$$
\begin{equation*}
\frac{-1}{1-\lambda t} \frac{\log \left(1-\frac{\mu t}{1-\lambda t}\right)}{1-\frac{\mu t}{1-\lambda t}}=-\frac{\log (1-(\lambda+\mu) t)}{1-(\lambda+\mu) t}+\frac{\log (1-\lambda t)}{1-(\lambda+\mu) t}, \tag{17}
\end{equation*}
$$

which equals, according to Corollary 5 and Proposition 4,

$$
\begin{equation*}
\sum_{n=1}^{\infty} H_{n}(\lambda+\mu)^{n} t^{n}-\sum_{n=1}^{\infty}\left(\lambda(\lambda+\mu)^{n-1}+\frac{\lambda^{2}}{2}(\lambda+\mu)^{n-2}+\cdots+\frac{\lambda^{n}}{n}\right) t^{n} \tag{18}
\end{equation*}
$$

At the same time, by Euler's transform the right hand side is

$$
\begin{equation*}
\sum_{n=1}^{\infty} t^{n}\left(\sum_{k=1}^{n}\binom{n}{k} H_{n} \lambda^{n-k} \mu^{k}\right) . \tag{19}
\end{equation*}
$$

Comparing coefficients in (18) and (19) we obtain the desired result.
Corollary 7. Setting $\lambda=\mu=1$ in (15) yields the well-known identity (see, for instance, [6, 14]):

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{n}{k} H_{k}=2^{n}\left(H_{n}-\sum_{k=1}^{n} \frac{1}{k 2^{k}}\right) . \tag{20}
\end{equation*}
$$

Corollary 8. Setting $\lambda=1$ in (15) reduces it to

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{n}{k} H_{k} \mu^{k}=H_{n}(1+\mu)^{n}-\left((1+\mu)^{n-1}+\frac{(1+\mu)^{n-2}}{2}+\cdots+\frac{1+\mu}{n-1}+\frac{1}{n}\right) \tag{21}
\end{equation*}
$$

We shall use this last identity to obtain a representation for the combinatorial sum

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{n}{k} H_{k} k^{m} \mu^{k} \tag{22}
\end{equation*}
$$

by applying the operator $\left(\mu \frac{d}{d \mu}\right)^{m}$ to both sides in (21). First, however, we need the following lemma.

Lemma 9. For every positive integer m define the quantities

$$
\begin{equation*}
a(m, n, \mu)=\left(\mu \frac{d}{d \mu}\right)^{m}(1+\mu)^{n}=\sum_{k=0}^{n}\binom{n}{k} k^{m} \mu^{k} . \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
a(m, n, \mu)=\sum_{k=0}^{n}\binom{n}{k} k!S(m, k) \mu^{k}(1+\mu)^{n-k} . \tag{24}
\end{equation*}
$$

This is a known identity that can be found, for example, in [6].
From Lemma 9 we obtain another of our main results.
Proposition 10. For every two positive integers m and n,

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{n}{k} H_{k} k^{m} \mu^{k}=a(m, n, \mu) H_{n}-\sum_{p=1}^{n-1} \frac{1}{n-p} a(m, p, \mu) \tag{25}
\end{equation*}
$$

Proof. Apply $\left(\mu \frac{d}{d \mu}\right)^{m}$ to both sides of (21) and note that $\left(\mu \frac{d}{d \mu}\right)^{m} \mu^{k}=k^{m} \mu^{k}$.
The sums (22) were recently studied by M. Coffey [3] by using a different method (a recursive formula) and a representation was given in terms of the hypergeometric function

3 Stirling functions of a negative argument. Dilcher's formula

Some time ago Karl Dilcher obtained the nice identity

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{n}{k} \frac{(-1)^{k-1}}{k^{m}}=\sum \frac{1}{j_{1} j_{2} \cdots j_{m}}, \quad 1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{m} \leq n \tag{26}
\end{equation*}
$$

as a corollary from a certain multiple series representation [4, Corollary 3]; see also a similar result in [5]. As this is one binomial transform, it is good to have a direct proof by Euler's transform method. Before giving such a proof, however, we want to point out one interesting interpretation of the sum on the left hand side in (26).

Let $S(m, n)$ be the Stirling numbers of the second kind [9]. Butzer et al. [2] defined an extension $S(\alpha, n)$ for any complex number $\alpha \neq 0$. The functions $S(\alpha, n)$ of the complex variable α are called Stirling functions of the second kind. The extension is given by the formula

$$
\begin{equation*}
S(\alpha, n)=\frac{1}{n!} \sum_{k=1}^{n}\binom{n}{k}(-1)^{n-k} k^{\alpha}, \tag{27}
\end{equation*}
$$

with $S(\alpha, 0)=0$. Thus, for $m, n \geq 1$,

$$
\begin{equation*}
(-1)^{n-1} n!S(-m, n)=\sum_{k=1}^{n}\binom{n}{k} \frac{(-1)^{k-1}}{k^{m}} \tag{28}
\end{equation*}
$$

For the next proposition we shall need the polylogarithmic function [11]

$$
\begin{equation*}
\mathrm{Li}_{m}(t)=\sum_{n=1}^{\infty} \frac{t^{n}}{n^{m}} \tag{29}
\end{equation*}
$$

