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SUMMARY

The object of this paper is to present a systematic introduction to and several
interesting applications of a general method of obtaining bilinear, bilateral or mixed
multilateral generating functions for a fairly wide variety of special functions in
one, two and more variables. The main results, contained in Theorems 2 and 3 below,
are shown to apply not only to the Bessel polynomials, the classical orthogonal
polynomials including, for example, Hermite, Jacobi (and, of course, Gegenbauer,
Legendre, and Tchebycheff), and Laguerre polynomials, and to their various
generalizations studied in recent years, but indeed also to such other special functions
as the Bessel functions, a class of generalized hypergeometric functions, the
Lauricella polynomials in several variables, and the familiar Lagrange polynomials
which arise in certain problems in statistics. It is also indicated how these general
results are related to a number of known results scattered in the literature.

1. INTRODUOTION

In her 1971 monograph [13] McBride discussed a number of useful
methods of obtaining generating functions. Every special function, which
she considered as the coefficient set in a bilinear (or bilateral) generating

* This work was supported, in part, by the Natural Sciences and Engineering
Research Council of Canada under Grant A-7353.

For a preliminary report on this paper see Notices Amer. Math. Soc. 26 (1979),
Pp. A213-A214, Abstract 3 79T-B48.
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relationship, belongs to a class of functions {Sx(z)|n=0, 1, 2, . ..} generated
by [17, p. 755, Eq. (1)]

(1.1) zo Am,n Smin(@)ir =f(z, ){g(z, O} ™ Sm (h(x: t)) )
where m is a non-negative integer, the coefficients 4, 5 are arbitrary
constants, real or complex, and f, g, b are suitable functions of z and ¢.
Indeed, the sequence {Sx(x)}, generated by (1.1), can be specialized to
obtain a fairly wide variety of other known special functions (and poly-
nomials) which were not considered by McBride [13]. With this objective
in view, Singhal and Srivastava [17] presented a general class of bilateral
generating functions for the S,(x) defined by (1.1) and showed how their
results would easily apply to derive a large variety of bilateral generating
functions for the Bessel, Jacobi, Hermite, Laguerre and ultraspherical
polynomials, as well as for their numerous generalizations considered in
the literature.

Since the publication of the aforementioned paper by Singhal and
Srivastava [17], several independent attempts have been made in the
literature towards generalizations of the Singhal-Srivastava theorem [17,
P- 755] in a number of seemingly different directions. Chatterjea ([3] and
[4]) extends the definition (1.1) to include cases when m is an arbitrary
complex number and also when the sequence generated depends upon
two complex variables. Notice, however, that if in (1.1) we replace the
sequence {Sy(x)} by another sequence {Siia(z)}, where u is an arbitrary
complex number, and set

(1-2) Am n —Aﬂ+m ny f(xa t) =f*(x» t){g(x’ t)}—y’

then (1.1) assumes the form:

(13 5 Aumo Smsn@n =1, gt 0} S (),
or equivalently,

L9 5, A= ie 0sto, 0} 8 (o)

which is a generating relationship of the type considered by Chatterjea
([3] and [4]). Thus, Chatterjea’s extensions ([3, p. 117, Proposition I} and
[4, p. 2, Theorem II]) are derivable by merely applyingt the Singhal-
Srivastava theorem [17, p. 755] to the sequence {Sjn(%)}nm0, Where u
is an arbitrary complex number. {As a matter of fact, Proposition I in
Chatterjea’s paper [3] is essentially the same as the main result (Theorem
II) in his subsequent paper [4].}

t See also the review of S. K. Chatterjea’s paper {3] in Zentral. Math. 348 (1977),
pp- 160-161, 3 33012 (by J. P. Singhal).
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Some non-trivial generalizations of the results of Singhal and Srivastava
[17] (to hold for sequences of functions of one and more variables) have
appeared in the works of Srivastava and Lavoie [18], Carlitz and Srivastava
[2], and Panda [14]. We recall here one of the main results, due to Srivas-
tava and Lavoie [18], in the following form:

THEOREM 1 (Srivastava and Lavoie [18, p. 319, Eq. (107)]). Corre-
sponding to the functions S(z), generated by (1.4), let

(1.5)  Fo iz tl= 3 cpnStia@)tt, 0,00,
n=0

where q is a positive integer, and v is an arbitrary complex number.
Then

. f 82, o @)TS, (g}t =f*(z, gz, )}~
By, [h(z, ), yitlga, ),

where T5..(y) is a polynomial of degree [n]q] in y defined by

[n/a]
(1-7) T;',.,(y)= kzo A:+ak.n—ak Cok yk-

Theorem 1 and its generalization to sequences of functions of r variables,
given subsequently by Panda [14], can be specialized to yield all of the
results of Chatterjea ([3] and [4]). Proposition I in Chatterjea’s paper [3,
p. 117], which indeed is the same as the main result in his latter paper
[4, p. 2, Theorem II], follows from Theorem 1 in its special case when
v=m and g =1, while his other result [3, p. 118, Proposition II] corresponds
to the special case of Panda’s theorem [14, p. 28, Eq. (5)] when v=m,
g=1 and r=2. {See also the Srivastava-Lavoie theorem [18, p. 316,
Theorem 2] which, when =2 and g=1, can be applied to derive Chatter-
jea’s result just cited [3, p. 118, Proposition II] in a manner analogous
to the aforementioned derivation of Chatterjea’s results [3, p. 117, Propo-
sition I] and [4, p. 2, Theorem II] from the Singhal-Srivastava theorem
[17, p. 755].} It may be of interest to observe in passing that Deductions
2 and 3 in Chatterjea’s paper [3, p. 126], involving the familiar (two-
variable) Lagrange polynomials defined by [6, p. 267, Eq. (1)]

00

(1.8) zo ga-P (z, y)ir=(1—at)=" (1-yt)~",
ne
are contained in a single bilateral generating function (due to Srivastava
and Lavoie [18, p. 318, Eq. (100)]) with ¢=1.
An interesting generalization of the bilateral generating function (1.6)
is given by
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THEOREM 2. For the functions Si(x) defined by (1.4), let

Forlz; g1, -5 Ysi 1]

(L.9) )
- Zo ol By (@) pn(Y1y -oos Ya)t®,  Ch7#O0,

where (and in what follows) u and v are arbitrary complex numbers, p and q
are positive indegers, and Qu(y1, ..., ¥s) 18 a non-vanishing function of s
variables y1, ..., ¥s, 821.

Then

(1‘10) “20 S’+n(x) W::g. -(yl: ey Yss z)t”=f"(x, t){g(x’ t)}—v
- FoLlh(z, £); 91, ..., Ys; 2{8/g(x, )4,

where Wi5.(y1, ..., Ys; 2) 18 a polynomial of degree [n[q] in z (with coefficients
dependent on y, ..., ys) defined by

[n/q)
(1.11) WL (Y1, -ees Ys; 2)= bzo ALy ikn-an B iYL, ooy Yo)2F
in terms of the A, o occurring in (1.4).

REMARK 1. For =1, the bilateral generating function (1.10) can at
once be rewritten in the form:

(112) “20 S:+n(m) Y::#.v(y: z)t“=f"'(x, t){g(x’ t)}—v
- G2¢[h(z, 1), y, 2{t/g(z, £)}1],
where

[n/q)
(1.13)  Yzi,(y, 2)= = Ay en-ax " B m(y)?,

(L14) G2z, y,tl= 3 o' Seml®) Eyppm®)t®, i’ #0,

n=0
E,(y)+0 is an arbitrary function of y, p and ¢ are positive integers, and
u# and v are arbitrary complex numbers.
REMARK 2. Yet another interesting special form of the bilateral

generating function (1.10) would occur when the multivariable function

Luy1y ooy Ys)y 8>1

can be expressed as a suitable product of several simpler functions. We
omit the details involved in deriving such multilateral generating relations
for the functions Sy (z) defined by (1.4).
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2. PROOF OF THEOREM 2

