The Fibonacci Quarterly 1975 (13,2): 129-133
 NOTE ON SOME GENERATING FUNCTIONS

L. CARLITZ*

Duke University, Durham, North Carolina 27706

1. In a recent paper in this Quarterly, Bruckman [2] defined a sequence of positive integers B_{k} by means of

$$
\begin{equation*}
(1-x)^{-1}(1+x)^{-1 / 2}=\sum_{k=0}^{\infty} B_{k} \frac{x^{k}}{2^{k} \cdot k!} . \tag{1.1}
\end{equation*}
$$

This is equivalent to the recurrence
(1.2)

$$
B_{k}=B_{k-1}+(2 k-1)(2 k-2) B_{k-2} \quad(k \geqslant 2), \quad B_{0}=B_{1}=1 .
$$

Making use of (1.2) he showed that

$$
\begin{equation*}
e^{x^{2} / 2} \int_{0}^{x} e^{-u^{2}} d u=\sum_{k=0}^{\infty} B_{k} \frac{x^{2 k+1}}{(2 k+1)!} \tag{1.3}
\end{equation*}
$$

and
(1.4)

$$
\left(1-x^{2}\right)^{-1} \arctan x=\sum_{k=0}^{\infty} B_{k}^{2} \frac{x^{2 k+1}}{(2 k+1)!}
$$

Bateman [1] has discussed the polynomial $g_{n}(y, z)$ defined by
(1.5)

$$
(1+x)^{y+z}(1-x)^{-y}=\sum_{n=0}^{\infty} x^{n} g_{n}(y, z) ;
$$

see also [3]. On the other hand the Jacobi polynomial [6, Ch. 16]

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(x)=\sum_{k=0}^{n}\binom{a+n}{n-k}\binom{\beta+n}{k}\left(\frac{x-1}{2}\right)^{k}\left(\frac{x+1}{2}\right)^{n-k} \tag{1.6}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\sum_{n=0}^{\infty} P_{n}^{(\alpha-n, \beta-n)}(x) z^{n}=\left(1+\frac{x+1}{2} z\right)^{\alpha}\left(1+\frac{x-1}{2} z\right)^{\beta} \tag{1.7}
\end{equation*}
$$

and in particular, for $x=0$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{n}^{(\alpha-n, \beta-n)}(0) z^{n}=(1+1 / 2 z)^{\alpha}(1-1 / 2 z)^{\beta} \tag{1.8}
\end{equation*}
$$

It follows from (1.1) and (1.8) that

$$
\begin{equation*}
\frac{1}{k!} B_{k}=2^{2 k} P_{k}^{(-1 / 2-k,-1-k)}(0)=(-1)^{k} 2^{2 k} P_{k}^{(-1-k,-1 / 2-k)}(0) \tag{1.9}
\end{equation*}
$$

We shall show that both (1.3) and (1.4) can be generalized considerably. We also obtain the following congruence for B_{n} :

[^0](1.10)
$$
\sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} B_{n+s m^{\prime} B(r-s) m} \equiv 0\left(\bmod r 1 m^{r}\right)
$$
where m and r are arbitrary positive integers.
It would be of interest to find a combinatorial interpretation of B_{k}.
2. The writer [4] has obtained the following bilinear generating function:
\[

$$
\begin{align*}
\sum_{n=0}^{\infty} & \frac{n!}{(\gamma)_{n}}(x-1)^{n}(y-1)^{n} w^{n} P_{n}^{(\alpha-n,-\alpha-\gamma-n)}\left(\frac{x+1}{x-1}\right) P_{n}^{(\beta-n,-\beta-\gamma-n)}\left(\frac{\gamma+1}{y-1}\right) \tag{2.1}\\
& =(1-w)^{-\alpha-\beta-\gamma}(1-x w)^{\alpha}(1-y w)^{\beta} F\left[-a,-\beta ; \gamma ; \frac{(x-1)(y-1) w}{(1-x w)(1-\gamma w)}\right]
\end{align*}
$$
\]

$$
F(z, b ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{n!(c)_{n}} z^{n} \quad \text { and } \quad(a)_{n}=a(a+1) \ldots(a+n-1), \quad(a)_{0}=1 .
$$

In particular, for $x=y=-1$ and $\gamma=-\alpha-\beta$, Eq. (2.1) reduces to
(2.2) $\sum_{n=0}^{\infty} \frac{n!}{(-a-\beta)_{n}} 4^{n} w^{n} P_{n}^{(\alpha-n, \beta-n)}(0) P_{n}^{(\beta-n, \alpha-n)}(0)=(1+w)^{\alpha+\beta} F\left[-a,-\beta ;-a-\beta ; \frac{4 w}{(1+w)^{2}}\right]$.

