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LAGUERRE POLYNOMIALS, WEIGHTED
DERANGEMENTS, AND POSITIVITY*

DOMINIQUE FOATA AND DORON ZEILBERGER:I:

Abstract. A calculation of the linearization coefficients of the (generalized) Laguerre polynomials
L")(x) is proposed by means of analytic and combinatorial methods. This paper extends to the case of an
arbitrary a a combinatoric and analytic result due to Askey, Ismail, and Koornwinder and Even and Gillis.

Key words. Laguerre polynomials, linearization coefficients, weighted derangements, MacMahon Master
Theorem (/-extension)

AMS(MOS) subject classifications. 33A65, 05A 15

1. Introduction. Let (p,,(x)) be a sequence ofpolynomials, orthogonal with respect
to a weight function w. One of the aspects of the linearization of the product of the
pn(x)’s is the evaluation of integrals of the form

f n,dw,
i=1

for the classical polynomials, such as the Jacobi, Meixner, Charlier, Laguerre, and Hermite
polynomials. What is meant by evaluation is either the determination of a formula for
J in terms of the classical hypergeometric series (see, e.g., the fantastic formula found
by Rahman Ra] for the Jacobi polynomials involving the series 9F8 ), or the geometric
interpretation ofJ as a generating polynomial for some combinatorial objects, such as
permutations or partitions (see, e.g., the present paper for the Laguerre polynomials, or
the article by Zeng Ze] for the Meixner, Krawtchouk, and Charlier polynomials). Of
course, for many problems it is essential that J be positive. In Rahman’s formula, for
instance, all the hypergeometric series involved in the formula are positivethis is the
easy part--the difficult part is the derivation of the formula itself. In the combinatorial
approach the positivity ofJ also appears as a byproduct, the essential part being played
by the construction of the geometric setup for the integral J.

We want to illustrate this in this paper by making a systematic study of integrals of
products of (general) Laguerre polynomials L (x). Recall that those polynomials are
orthogonal with respect to the weight function xe-x over +. They may also be defined
by their generating function

(1.1) L)(x)u"=(1-u)--I exp -x-----U--u.
1-un=0

Let rn be a positive integer, n be a sequence n (n, ..., n) of nonnegative integers,
A be a sequence A (kl, Xm) of real numbers and let A (n; a), B(n; A; a) be the
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integrals

(1.2)

(1.3)

A(n’a) (-1) "’+’’" +"m r (") (x) x"e-dx;ni
i=1

B(n;A;a)= t(nT)(ix) x"e dx.

Also introduce the expressions:

(1.4) J(n;a)=

and

r(O/’+" 1) i=
hi! A(n;a)

(1.5) hi! B(n;A;a).J(n’A;a)=I’(a+ 1)

The first goal of the present paper is to give a combinatorial interpretation to J (n; a)
and J(n; A; a), that is, to show that those two expressions are generating polynomials
for permutations by certain statistics. In particular, J (n; c) will be shown to be the
generating function for a special class of permutations, called m-derangements by the
number of cycles.

To make it more precise let us now define those combinatorial objects. Let A
{ a,, al,n }, Am am, l, am,n,, } be m mutually disjoint finite sets. The
group of the permutations of A A + + Am is denoted by (n). Consider any
permutation belonging to (n). An element ai,j ofAi is said to be (r)-incestuous, if it
is sent by 7r to one of its own kind, i.e., if rr(ai,j) Ai. Denote by Inc; r the set of the
incestuous elements of 7r in A; and let Inc r Y; Inci 7r. If a permutation r has no
incestuous element, (i.e., if r(Ai) N Ai J for all i), it is called an m-derangement.
Denote by (u) the subset of (n) consisting of all the m-derangements. Finally, for
each permutation r in (n) denote by cyc r its number ofcycles and define its (w)-
weight by

W(r)=(c+ 1)cycr.

The first result is the following theorem.
THEOREM 1. For each variable c we have

(1.6) (n;c) Z w(Tr) Z( Or’k- 1) cycr (Tr (n)).