If we substitute for the polynomials W2:5,(y1, ..., ys; 2) from (1.11) into
the left-hand side of (1.10), we shall get

A= 3 8. WoL (1, ..., ys; 2)in

n=0

oo Infa}
= go St () go DL IO L o N (TP TA P

= z Cf:" ‘Qu+ﬂk (yl: ceey y«l)(zm)k zo A:+qk.n S:+ak+n(x)t”:

k=0

by interchanging the order of the double summation involved.
The inner series can be summed by appealing to the generating relation
(1.4), with u replaced by v+gk, and we thus obtain

k=0

A=, 0@ ) S o 8a (k(x, t))
¢ Qp-’.pk(yl’ ceey y&)[z{t/g(x’ t)}q]k

Now we interpret this last infinite series by means of the definition
(1.9), and the second member of the bilateral generating relation (1.10)
follows at once.

This evidently completes the proof of Theorem 2 under the hypothesis
that the double series involved in the first two steps of our derivation
are absolutely convergent. Thus, in general, Theorem 2 holds true for
such values of the various parameters and variables involved for which
each member of Equation (1.10) has a meaning.

3. FURTHER GENERALIZATIONS OF THEOREM 2

Consider a set of functions Au(x, ..., 2;) of r variables z, ..., z;, and
of order u, generated by [14, p. 28, Eq. (3)]

o0

zo Van D@1, ooy TR =0(21, ..., Zr; ){P(21, ..., r; E)}#

(3.1
-4, (y)l(xl, ey Zry b)y ooy (@, ey 25 t)) ,

where u is an arbitrary complex number, the y.4, 2=0, are suitable
constants, and 0, ¢, vy, ..., yr are suitable functions of x, ...,z and ¢.

The method of proof of Theorem 2 can be applied mutatis mutandis
to derive the following generalization which would evidently yield bilateral
(and, of course, multilateral) generating relations for a fairly wide variety
of sequences of functions of several variables. {See Remark 2 above.}
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THEOREM 3. For the functions Au(z, ..., zy) defined by (3.1), let

Dob[ay, ...y Trs Y1, -5 Yo E]

(3.2) o
= 2 08" Ayran(@1s vos Tr) 2y pn(Y1, «oo Yst®, 870,

n=0

where u and v are arbitrary complex numbers, p and q are positive integers,
and 2,(y1, ..., Ys) 18 a non-vanishing function of s variables yi, ..., ys, s=1.
Then

(=]
20 A, (@1, ooy 2)REE (1, .., Ys; 2)E0

(3.3) =0(21, ..., Tr; H{pl(21, ..., 2; )}
- DOBY(TL,y eey Ty )y oy Pr(@Ly ooy T3 8)3 YL, ooy Yss
2{t/$(x1, ..., 2r; £)}4],

where BR:G.v(y1, ..., Ys; 2) 8 a polynomial of degree [n[q]in z (with coefficients
involving ¥, ..., ys) defined by

[n/a}
(3'4) Rz:g.v(yli A ] y‘; z) = kEO 7.+¢),_,...¢1; 65" ‘Qy-l-pk(yls seny y‘)zk,

in terms of the constants y.a occurring in (3.1).

REMARK 3. Obviously, Theorem 3 would reduce to Theorem 2 in its
special case r=1, while the (Srivastava-Lavoie) bilateral generating
funection (1.6), contained in Theorem 1, follows from Theorem 2 and its
consequence (1.12) when we set

(3.5) Qu(y, ..., ys) =1 and Eu(y) =1,

respectively. Other known special cases of our theorems include the main
results of the recent papers by Chatterjea [5, p. 325, Eq. (1.7)] and Panda
[14, p. 28, Eq. (5)]; the former would follow from the bilateral generating
function (1.12) when p=g¢g=1, x=0 and v=m, where m is a positive
integer, and the latter is readily derivable from Equation (3.3) above
on setting p=1 and specializing Qu(y1, ..., ¥s) by means of (3.5).