It is convenient to replace α, β by $-a,-\beta$, so that (2.2) becomes

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{n!}{(a+\beta)_{n}} 4^{n} w^{n} P_{n}^{(-\alpha-n,-\beta-n)}(0) P_{n}^{(-\beta-n,-\alpha-n)}(0)=(1+w)^{-\alpha-\beta} F\left[a, \beta ; a+\beta ; \frac{4 w}{(1+w)^{2}}\right] \tag{2.3}
\end{equation*}
$$

Specializing further, we take $\beta=\alpha+1 / 2$, so that

$$
\begin{align*}
& \begin{aligned}
\sum_{n=0}^{\infty} & \frac{n!}{(2 a+1 / 2 / 2)_{n}} 4^{n} w^{n} P_{n}^{(-\alpha-n,-\alpha-1 / 2-n)}(0) P_{n}^{(-\alpha-1 / 2-n,-\alpha-n)}(0) \\
& =(1+w)^{-2} a^{-3 / 2} F\left[a, a+1 / 2 ; 2 a+1 / 2, \frac{4 w}{(1+w)^{2}}\right] .
\end{aligned} \tag{2.4}
\end{align*}
$$

Next in formula (2) of [6, p. 66],

$$
F\left[1 / 2 a, 1 / 2 a+1 / 2 ; a-b+1 ; \frac{4 z}{(1+z)^{2}}\right]=(1+z)^{a} F[a, b ; a-b+1 ; z]
$$

take $a=2 a, b=1 / 2$. We get

$$
\begin{equation*}
F\left[a, a+1 / 2 ; 2 a+1 / 2 ; \frac{4 z}{(1+z)^{2}}\right]=(1+z)^{2} F[2 a, 1 / 2 ; 2 a+1 / 2 ; z] . \tag{2.5}
\end{equation*}
$$

Hence (2.4) becomes
(2.6) $\quad \sum_{n=0}^{\infty} \frac{n!}{(2 a+1 / 2)_{n}} 4^{n} w^{n} P_{n}^{(-\alpha-n,-\alpha-1 / 2-n)}(0) P_{n}^{(-\alpha-1 / 2-n,-\alpha-n)}(0)=(1+w)^{-1 / 2} F[2 a, 1 / 2 ; 2 a+1 / 2, w]$.

Since

$$
P_{n}^{(\alpha, \beta)}(x)=(-1)^{n} P_{n}^{(\beta, \alpha)}(-x),
$$

(2.6) may be written in the form

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{n!}{(2 a+1 / 2)_{n}} 4^{n} w^{n}\left\{p_{n}^{(-\alpha-n,-\alpha-1 / 2-n)}(0)\right\}^{2}=(1-w)^{-1 / 2} F[2 a, 1 / 2 ; 2 a+1 / 2 ;-w] \tag{2.7}
\end{equation*}
$$

In particular, for $a=1 / 2$, it follows from (2.7) and (1.9) that

$$
\sum_{n=0}^{\infty} \frac{2^{-2 n} w^{n}}{n!(3 / 2)_{n}} B_{n}^{2}=(1-w)^{-1 / 2} F(1,1 / 2 ; 3 / 2 ;-w)
$$

Replacing w by z^{2}, this becomes

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)!} B_{n}^{2}=z\left(1-z^{2}\right)^{-1 / 2} F\left[1,1 / 2 ; 3 / 2 ;-z^{2}\right] \tag{2.8}
\end{equation*}
$$

Since

$$
z F\left[1,1 / 2 ; 3 / 2 ;-z^{2}\right]=\sum_{n=0}^{\infty}(-1)^{n} \frac{(1 / 2)_{n}}{(3 / 2)_{n}} z^{2 n+1}=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{2 n+1}=\arctan z
$$

it is evident that (2.8) is the same as (1.4).
3. In (2.1) take $x=-1, y=0, \gamma=-a-\beta$. Since, by (1.6),

$$
P_{n}^{(\beta-n, \alpha-n)}(-1)=\binom{a}{n},
$$

it is clear that (2.1) reduces to

$$
\sum_{n=0}^{\infty} \frac{n l}{(-a-\beta)_{n}}\binom{a}{n} 2^{n} w^{n} p_{n}^{(\alpha-n, \beta-n)}(0)=(1+w)^{\alpha} F\left[-a,-\beta ;-a-\beta ; \frac{2 w}{1+w}\right]
$$

Replacing a, β by $-a,-\beta$, this becomes

$$
\begin{equation*}
\sum_{n=0}^{\infty}(-1)^{n} \frac{(a)_{n}}{(a+\beta)_{n}} 2^{n} w^{n} P_{n}^{(-\alpha-n,-\beta-n)}(0)=(1+w)^{-\alpha} F\left[a, \beta ; a+\beta ; \frac{2 w}{1+w}\right] \tag{3.1}
\end{equation*}
$$