As for the combinatorial interpretation ofJ(n, A; a), introduce another W)-weight
as follows:

m

W(r) w(r) II (1 ki) llncirl(--ki) IAi\Incirl

i=1

The corresponding result for J(n; A; a) is then as follows in Theorem 2.
THEOREM 2. For each variable a we have

(1.7) J(n;A;a)= E W(r) (re (n)).

When A 1 (1, 1, 1), the W-weight reduces to

W(r)={(0-1)’+"’+nw(r ifriSanotherwise.m-derangement,
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Thus, Theorem is just a particular case of Theorem 2. Accordingly, only Theorem 2
will be proved in this paper.

The second goal of this paper is to study the positivity ofo and J. For o it is easy;
the positivity property ofdr (n; a) for a > -1 follows immediately from our combinatorial
interpretation (1.6). As such, it is in no case a new result. It follows from more general
theorems that cover the case of several classical polynomials, including the Laguerre
polynomials (see, e.g., the basic paper by Askey As ], or his monograph As2 ]). The
positivity property can also be proved by means ofa simple analytic argument, as derived
by Askey and As-Is ], As-Is-Ko ], As-Ga]. As they have noted, the generating function
(1.1) yields the following identity:

(1.8) EA(n;a)xT’ xm= F(a+ 1)
(1 e2- 2e3 (m- 1)em)"+ 1,

where n (n, ,nm) runs over all sequences of m nonnegative integers and where
ej denotes the jth elementary symmetric function in x, ..., X The positivity of
J(n; a) for a > -1 is then clear from (1.8).

As far as positivity is concerned, the combinatorial approach derived in this paper
refines the analytic result in the following sense. Not only is o(n; a) shown to be positive,
but it is, in fact, a polynomial in (a + 1) with positive integral coefficients.

When a 0, the integrand in o(n; a) is a product ofsimple Laguerre polynomials
and Theorem implies that o (n; 0) is equal to the number of m-derangements, a result
due to Even and Gillis Ev-Gi ]. Other proofs can be found in Ja and Sa-Vi ]. In As-
Is, pp. 857-858 the authors were very close to finding a combinatorial interpretation of
o(n; a) for an arbitrary a. What was missing in their derivation was an appropriate
extension of the "Master Theorem" of MacMahon Mac, pp. 97-98 ]. It is also the
purpose ofthis paper to state and prove such a theorem (see the/3-extension ofthe Master
Theorem in 3 ). As shown in 5, that/J-extension, together with the calculations made
by Askey and his coauthors, suffice to establish Theorem 2. We also give a truly com-
binatorial proof in 4, after having recorded the material on injection counting in 2.

The positivity of J(n; A; a) for other values of A is more difficult to handle. The
combinatorial interpretation (1.7) brings no evidence of the positivity for an arbitrary
a >-- 0. Koornwinder’s inequality Ko says that when m 3, A (X, X, 1), then

(1.9) a_0, 0=<5, -< J(n, A, a) >= 0.
Also the strict inequality holds when n 0 and 0 < h < 1. Inequality (1.9) is certainly
a deep result. To derive further extensions for m > 3, Askey, Ismail, and Koornwinder
As-Is-Ko] have used the orthogonality property of the Laguerre polynomials and also

the so-called "old expansion" of the same polynomials. As it is (too) easy to prove both
the orthogonality relation and the old expansion by combinatorial methods, we shall not
concern ourselves with the general extension. We shall concentrate on re-proving Koorn-
winder’s inequality (Theorem 3 of 6). The argument developed is very similar to the
one developed by Ismail and Tamhankar Is-Ta] or Gillis and Zeilberger Gi-Ze]. We
may say that the proof of Theorem 3 is the rewriting of the latter authors’ paper using
the spirit and method of the former ones.

2. Cycles. We will need three results that are fundamental in the current combi-
natorial interpretation of special functions. First, the generating function for the set
of all the permutations on n elements by number of cycles is given by (see, e.g., Ri,
p. 781):

(2.1) w(rC’n) w(r)=(a+l),=(a+l)(c+2)’"(c+n).
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Let =< k =< n and S be a (n k)-element subset of the n-element

[n]= { 1;2;... ,n }.