4. APPLICATIONS TO FAMILIAR POLYNOMIALS

We begin by recalling some familiar instances of generating-function
relationships of the type (1.1) or (1.4) with u=m. Many of these results
are fairly well known; they may be found, for example, in the 1971
monograph by McBride [13]. {Others are readily derivable from known
results. See also the recent work [8].}
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Bessel polynomials:

o tn
z Ymn(®, x —m —n, f) =
n=0 n!

(4.1)
=(1—at[p)'~* exp(t) ym (x(l —at|f)t, a—m, ﬂ) ,

where ya(z, , ) denotes the (Krall-Frink) Bessel polynomials defined by
[11, p. 108, Eq. (34)]

(42) (s, &, B)= .io (,’:) ("‘* ”,j’““z) ! (g.) g

For the simple Bessel polynomials ys(z) defined by
(43)  yn(@)=ya(=, 2, 2),
we have the relatively more familiar result {13, p. 50, Eq. (12)]
5. a5 -1 2w exp (2001 -2)
e 1 '
 Ym (x/V(l - 2xt)) .
Gegenbauer (or ultraspherical) polynomials:
45 3 (’"*”) Pi ala)tr=g=m-% Pz (i?—t) ,
n=0 n e
where
o=} (1—2xt+82).
Hermite polynomials:
[ tﬂ
(4.6) z H”H.n(x)m = exXp (M“tz)Hm(x“t).
a=0 !
Jacobt polynomials:
5 (" ") Prmmen e

n=0 n

(4.7)
- { 1+3(z+ l)t}“—m { 1+%(x-—1)t}ﬁ

"Pgmaen (g n),

where, for convenience,

(4.8) &z, t) =2+ (22— 1)¢;
s ("‘ * ”) Pezp? (z)n
a=0 n

(4.9) a1
=14ty { 1 —;»(x—l)t} p-mh (ﬂ(x, t)),
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where

(4.10) 7@, f)= {x+§(w—1)t}{l—é(x-l)t}—l;

5, ("0 ") Pt

n=0 n

(4.11)
—(1—t)p-m { 1—}(z+1) } 7 pesem (C(x, t)) ,

where
(4.12) C(z,8)= {x—%(a:+l)t}{l—§(a:+ l)t}-l.

Laguerre polynomials:

€13 S (m;: ”) L@ ()t = (1 —t)-1-o-m exp(— li_‘-t) I (1—?_——,) :

n=0

a1g 3 (m: ") L&z ()0 = (1 +£)*~™ exp (- at) L&~ (x(l +t)) .

n=0

Now we compare each of the above generating-function relationships
with (1.1), that is, (1.4) with 4 =m, and we are led at once to the following
interesting applications of Theorem 2:

COROLLARY 1. If

Ag.)a[x; Y1, +ees Ys5 1]
(4.15) ®
= z (_,n)' ymﬂﬂ(x’ x—gqn, ﬂ)‘QIH-” (yl, sy ya)t”, a,.;eO,

n=0

then, for every mom-negative integer m,

w tn
20 Ymin(@, o—n, H)MZE(, ..., a3 2)
N :

=(1—at/p)~>"mexp ({) AL, [2(1 —t[B)L; y1, ..., Ys; 284],
Vp,q,8€{1,2,3,..},

(4.16)

where, and throughout this paper,

) /g
(4-17) ‘M::tll‘ (yh cens Yss z) = Z (qk) ax "Qy+pk(y1a cany ?/S)zk’

k=0
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Quror(y1, .-, ys) being, as before, a non-vanishing function of 8 variables
Y1, - Ys, 821,

COROLLARY 2. If

(418) (2) [x Y1, «oes Ys; t] 2 )’ymﬂn(x) y+m(y1’ ceey y‘)tﬂ an¢0

o (qn

then, for every non-negalive integer m,

t’l
E Ymin(@ MR (1, .., Y53 2) 3 = (1~ 2at)~tmr)2

(4.19) . exp (x—l{l ~y(1- 2xt)})

AR [y (1 —2at); yu, ..., ¥s; 29(1 — 228)-0/2],
COROLLARY 3. If
(4.20) (s’q[x; Y1, oy Yss t] z (qn Hm-}-qn(x) +”(y1, “eey yc)t”, aﬂ#o,
then, for every mon-negative integer m,
o n
2 Hmﬂ""(x)M:.'é‘(yl’ oo Yss z),'_ﬂ

(4.21) n=0
= exp (2xt—12) AR [x~t; y1, ..., Ys; 284].

