
23 11

Article 03.1.2
Journal of Integer Sequences, Vol. 6 (2003),2

3

6

1

47

Derangements and Applications

Mehdi Hassani

Department of Mathematics
Institute for Advanced Studies in Basic Sciences

Zanjan, Iran
mhassani@iasbs.ac.ir

Abstract

In this paper we introduce some formulas for the number of derangements. Then we

define the derangement function and use the software package MAPLE to obtain some

integrals related to the incomplete gamma function and also to some hypergeometric

summations.

1 Introduction and motivation

A permutation of Sn = {1, 2, 3, · · · , n} that has no fixed points is a derangement of Sn. Let
Dn denote the number of derangements of Sn. It is well-known that

Dn = n!
n
∑

i=0

(−1)i

i!
, (1)

Dn = ‖
n!

e
‖ (‖ ‖ denotes the nearest integer). (2)

We can rewrite (2) as follows:

Dn = b
n!

e
+

1

2
c.

We can generalize the above formula replacing 1
2
by every m ∈ [1

3
, 1

2
]. In fact we have:
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Theorem 1.1 Suppose n ≥ 1 is an integer, we have

Dn =

{

bn!
e
+ m1c, n is odd,m1 ∈ [0, 1

2
];

bn!
e
+ m2c, n is even,m2 ∈ [1

3
, 1].

(3)

For a proof of this theorem, see Hassani [3]. At the end of the next section we give
another proof of it.

On the other hand, the idea of proving (2) leads to a family of formulas for the number
of derangements, as follows: we have

|
n!

e
−Dn| ≤

1

(n + 1)
+

1

(n + 1)(n + 2)
+

1

(n + 1)(n + 2)(n + 3)
+ · · · .

Let M(n) denote the right side of above inequality. We have

M(n) <
1

(n + 1)
+

1

(n + 1)2
+ · · · =

1

n
,

and therefore

Dn = b
n!

e
+

1

n
c (n ≥ 2). (4)

Also we can get a better bound for M(n) as follows

M(n) <
1

n + 1
(1 +

1

(n + 2)
+

1

(n + 2)2
+ · · · ) =

n + 2

(n + 1)2
,

and similarly

Dn = b
n!

e
+

n + 2

(n + 1)2
c (n ≥ 2). (5)

The above idea is extensible, but before extending we recall a useful formula (see [2, 3]). For
every positive integer n ≥ 1, we have

n
∑

i=0

n!

i!
= ben!c. (6)

2 New families and some other formulas

Theorem 2.1 Suppose m is an integer and m ≥ 3. The number of derangements of n

distinct objects (n ≥ 2) is

Dn = b(
be(n + m− 2)!c

(n + m− 2)!
+

n + m

(n + m− 1)(n + m− 1)!
+ e−1)n!c − ben!c. (7)
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Proof: For m ≥ 3 we have

|
n!

e
−Dn| <

1

(n + 1)
(1 +

1

(n + 2)
(· · · 1 +

1

(n + m− 1)
(

n + m

n + m− 1
) · · · )).

Let Mm(n) denote the right side of the above inequality; we have

(n + 1)(n + 2)(n + 3) · · · (n + m− 1)Mm(n) =

(n + 2)(n + 3) · · · (n + m− 1) + (n + 3) · · · (n + m− 1) + · · ·+ (n + m− 1) +
n + m

n + m− 1
,

and dividing by (n + 1)(n + 2)(n + 3) · · · (n + m− 1) we obtain

Mm(n) = n!(
n + m

(n + m− 1)(n + m− 1)!
+

n+m−2
∑

i=n+1

1

i!
).

Therefore

Dn = b
n!

e
+ n!(

n + m

(n + m− 1)(n + m− 1)!
+

n+m−2
∑

i=n+1

1

i!
)c. (8)

Now consider (6) and rewrite (8) by using
∑n+m−2

i=n+1
1
i!
=
∑n+m−2

i=0
1
i!
−
∑n

i=0
1
i!
. The proof is

complete.

Corollary 2.2 For n ≥ 2, we have

Dn = b(e + e−1)n!c − ben!c. (9)

Proof: We give two proofs.
Method 1. Because (7) holds for all m ≥ 3, we have

Dn = lim
m→∞

b(
be(n + m− 2)!c

(n + m− 2)!
+

n + m

(n + m− 1)(n + m− 1)!
+ e−1)n!c − ben!c

= b(e + e−1)n!c − ben!c.

Method 2. By using (6), we have

M(n) = n!(e−
n
∑

i=0

1

i!
) = en!− ben!c = {en!} (n ≥ 1, { } denotes the fractional part),

and the proof follows.

Now
lim

m→∞
Mm(n) = M(n),

and if we put M1(n) =
1
n
and M2(n) =

n+2
(n+1)2

(see formulas (4) and (5)), then

Mm+1(n) < Mm(n) (n ≥ 1).

Now we find bounds sharper than {en!} for e−1n!−Dn and consequently another family
of formulas for Dn. This family is an extension of (9).
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Theorem 2.3 Suppose m is an integer and m ≥ 1. The number of derangements of n

distinct objects (n ≥ 2) is

Dn = b(
{e(n + 2m)!}

(n + 2m)!
+

m
∑

i=1

n + 2i− 1

(n + 2i)!
+ e−1)n!c. (10)

Proof: Since m ≥ 1 we have

e−1n!−Dn

(−1)n+1
= n!

∞
∑

i=1

(
1

(n + 2i− 1)!
−

1

(n + 2i)!
) < n!(

m
∑

i=1

n + 2i− 1

(n + 2i)!
+

∞
∑

i=2m+1

1

(n + i)!
).