Proposition 11. For any integer $m \geq 1$ we have

$$
\begin{equation*}
(-1)^{n-1} n!S(-m, n)=\sum \frac{1}{j_{1} j_{2} \cdots j_{m}}, \quad 1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{m} \leq n \tag{30}
\end{equation*}
$$

Proof. The proof is based on the representation

$$
\begin{equation*}
\operatorname{Li}_{m}\left(\frac{-t}{1-t}\right)=-\sum \frac{t^{j_{m}}}{j_{1} j_{2} \cdots j_{m}}, \quad 1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{m} \tag{31}
\end{equation*}
$$

(see [15]) from which, in view of Lemma 2,

$$
\begin{equation*}
\frac{-1}{1-t} \operatorname{Li}_{m}\left(\frac{-t}{1-t}\right)=\sum_{n=1}^{\infty} A_{n} t^{n} \tag{32}
\end{equation*}
$$

with coefficients

$$
\begin{equation*}
A_{n}=\sum \frac{1}{j_{1} j_{2} \cdots j_{m}}, \quad 1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{m} \leq n . \tag{33}
\end{equation*}
$$

The assertion now follows from (9).
In conclusion, many thanks to the referee for a correction and for some interesting comments.

4 Appendix

We prove Euler's transform representation (2) by using Cauchy's integral formula, both for the Taylor coefficients of a holomorphic function and for the function itself. Thus, given a holomorphic function f as in (1), we have

$$
\begin{equation*}
a_{k}=\frac{1}{2 \pi i} \oint_{L} \frac{1}{\lambda^{k}} \frac{f(\lambda)}{\lambda} d \lambda \tag{34}
\end{equation*}
$$

for an appropriate closed curve L around the origin. Multiplying both sides by $\binom{n}{k}$ and summing for k we find

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k} a_{k}=\frac{1}{2 \pi i} \oint_{L}\left(\sum_{k=0}^{n}\binom{n}{k} \frac{1}{\lambda^{k}}\right) \frac{f(\lambda)}{\lambda} d \lambda=\frac{1}{2 \pi i} \oint_{L}\left(1+\frac{1}{\lambda}\right)^{n} \frac{f(\lambda)}{\lambda} d \lambda . \tag{35}
\end{equation*}
$$

Multiplying this by t^{n} (with t small enough) and summing for n we arrive at the desired representation (2), because

$$
\begin{equation*}
\sum_{n=0}^{\infty} t^{n}\left(1+\frac{1}{\lambda}\right)^{n}=\frac{1}{1-t\left(1+\frac{1}{\lambda}\right)}=\frac{1}{1-t} \frac{\lambda}{\lambda-\frac{t}{1-t}} \tag{36}
\end{equation*}
$$

and therefore,

$$
\begin{equation*}
\sum_{n=0}^{\infty} t^{n}\left(\sum_{k=0}^{n}\binom{n}{k} a_{k}\right)=\frac{1}{1-t} \frac{1}{2 \pi i} \oint_{L} \frac{f(\lambda)}{\lambda-\frac{t}{1-t}} d \lambda=\frac{1}{1-t} f\left(\frac{t}{1-t}\right) \tag{37}
\end{equation*}
$$

References

[1] P. Amore, Convergence acceleration of series through a variational approach , J. Math. Anal. Appl. 323 (1) (2006), 63-77.
[2] P. L. Butzer, A. A. Kilbas and J. J. Trujillo, Stirling functions of the second kind in the setting of difference and fractional calculus, Numerical Functional Analysis and Optimization 24 (7-8) (2003), 673-711.
[3] Mark W. Coffey, On harmonic binomial series, preprint, December 2008, available at http://arxiv.org/abs/0812.1766v1.
[4] K. Dilcher, Some q-series identities related to divisor factors, Discrete Math. 145 (1995), 83-93.
[5] P. Flajolet and R. Sedgewick, Mellin transforms and asymptotics, finite differences and Rice's integrals, Theor. Comput. Sci. 144 (1995), 101-124.
[6] H. W. Gould, Combinatorial Identities, Published by the author, Revised edition, 1972.
[7] H. W. Gould, Series transformations for finding recurrences for sequences, Fibonacci Q. 28 (1990), 166-171.
[8] J. Guillera and J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan J. 16 (2008), 247-270.
[9] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, New York, 1994.
[10] K. Knopp, Theory and Application of Infinite Series, Dover, New York, 1990.
[11] L. Lewin, Polylogarithms and Associated Functions, North-Holland, Amsterdam, 1981,
[12] H. Prodinger, Some information about the binomial transform, Fibonacci Q. 32 (1994), 412-415.
[13] J. Sondow, Analytic continuation of Riemann's zeta function and values at negative integers via Euler's transformation of series, Proc. Amer. Math. Soc. 120 (1994), 421424.
[14] M. Z. Spivey, Combinatorial sums and finite differences, Discrete Math. 307 (2007), 3130-3146.
[15] E. A. Ulanskii, Identities for generalized polylogarithms, Mat. Zametki 73 (4) (2003), 613-624.

2000 Mathematics Subject Classification: Primary 05A20; Secondary 11B73.
Keywords: Harmonic numbers, binomial transform, Euler transform, Stirling number of the second kind, Stirling function, combinatorial identity, polylogarithm, Dilcher's formula.

Received June 12 2009; revised version received July 25 2009. Published in Journal of Integer Sequences, August 302009.

Return to Journal of Integer Sequences home page.