COROLLARY 4, [f
(4.22) ARz, .oy 8] = Eo On Proyon(@) oW1, -, Ya)tP, an 0,
Py

then, for every non-megative integer m,

3 Pz (2)N25 (41, ..., Ys; 2)tP
(4.23) »;o +af e (N1 Ys; 2)

=07 * AQ (@ —t)o; . .., ys; 2(tf0)],
where, and in what follows,

n/al
(4.24) No& (41, ..., Ys32)= 3, m+n @k 2, (Y1, .., Ys)2E,
n—gk

k=0

and, as before, p=)/(1 2zt +12).

REMARK 4. Form= 0, this last definition (4.24) would obviously reduce
to that in (4.17), and we have the equivalence

(4.25) MZi(y1, ..., Ys; 2) = N¥bo(01, ..., Ys; 2).
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REMARK 5. Corollary 4 can readily be specialized to yield the
corresponding bilateral generating functions for the well-known
Legendre polynomials

(4.26) Pa(z) = Pi(),
and for the Tchebycheff polynomials of the first and second kinds:
(427) Tal@)=}n lim (x1P3(a)}, Un(z)=Pi(x).

{al—0

We omit the details involved.

COROLLARY 5. If

A'(:.)a[x; Y, .y Ys t]

(4.28) -
= z an Pg;&'.’."p _m)(x)9u+m(y1’ eery y')t"r Bn F 0’

then, for every nmon-negative infeger m,

| E P(:_;:.ﬁ-n)(x) N::#l.a(yl’ sees Ys; 2)IB

n=0

(4.29) & - { 14 3+ 1)t H 14}z —1)t :" A8, [5(x, f);

Yy oo U} ztﬂ/‘ 1+;(x+1)t}“{ 1+;~(x—-l)t}¢],
where &(x, t) 18 defined, as before, by (4.8).
COROLLARY 6. If
(4.30) A9 [2; 1, ..., yos f]= 2 U PEZEO(2)D, . (31, ..., Yo)t?, Gn 0,

then, for every mon-negative infeger m,
Lo

. PGin®(x) Nog o, -, Yo; 2)7

(4.31) .
=(1 +t)'{ 1—%<x—1)t} A [7(2, 1) 91, .., 95 289)(1+ 2],

where n(z,t) 18 given by (4.10).

COROLLARY 7. If

A2 [z 1, ..., yas 8]

(4.32) w
= 2 n PRAR™ (@) 21 om(t, .., 9e)t?, Gn#0,

a=0
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then, for every non-negative integer m,

Zo PGbrm () Nows o(y1, <.y Yss 2)07

(4.33) gt
=(1-t)ﬁ{ 1-}z + 1>t} AD L@, 1); 1, -y g3 (1 =B)0],

where {(z,t) is defined by (4.12).

REMARK 6. Corollaries 5, 6 and 7 are essentially equivalent, since we
have the familiar relationships [22, p. 59, Eq. (4.1.3)]

(4.34) PLP(z)=(-1) P¥(-2z)

and [op. cit., p. 64, Eq. (4.22.1)]

1—2\» x4+ 3
@, 8- (g) = ~a=p~1=n,B-m
(4.35) P@b-v(g) ( . ) Py "5 (x_1>.
Indeed, the equivalence of Corollaries 6 and 7 follows immediately from
(4.84), Corollaries 5 and 7 are equivalent in view of (4.35), while Corollaries
5 and 6 can be shown to be equivalent by appealing to both (4.34) and
(4.35).