The set of injections from S into n will be denoted by Inj (S, n). An injection from S
to n consists ofa (possibly empty) collection of cycles within S and some simple paths
that wander in S, but terminate at a point outside S. Similarly, denote by eye r the
number of cycles of r and define its weight by w(

For example, if S { 1, 2, 3, 4, 5, 6 } and n 9, then (1, 3), (2), 4 -- 5 -- 7,
6 -- 8 is an injection with weight (a + 1)2.

The result analogous to (2.1) reads (see Fo-St, Lemma 2.1]) as follows: if card
S n- k, then

(2.2) w(Inj (S, n)) Z w(r) (a+ +k),-k (rInj (S,n)).

The third result is concerned with the calculation of the generating function for a
particular class ofpermutations ofthe setA A + + Am (see the notation introduced
in 1). For each 1, m let Ti be a given subset ofAi of cardinality (hi ki) and
denote by (T c Inc) the set of all permutations r ofA satisfying Ti Inci r for all i.

LEMMA. We have

(2.3)
m

w((TInc)) (a+ 1)k,+... +kin/-I (a+ +ki)ni-k,.
i=1

Proof. From (2.1) and (2.2) it follows that the right-hand side of (2.3) is the gen-
erating function for the product (k) ]-I ’= Inj (Ti, ni) by w. To prove the lemma
it then suffices to construct a w-weight preserving bijection r -- (r, -.-, r,,, ) of

(T c Inc) onto that product. Write r in cycle form. Then in each cycle of r delete all
the elements of T T t.J t.J Tm. What remains is a permutation written in cycle
form. Call it r.

To get ri take all the cycles of r consisting only of elements of Ti. Also take the
connected portions of T; lying in other cycles. Doing this will result in a certain number
ofpaths that wander through Ti but terminate in an element not in

Clearly, a belongs to (k) and each 71" is an injection of Si into Ai. Moreover, the
total number of cycles of a, r, ..., 71"m is equal to cyc r. Thus, the mapping is
w-preserving. The reverse construction is immediate.

Example. Take the following"

Then

n 6, n2 6, n3 6,

k 3, kz= 3, k3=3,

T={a,az,a3}, T2 ={b,b2,b3}, T3 ={c,c2,c3},

r aa2) a4bbsasa3 )( bg_b4cc4c3cg_c6 )( c5a6 )( b3 )( b6 ).

a (a4bsa)(b4c,tcr)(CsCr)(br),

a3 a4,

b-- bs, bz" b4,

7r3 el 4, c3 "- c2 "- c6.



WEIGHTED DERANGEMENTS AND POSITIVITY 429

3. The/I-extension ofthe MacMahon Master Theorem. Let Vm be the determinant
det(6ij-b(i,j)xj)(1 <=i,j<-_m). The MacMahon Master Theorem asserts that
the coefficient of x’.. .x in the expansion of V, is equal to the coefficient of
x’...xnm in the product

(3.1) (b(1, 1)xl +"" + b(1,m)Xm)n’" .(b(m, 1)xl +... + b(m,m)Xm)nm.
It will be convenient to restate this statement in a slightly different form. Let (n) denote
the set of all the rearrangements

r=r(1,1).., r(1,nl).., r(m, 1)... r(m,nm)

of the word n mnm and let

v( r) I-I b( i, r( i,j ))
i,j

(1 <-i<=m; <=j<=ni).

Clearly, the coefficient of x" x, in (3.1) is equal to the sum of all the v(r) with r
running over all the rearrangements of n’ m.

Next, consider a permutation r belonging to (n) (defined in 1). If r sends
(i, j) over (i’, j’), write i’ cr(i, j). Furthermore, define

For instance, if

v(r) I-I b( i, cr(i,j))
i,j

(1 <=i<--_m; <-j<=ni).

( a 1,1 a 1,2 a2,1 a2,2 a2,3 a3,1
71-

a2,2 a3,1 a2,3 a2,1 al,2 al,2]

belongs to (2, 3, 1), then, v(r) b(1, 2)b(1, 3)b(2, 2)b(2, 2)b(2, 1)b(3, 1).
To each rearrangement r in (n)there correspond exactly n! r/m[ permutations

r in (n) with the property that v(r) v(r). Therefore, the coefficient of x’’ x,
in (3.1) is also equal to

(3.2) ( v((n)))nil.., nm!
1)(Tr)

(n) nl. rim.