In particular, for $\beta=1 / 2$, we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(a)_{n}}{(a+1 / 2)_{n}} 2^{n} z^{n} P_{n}^{(-\alpha-n,-1 / 2-n)}(0)=(1-z)^{-\alpha} F\left[a, 1 / 2 ; a+1 / 2 ; \frac{-2 z}{1-z}\right] \tag{3.2}
\end{equation*}
$$

For $a=1$, Eq. (3.2) becomes

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n}(3 / 2)_{n}} B_{k}=(1-z)^{-1} F\left[1,1 / 2 ; 3 / 2 ;-\frac{2 z}{1-z}\right] \tag{3.3}
\end{equation*}
$$

This is not the same as (1.3).
The right-hand side of (3.2) is equal to
$\sum_{r=0}^{\infty} \frac{(a)_{r}(1 / 2)_{r}}{r!(a+1 / 2)_{r}}(-2 z)^{r}(1-z)^{-\alpha-r}=\sum_{r=0}^{\infty} \frac{(a)_{r}(1 / 2)_{r}}{r!(a+1 / 2)_{r}}(-2 z)^{r} \sum_{s=0}^{\infty} \frac{(a+r)_{s}}{s!} z^{s}$

$$
=\sum_{n=0}^{\infty}(a)_{n} z^{n} \sum_{r=0}^{n}(-2)^{r} \frac{(1 / 2)_{r}}{r!(n-r) /(a+1 / 2)_{r}}
$$

Hence (3.2) implies

$$
\sum_{n=0}^{\infty} \frac{2^{n} z^{n}}{(+1 / 2)_{n}} P_{n}^{(-\alpha-n,-1 / 2-n)}(0)=\sum_{n=0}^{\infty} z^{n} \sum_{r=0}^{n}(-2)^{r} \frac{(1 / 2)_{r}}{r!(n-r)!(a+1 / 2)_{r}}=\sum_{r=0}^{\infty} \frac{(1 / 2)_{r}(-2 z)^{r}}{r!(a+1 / 2)_{r}} \sum_{n=r}^{\infty} \frac{z^{n-r}}{(n-r)!},
$$

so that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{2^{n}}{(a+1 / 2)_{n}} P_{n}^{(-\alpha-n,-1 / 2-n)}(0)=e^{1 / 2 z} \sum_{r=0}^{\infty} \frac{(1 / 2)_{r}(-z)^{r}}{r!(a+1 / 2)_{r}} \tag{3.4}
\end{equation*}
$$

For $a=1$, Eq. (3.4) reduces to (1.3).
4. Put
(4.1)

$$
(1-x)^{\alpha}(1+x)^{\beta}=\sum_{n=0}^{\infty} c_{n}\left(a_{1} \beta\right) x^{n}
$$

Then

$$
\begin{aligned}
\sum_{m, n=0}^{\infty} c_{m}(a, \beta) c_{n}(a, \beta) x^{m} y^{n} & =(1-x)^{\alpha}(1-y)^{\alpha}(1+x)^{\beta}(1+y)^{\beta}=(1+x y-x-y)^{\alpha}(1+x y+x+y)^{\beta} \\
& =(1+x y)^{\alpha+\beta}\left(1-\frac{x+y}{1+x y}\right)^{\alpha}\left(1+\frac{x+y}{1+x y}\right)^{\beta} \\
& =(1+x y)^{\alpha+\beta} \sum_{k=0}^{\infty} c_{k}(a, \beta)\left(\frac{x+y}{1+x y}\right)^{k} \\
& =\sum_{k=0}^{\infty} c_{k}(a, \beta) \sum_{s=0}^{k}\binom{k}{s} x^{s} y^{k-s} \sum_{r=0}^{\infty}\binom{\alpha+\beta-k}{t} x^{t} y^{t} \\
& =\sum_{m, n=0}^{\infty} x^{m} y^{n} \sum_{\substack{s+t=m \\
k-s+t=n}}\binom{k}{s}\binom{\alpha+\beta-k}{t} c_{k}(a, \beta) .
\end{aligned}
$$

It follows that
(4.2)

$$
c_{m}(\alpha, \beta) c_{n}(a, \beta)=\sum_{t=0}^{\min (m, n)}\binom{m+n-2 t}{m-t}\binom{\alpha+\beta-m-n+2 t}{t} c_{m+n-2 t}(a, \beta)
$$