COROLLARY 8. If

(S)Q[x; Y1, ooes Ys, t]
(4.36) o
= Y 8n L&\ 0() 2, i on(¥1, -0, Ys)t?,  an#0,

n=0

then, for every non-negative integer m,
=)

3 L a(2) N2 oy, oo Yo; 20

n=0

=(1—¢)-1-a-m exp(— %) AR [/ —1); v, ..., ys; 289/ (1 —8)9],

(4.37)

where, as before, Naha(y1, ..., Ys; 2) 18 defined by (4.24).

COROLLARY 9. If

Ag.)q[x; Y1, .-+ Ys5 t]

(4.38) ©
= 3 an LE7D(%) Quion(y1, - %), an#0,

a=0
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then, for every mon-negative integer m,

o0
(4.39) 2 Leid(@) Moy oo s 2)t0

=(1+8)* exp (—at) AR [2(1+1); y1, ..., ya; 29/(1+8)9).
REMARK 7. Since [22, p. 103, Eq. (5.3.4)]
(4.40) L@(z)= lim P=P(1—-2/p), Vne{0,1,2,..},
1Bi->00
this last Corollary 9 can be derived as the confluent case of Corollary 6

(or Corollary 5) when |8| — oo, while Corollary 8 is similarly derivable
from Corollary 7.

REMARK 8. In view of the known relationship (cf., e.g., [18], p. 311,
Eq. (53))

(441)  ya(z, 6 —n, B) =nl(~z[B)" L =" (B/x),
Corollary 9 can easily be shown to be equivalent to Corollary 1 involving
Bessel polynomials.

REMARK 9. Since [13, pp. 68-69]

(442) fro@)= (= 1P LE(@) = = oals; 2),

H

Corollary 9 can alternatively be stated as follows in terms of the modified
Laguerre polynomials fu(x) defined by [op. cit., p. 4, Eq. (9)]

(4.43) (1—¢)~* exp(at)= i fo(z)in,

or the Poisson-Charlier polynomials ca(z; «) defined by ([op. cit., p. 68];
see also [22], p. 35, Eq. (2.81.2))

(444) calm;o)= S (—-1)"(:)(2)16!04"‘, a>0, 2=0,1,2, ...

k=0

CorOLLARY 10. If

AQ0z; Y1, .oy Yss 8]
(4.45) %
= z Ay f:,+m(x)9”+,,,(y1, sery ys)t", a'ﬂ7é0!

n=0

then, for every mon-negalive integer m,
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(4.46) ,.;o f:+”(x) ll ¢(2/1. veey Yss Z)t"

=(1—t)*"™ exp(xt) AZR[z(1 ~£); yu, ..., ys; 289/(1 - 8)q],
where the functions Naha(y1, ..., Ys; 2), n20, are given by (4.24).

COROLLARY 11. Let

AGV[x; y1, ..y Yss 1]
(4.47) i

Z (qn

where >0 and «=0, 1, 2, ....
Then, for every mon-negative inmteger m,

cmwﬁ("‘ )82y 1on(1, .- Ya)t®,  an#0,

0 in
c o x) M2E(ys, ...y Ys; 2)—
(4.48) ,go mn{oc; ) M35 (n Ys; 2) poy

=(1—t/x)* exp(t) AG[x—1t; 31, ..., Ys; 28],

where the functions MR8 (v, ..., Ys; 2), n=0, are defined, as in Corollaries
1, 2 and 3, by (4.17).

Incidentally, these last Corollaries 10 and 11 can be derived directly
from Theorem 2 by appealing to the generating-function relationships

(449 3 (’”+ ") aaatn =(1-0)= " expiat) 5 (= ( —t))

n=0

and
(4.50) 2’ Cmn(x; x)% =(1—t/x)* exp(t) cm(x; x—1),

respectively. Indeed, by virtue of (4.42), both (4.49) and (4.50) are rather
straightforward consequences of the familiar result (4.13).

(To be continued)
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