The MacMahon Master identity can then be restated as

(3.3) xTl ..m
nm----.l)((n)) V-nnl-.

Next define the -weight v(; r) of each permutation r in (n) by

(3.4) v(/; r) YCv(r).

THEOREM (-extension of the MacMahon Master Theorem). Thefollowing iden-
tity holds:

(3.5) 2; xT’ x
nm’--.l)(; (n)) V,.nl--

Proof. Consider the partitional complex (see, e.g., Fo ], Fo-Sch of the permu-
tations and denote by c (n) the subset of the connected permutations in (n). As
the weight v(/; is multiplicative [Fo ], Fo-Sch ], the following identity holds:

(3.6) ., xl X’m .mv(; (n)) exp v(; (n))
hi! nm[ nl! nm[
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From (3.3) and (3.6) with/3

nl--". m.l)( cg(n)) -log V

But v(3; r) 3v(r) for every connected permutation, so that

X x’--I xnm I)(; (,(ll)) --t log
hi! nm!

and finally 3.5 holds because of (3.6). [2]

4. A combinatorial proof of Theorem 2. By the definition of the Laguerre poly-
nomials

nil lr(.)(x)= , (_l)ki ni
’-’hi

ki 0 ki
a + + ki )ni kixki m)

In (1.3) and (1.5) expand each Laguerre polynomial and integrate term by term using
the fact that (1 / F (a + 1)) f e-Xxn / dx (a + 1) This leads to:

m

(4.1) J(n;A;a) (a+ 1)k, +... +kin I-[ (--Xi) k’ (a+ +ki)ni-ki,
k ki

where the first summation is over all sequences k (k, km) with 0 =< k =< n,
0 <- km <- nm. From the lemma of 2, J(n; A; a) can also be written as

J(n;A;a)= I-I (--ki) lai\Zil-
T i=1

where the first summation is over all sequences T T, , Tm) such that Tic Ai for
all and the second one over all permutations r satisfying Ti c Inci 7r for all i. Hence,

J(n;A;a)= ] w(r) I-[ (-,i) IA’\rl [with TicIncir]
T i=1

m

E W("IV) H (--Xi) IAi\Incirl E H (-ki) Ilncir\Til [with TiInc;r]
i=1 T i=1

m m

E W(TV) H (--ki)lAi\Incirl H (1-)ki) Ilncirl

i=1 i=1

the binomial identity being used in the last step of that derivation. Thus,

J(n;A;a)= W(r),

which is exactly the statement of Theorem 2.

5. An analytical proof of Theorem 2. There is another way of expressing the W-
weight. For each ordered pair (i, j of integers lying between one and m and each per-
mutation r in (n) let "Yij "Yij(7r) be the number of elements x in Ai that are mapped
into Aj (i.e., ij r(Ai) NAjl). Define the W’-weight of Tr by

(5.1) W’(Tr) w(Tr) ]-I (1 Xi)uI-I (--/)kj)-i,j
i4j
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LEMMA. We have W’ r W(r
Proof. As i,j;i/j ")/’ij i Ilnci rl, it suffices to show that

i,j
#j

For each x A let c(x) i, if and only if x A. Then

H X]Aikincil= H Xc(x) (xA Inc,).
x

For each nonincestuous element x let x* be the nearest nonincestuous element to x in
the following sense. Let k min ( l 1, z(x) A Inc z } and put x* zk(x).
Clearly, x* is uniquely defined and x x* is a bOection ofA Inc z onto itself. Then

Xcx)= fXcx)Xcx.) (xA Inc ).
x x

As c(x*) c(z(x)), we also have

x x i,j
ij

In the notation of 3 take

Xi if i=j,
(5.2) b(i,j)=

_
if ij.

The determinant Vm det (6 b(i, j)xj) has been calculated by Askey et al. As-Is-
Ko, Thm. 4 ]. They showed that a simple induction argument #ves

H X
i=1 i=1 ji

On the other hand, the generating function (1.1) for the Laguee polynomials yields the
identity

(5.4) Z J(n’A;a) x" xn= VL + l)

nil nml

almost immediately, as noticed by the same authors As-Is-Ko, Thm. 2 ]. By comparing
(5.4) with 3.5 ), we conclude that

J(n;A;a) v(a+ 1; (n)).