Let Nm(n) denote the right member of above inequality. Considering (6), we have

Nm(n) = n!(
m
∑

i=1

n + 2i− 1

(n + 2i)!
+
{e(n + 2m)!}

(n + 2m)!
),

and for (n ≥ 2), Dn = be−1n! + Nm(n)c. This completes the proof.

Corollary 2.4 For all integers m,n ≥ 1, we have

Nm+1(n) < Nm(n), N1(n) < {en!}.

Therefore we have the following chain of bounds for |n!
e
−Dn|

|
n!

e
−Dn| < · · · < N2(n) < N1(n) < {en!} < · · · < M2(n) < M1(n) < 1 (n ≥ 2).

Question 1. Can we find the following limit?

lim
m→∞

Nm(n).

Before going to the next section we give our proof of Theorem 1. The idea of present proof
is hidden in Apostol’s analysis [1], where he proved the irrationality of e by using (11). And
now,

Proof: (Proof of Theorem 1) Suppose k ≥ 1 be an integer, we have

0 <
1

e
−

2k−1
∑

i=0

(−1)i

i!
<

1

(2k)!
(11)

so, for every m1, we have

m1 <
(2k − 1)!

e
+ m1 −

2k−1
∑

i=0

(−1)i(2k − 1)!

i!
< m1 +

1

2
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if 0 ≤ m1 ≤
1
2
, then

2k−1
∑

i=0

(−1)i(2k − 1)!

i!
= b

(2k − 1)!

e
+ m1c.

Similarly since (11), for every m2 we have

m2 − 1 <
(2k)!

e
+ m2 −

2k
∑

i=0

(−1)i(2k)!

i!
< m2.

Now, if m2 ≥
1
3
, then

0 <
(2k)!

e
+ m2 −

2k
∑

i=0

(−1)i(2k)!

i!

therefore, if 1
3
≤ m2 ≤ 1, we obtain

2k
∑

i=0

(−1)i(2k)!

i!
= b

(2k)!

e
+ m2c.

This completes the proof.

In the next section there are some applications of the proven results.

3 The derangement function, incomplete gamma and

hypergeometric functions

Let’s find other formulas for Dn. The computer algebra program MAPLE yields that

Dn = (−1)nhypergeom([1,−n], [ ], 1),

and
Dn = e−1Γ(n + 1,−1),

where hypergeom([1,−n], [ ], 1) is MAPLE’s notation for a hypergeometric function. More
generally, hypergeom([a1 a2 · · · ap], [b1 b2 · · · bq], x) is defined as follows (see [4]),

pFq

[

a1 a2 · · · ap

b1 b2 · · · bq
;x

]

=
∑

k≥0

tkx
k

where
tk+1

tk
=

(k + a1)(k + a2) · · · (k + ap)

(k + b1)(k + b2) · · · (k + bq)(k + 1)
x.

Also Γ(n + 1,−1) is an incomplete gamma function and generally defined as follows:

Γ(a, z) =

∫ ∞

z

e−tta−1dt (Re(a) > 0),
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Now, because we know the value of Dn, we can estimate some summations and integrals.
To do this, we define the derangement function, a natural generalization of derangements,
denoted by Dn(x), for every integer n ≥ 0 and every real x as follows:

Dn(x) =

{

n!
∑n

i=0
xi

i!
, x 6= 0;

n!, x = 0.

It is easy to obtain the following generalized recursive relations:

Dn(x) = (x+n)Dn−1(x)−x(n−1)Dn−2(x) = xn+nDn−1(x), (D0(x) = 1, D1(x) = x+1).

Note that Dn(x) is a nice polynomial. Its value for x = −1 is Dn, for x = 0 is the number
of permutations of n distinct objects and for x = 1 is wn+2 = the number of distinct paths
between every pair of vertices in a complete graph on n + 2 vertices, and

Dn(1) = ben!c (n ≥ 1), (see [3]).

A natural question is

Question 2. Is there any combinatorial meaning for the value of Dn(x) for other values of x?

The above definitions yield

Dn(x) = xn
2F0

[

1 −n

−
;−

1

x

]

(x 6= 0),

and

Dn(x) = exΓ(n + 1, x). (12)

We obtain

2F0

[

1 −n

−
;−1

]

= ben!c,

and

2F0

[

1 −n

−
; 1

]

= (−1)n
⌊

n! + 1

e

⌋

.

Also we have some corollaries.

Corollary 3.1 For every real x 6= 0 we have

1F1

[

n + 1
n + 2

;−x

]

=
(n + 1)(n!− e−xDn(x))

xn+1
.

Proof: Obvious.



7

Corollary 3.2 For every integer n ≥ 1 we have

∫ ∞

−1

e−ttndt = e

⌊

n! + 1

e

⌋

,

∫ ∞

0

e−ttndt = n!,

∫ ∞

1

e−ttndt =
ben!c

e
,

and
∫ 1

0

e−ttndt =
{en!}

e
,

∫ 0

−1

e−ttndt =

{

−e{n!
e
} n is odd,

e− e{n!
e
} n is even.

∫ 1

−1

e−ttndt = eb(e + e−1)n!c − (e + e−1)ben!c,

Proof: Use relations (3), (6), (9), (12) and the definition of derangement function in the
case x = 0.

Question 3. Are there any similar formulas for 2F0

[

1 −n

−
;− 1

x

]

? In other words, given

any real number x, is there an interval I (dependent on x) such that

n!
n
∑

i=0

xi

i!
= bexn! + mc (m ∈ Ix)?
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