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1.  Introduction

Special functions are the solutions of a wide class of 
relevant functional equations. Generating functions play 
a key role in the study of special functions. There are 
number of methods to getting generating functions1,2. 
But it has been found that the group-theoretic method 
of obtaining generating functions is much potent one 
in comparison to analytical methods3. Group- theoretic 
method was introduced by4 in the year 1955 and he 
employed this technique to find generating relations for 
variety of special functions.

Hypergeometric polynomials arise naturally and 
frequently in different type of problems related to 
theoretical physics, applied mathematics, engineering 
science, statistics and operation research. A considerable 
field of the fundamental performance metrics of wireless 
communications systems, 5,6 i.e. capacity, error probability 
and outage probability can be frequently obtained in 
closed form by the common classical special functions 

(e.g., Bessel’s functions, Hypergeometric functions or 
Meijer functions), the Gaussian Q-function, the Marcum 
Q-function and the Nuttal Q-function . In order to 
obtain new analytical closed-form results for the basic 
performance metrics, this set of special functions has 
been recently extended to include either less common 
classical special function (e.g., Lauricella functions, Fox’s 
H function). From a computational point of view, certain 
Lauricella functions are easier to compute than Fox type 
functions because either they have Euler type single 
integral representations with elementary integrands or 
their univariate Laplace transform is elementary being 
easily inverted numerically. Also in mathematical physics7. 
The theory of generating functions for generalized 
hypergeometric polynomials plays a vital role.

In8 derived bilateral generating functions for the 
hypergeometric polynomial by Weisner method. 
Recently, bilateral generating functions for modified 
Jacobi polynomials were discussed by9 using group 
-theoretic method10 has also done some work on 
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generating functions for Laguerre 2D polynomials, by 
using group- theoretic method. Also, in11 studied special 
linear group SL (2,C) and generating functions for two 
variable Legendre polynomials.

2.  Definition

Recently, Bhagavan V.S. and Rama Kameswari P.L. 
introduced generalized hypergeometric 2D polynomials 
(GH2DP) ( )U ; ;a, bn b g  and discussed the generating 
functions with the help of the following differential 
equation and an ascending recurrence relation 
respectively :
•	 The differential equation Satisfied by ( )U ; ;a, bn b g  is

( ) ( ) ( ) ( )[ ]
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•	 The ascending recurrence relation is deduced as
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•	 The generating functions for ( )U ; ;a, bn b g  are

( ) n U a,b tn bte F ; ; at .1 1k !k 0
b g

¥
é ù= -å ë û= 		

(2.3)
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The proofs of the above results are clear.

3.  Applications

1. ( ){ }
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Where ( )L a,bn
a  is the two variables Laguerre 

polynomial.
2. ( ) ( )
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Provided 0 0 1 y 0,1,2,...g r> < < = ,

Where M (c; , )n g r is the Meixner polynomial 4 .

3. ( )( ) ( ) ( )
n1U z; 1; 1, 1 e e 1 c,n n

l l f l
-- -- - = -  ,	 (2.7)

Where ( )c,nf l is the Gottlieb polynomial4.

4.  Bilateral Generating Functions

4.1 Theorem
If there exist a unilateral generating relation of the form 
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m

¥
= å

= 			 
(3.1)

then the following generating relation will exist
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where
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4.2 Proof
From the recurrence relation (2.2), we define the following 
linear partial differential operator C as follows:

1 2 3C C C C
b c
¶ ¶

= + +
¶ ¶

Such that ( ) ( ) ( )
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which gives that
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Consider the operator 1 2E R R .
b c
¶ ¶

= +
¶ ¶

We now proceed to derive the extended form of operator 
C:

If ( )a,b,cf  be a solution of C ( )a,b,cf  =0 and if we 
changed the operator C to E such that   

( ) ( )1E a,b,c C a,b,cf f-=

Then ( ) ( )1C a,b,c E a,b,c .f f-=
Therefore, we have
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Finally, we select new variables B, C then E is 
transformed into D

b
¶

º
¶  with this transformation, 

( ) ( )1 a,b,c f a,b,cf-  be changed into F(A, B, C). With the 
help of Taylor’s theorem, we get 

( ) ( ) ( )wCe f a,b,c a,b,c g a,b,cf= .