Finally, expand v( + 1; z) in tes of the b(i,j)’s:

v(a+ 1;z)=(a+ 1)Y b(i,c(i,j))= W’(z).
i,j

Then, Theorem 2 is proved by using the previous lemma.

6. Positivity. As mentioned in the Introduction, the positivity of J(n; A; a) for
m 3 (Koornwinder’s inequality) implies a general result for an arbitraff m by means
of the ohogonality relation and the old expansion of the Laguee polynomials As-Is-
Ko ]. However, that inequality remMns the cciM point. It is next restated and re-proved.

THEOREM 3. Let m 3 and A (Xl X, 2 X, X 1). Then, for a 0
and O X we have J( n, A; a) O.
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Proof. For m 3 the summation Z W(r) in (1.7) becomes

Z W(Tr) Z(o+ 1)cyc 1-1 (1--ki)llncirl(--ki) IAi\Incirl

i=1

where the summation is over the permutations of r of A A + A2 + A3 having no
incestuous elements in A3 (because k 1). AS in 5 let "Yij 17r(Ai) f’) AI be the
number of elements that go from A; to A. The sign of the W-weight of r is equal to

(), where

S(71") ,Y12 - ,Y13 --’,21 --,Y23-I-,Y31 +’Y32 2(n d- n3--’Yll)-- (’)13 -’Y31).

Thus

(6.1) sgn W(r) (- 1) y’3 + ’
Furthermore, the exponent of X in W(r) is equal to

"YI2 -[- "Y13 -[" "Y22 n2-- n3 + "Y3 + ’Y3,

while the exponent of , is equal to 3’ + 3’ + ’)’23 n + n3 ’3 "r3. Hence

(6.2) W(r) (a + 1)Y(- 1)t3 + 3 XT’-" +3 + X +"-3-3

Thus, when a 0, the weight W(r) depends only on 3’3 an 3’3. Assume that a 0
and compute the number of permutations r such that ’3 a and 3’3 b. This is easy
if we have in mind the representation of each permutation as a two-line matrix. The
number of ways of placing the elements of the set r(A) A3 and 7r(A2) O A3 is equal
to "d n3

3 a) n3!. In the same manner, n3
"3 b) n3! is the number of ways of placing the

elements of r(A3) f3 A and r(A3) Az. There remain (n + n2 n3)! positions for the
other elements to be placed. Thus,

n3! n3!
a,b a n3-a b n3-b

n + n2 n3) !,7- n3 + a+ b,,] + n3-a- b

(n3!)2,n-n+n3(n + n2-- n3)!

( a(n’)(a n3-n2a)(-l’a(’]a)z22]
This proves Koornwinder’s inequality for a 0.

For an arbitrary a > 0 let us make use again of the argument of Gillis, Reznick,
and Zeilberger Gi-Re-Ze, Prop. ]. The determinant V3 corresponding to the previous
W is easy to calculate, either directly, or by means of (5.3)"

V X2x klX2-X3 klX - kEX2-XlX2].

Put X zx )x and Y Xx + Xzx2 xx2, so that V3 X- x3Y. Hence

V( + ) X-( + )[ x3YX-]-+ )

=X_aE (a+l)r yr
r! X + xr3"
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But V (X- x3Y) -1 -r (Y r/xr+ 1)x has positive coefficients. This is another way
of saying that Koornwinder’s inequality holds for a 0. Hence the same inequality is
true for every a >_- 0.

Remark. The idea of expressing the summation W(r) for a 0 as a square of
a polynomial is basically due to Ismail and Tamhankar Is-Ta ], even though they made
their calculations with the determinant V3 itself. The proof given above is only an ad-
aptation of the derivation of Gillis and Zeilberger Gi-Ze to the permutation combi-
natorial set-up developed in this paper.

Acknowledgment. The first author thanks Jiang Zeng for bringing his attention to
the fact that Theorem is just a particular case of Theorem 2.
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