The proof follows Kaluza [6] ; see also [3].
Comparing (4.1) with (1.1), we have

$$
\begin{equation*}
B_{k}=2^{k} \cdot k!c_{k}(-1,-1 / 2) \tag{4.3}
\end{equation*}
$$

Thus (4.2) implies

$$
\begin{equation*}
B_{m} B_{n}=\sum_{t=0}^{\min (m, n)}(-1)^{t} 2^{t}\binom{m}{t}\binom{n}{t} t!\prod_{j=0}^{t-1}(2 m+2 n-2 t-2 j+1) B_{m+n-2 t} \tag{4.4}
\end{equation*}
$$

For $m=1$, Eq. (4.4) reduces to (1.2). It is not difficult to prove (4.4) by induction.
The writer has proved the following result [5].
Let $f(n), g(n)$ denote pelynomials in n with integral coefficients. Define u_{n} by means of
(4.5)

$$
u_{n+1}=f(n) u_{n}+g(n) u_{n-1} \quad(n \geqslant 1),
$$

where
(4.6) $\quad u_{0}=1, \quad u_{1}=f(0), \quad g(0)=0$.

Then u_{n} satisfies the following congruence:
(4.7)

$$
\Delta^{2 r} u_{n} \equiv \Delta^{2 r-1} u_{n} \equiv 0\left(\bmod m^{r}\right)
$$

for all $m \geqslant 1, n \geqslant 0, r \geqslant 1$, where

$$
\Delta^{r} u_{n}=\sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} u_{n+s m} u_{(r-s) m}
$$

Comparing (4.5) with

$$
B_{n+1}=B_{n}+2 n(2 n+1) B_{n-1},
$$

it is clear that (4.6) holds. We have therefore

$$
\left.\sum_{s=0}^{r}(-1)^{r-s}: \begin{array}{l:l}
r \tag{4.8}
\end{array}\right) B_{n+s m} B(r-s) m \equiv 0\left(\bmod m^{[(r+1) / 2]}\right) .
$$

However a better result can be obtained. By (4.4) we have

$$
\begin{aligned}
& \sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} B_{n+s m} B(r-s) m=\sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} \sum_{t}(-1)^{t} 2^{t}\binom{n+s m}{t}\binom{(r-s) m}{t} t!\cdot \prod_{j=0}^{t-1} \\
& \quad \cdot(2 n+2 r m-2 t-2 j+1) \cdot B_{n+r m-2 t}=\sum_{t}(-1)^{t} \frac{2^{t}}{t!} B_{n+r m-2 t} \prod_{j=0}^{t-1}(2 n+2 r m-2 t-2 j+1) \\
& \quad \cdot \sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} f(s), \\
& \text { where }
\end{aligned}
$$

$$
f(s)=(n+s m-t+1)_{t}((r-s) m-t+1)_{t}
$$

Clearly

$$
f(s)=a_{0}+a_{1} s m+\cdots+a_{2 t}(s m)^{2 t}
$$

where the a_{i} are integers. Then

$$
\sum_{s=0}^{r}(-\eta)^{r-s}\binom{r}{s} f(s)=\sum_{i=r}^{2 t} a_{i} m^{2 i} \Delta^{r} 0^{i} \equiv 0\left(\bmod r!m^{r}\right)
$$

Since

$$
\frac{2^{t}}{t!} \prod_{j=0}^{t}(2 n+2 r m-2 t-2 j+1)
$$

is integral, it follows at once that

$$
\sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} B_{n+s m} B_{(r-s) m} \equiv 0\left(\bmod r / m^{r}\right)
$$

REFERENCES

1. H. Bateman, "The Polynomial of Mittag-Leffler," Proc. Nat. Acad. Sci., USA, 26 (1946), pp. 491-496.
2. P.S. Bruckman, "An Interesting Sequence of Numbers Derived from Various Generating Functions," The Fibonacci Quarterly, Vol. 10, No. 2 (April 1972), pp. 169-181.
3. L. Carlitz, "A Special Functional Equation," Riv. Mat., Univ. Parma, 7 (1956), pp. 211-233.
4. L. Carlitz, "A Bilinear Generating Function for the Jacobi Polynomials," Bolletino Unione Matematica Italiana (3), 18 (1963), pp. 87-89.
5. L. Carlitz, "Congruence Properties of the Polynomials of Hermite, Laguerre and Legendre," Math. Zeitschrift, 59 (1954), pp. 474-483.
6. Th. Kaluza, "Elementarer Beweis einer Vermutung von K. Friedrichs," Mathematische Zeitschrift, 37 (1933), pp. 689-697.
7. E.D. Rainville, Special Functions, Macmillan, New York, 1960.

[^0]: *Supported in part by NSF Grant No. GP-17031.