Let F(A, B-w, C)  be transformed into ( )cbag ,,  by 
inverse substitution. Now, we derive ( )wCe f a,b,c ,

Where ( ) ( ) ( )2C cb a b c 2b a c b a
b c

g b
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= - + - + -
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.

Let ( )a,b,cf be a function such that R ( )a,b,cf =0 On 
solving, we get 

( ) ( ) 11a,b,c b a b c.g bbf - ++= -

Therefore    
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Now, we insert new variables B, C and then E will be 
transformed into .

b
¶
¶

We get a set of solutions as follows:

( )
1 1A a, B and C
cb cb a b

= = =
-

.         

From which we get
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( ) ( )1 1a,b,c b a b c,1C E where b g bff f + - += --= we get

( ) ( )

( ) ( )( ) ( ){ }

1w EwC

1 1w E1 1 1

e f a,b,c e f a,b,c

b a b c e b a b c f a,b,c

f f

g b b gb b

-

- + - -+ - - -

=

= - -

Now the transformations 
1

1

1a A, b A-BC , c
B(A-BC )

-
-= = =  will transform E into

D
b
¶

º
¶

By Taylor’s theorem, we get
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Finally substituting  ( )
A B C1 1a, and

bc bc a b
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-  we 
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( ) ( ) ( )( )

( )( )
( ) ( )( )

wCe f a,b,c 1 wbc 1 wc a b

cf a,b 1 cw a b , .
1 wbc 1 wc a b

bb g --= - + -

æ ö÷ç ÷ç + - ÷ç ÷ç ÷- + -è ø

 	 (3.5)

5.  Theorem

Let us write ( ) ( ) n
nf a,b,c U ; ;a,b cb g=  in (3.5), we get
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Again , on the other hand , with the help of (3.4), we 

have
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  From (4.1) and (4.2),on  choosing z=1, we get
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We now arrive to prove the main theorem:
Consider    

( ) ( ) ( )
( )
( )

kn
kn n n k

n n n
n 0 n 0 k 0

k t
U a,b t w w U a,b

n k !
m g

s
¥ ¥

-

= = =

+
=

-å å å

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )
( )( )

( ) ( )( ) ( )
( ) ( )( )

kkkwt 1 wb 1 w a b U a,b bw a bnkk 0
k

wt 1 1 U a,b bw a bnk 1 wb 1 w a b 1 wb 1 w a b 1 wbk 0

wt1 wb 1 w a b G a,b wb a b ,
1 wb 1 w a b

bb gm

b g
m

bb g

¥ - -- -= - + - + -å
=

æ ö æ ö æ ö¥ ÷ ÷ç ç ÷ç÷ ÷ ÷ç ç= + -çå ÷ ÷ ÷ç ç ç÷ ÷ ÷çç ç÷ ÷- + - - + - -è ø= è ø è ø

æ ö-- ÷ç ÷ç= - + - + - ÷ç ÷ç ÷- + -è ø

Hence the theorem.
Finally, the theorem can be proved by the operator C 

as mentioned in (3.4).
Let us consider     
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On replacing t by wzt  in (4.4) and then operating  ewc 
on both sides, we get
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By using   (3.4) and (3.5), we obtain   
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Now equating (4.6) and (4.7), we obtain
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Put z=1 in (4.8) we get
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Hence the theorem.

6.  Applications

•	 In the generating relation (2.3) let us take
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By the above theorem we have 
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Now replacing –t by c and w by t we get
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Which is the bilateral generating relation for 
( )U ; ;a, bn b g .

•	 Consider another generating relation (2.4). Let us 
suppose that  
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In a similar way, we get
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						      (5.2) 
Which is the bilateral generating relation for
( )U ; ;a, bn b g .
In similar way, one can also derive generating relation 

for the generalized hypergeometric polynomials of two 
variables (GHP2D), by using descending recurrence 
relation.

7.  Remark

The corresponding generating functions for various 
orthogonal polynomials can be obtained from the 
generating functions (5.1) and (5.2) by using the 
conditions of section 2.

8.  Conclusion

Generating functions involving GH2DP are derived by   
Weisner’s group-theoretic method. Certain known or 
new generating relations to some classical orthogonal 
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polynomials are discussed as special cases which come 
out many problems in different fields of the fundamental 
performance metrics of wireless communications 
systems by the common classical special functions. The 
application of this GH2DP is to develop and design high 
performance communication systems is the further scope 
of  this research.
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