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Abstract

We provide an algebraic setting for cumulants and factorial moments via the classical umbral
calculus. Our main tools are the compositional inverse of the unity umbra, this being related to
logarithmic power series, and a new umbra here introduced, the singleton umbra. We develop
formulae that express cumulants, factorial moments and central moments as umbral functions.
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principaux sont l’inverse compositionnel de l’ombre unité, lié à la série formelle logarithmique, et
un nouvel ombre, ici présenté, l’ombre singleton. De diverses formules sont données exprimant les
cumulants, les moments factoriels et les moments centraux par des fonctions ombral.
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1. Introduction

The main purpose of this paper is to show how the classical umbral calculus provides
a precision algebraic tool for handling cumulants and factorial moments. The classical
umbral calculus consists of a symbolic technique to deal with sequences of numbersan

indexed by nonnegative integersn = 0,1,2,3, . . .: the subscripts are treated as if they were
powers. This technique has been used extensively since the nineteenth century, despite
wide-spread scepticism on the part of the mathematical community, which criticized its
lack of rigorous foundations. To the best of our knowledge, the umbral method was first
proposed by Rev. John Blissard in a series of papers from 1861 (cf. [5] for the full list of
papers). It is however impossible to give full credit to Blissard for the original idea, since
Blissard’s calculus has its mathematical roots in symbolic differentiation. In the thirties,
Bell [1] reviewed the whole subject in several papers, restoring the purport of Blissard’s
idea. In [2] he tried to give a rigorous foundation to the mystery at the center of the umbral
calculus, but his attempt did not gain a following. In fact, in the first modern textbook
of combinatorics [11], Riordan often employed this symbolic method without giving any
formal justification. Gian-Carlo Rota was the first to disclose the “umbral magic art” of
shifting from an to an, bringing to light the underlying linear functional (cf. [14]). This
idea led Rota and his collaborators to conceive a beautiful theory (cf. [9,13]) which has led
to a large variety of applications (see [4] for a list of papers updated to 2000). Some years
later, Roman and Rota [12] gave rigorous form to the umbral tricks in the setting of Hopf
algebra (see also [8]). In 1994, however, Rota himself wrote (cf. [18]):

“. . . Alt hough the notation of Hopf algebra satisfied the most ardent advocate of
spic-and-span rigor, the translation of “classical” umbral calculus into the newly
found rigorous language made the method altogether unwieldy and unmanageable.
Not only was the eerie feeling of witchcraft lost in the translation, but, after such
a translation, the use of calculus to simplify computation and sharpen our intuition
was lost by the wayside . . . ”

Then, in the paper [18] The Classical Umbral Calculus (1994) Rota and Taylor try to
restore the feeling intended by the founders of the umbral calculus, introducing notation
indispensable to avoiding the misunderstandings of the past, yet keeping such new notation
to a minimum. In this new setting, the basic device is to represent a unital sequence of
numbers by a symbolα, named umbra, that is, to associate the sequence 1, a1, a2, . . . to the
sequence 1, α, α2, . . . of powers ofα through an operatorE that resembles the expectation
operator of random variables (r.v.’s). This new way of dealing with sequences of numbers
has been applied to combinatorial and algebraic subjects (cf. [17,23,7]), wavelet theory
(cf. [19]) and difference equations (cf. [24]). It has also led to a finely adapted language
for r.v. theory, as shown in [16,5].

The present work is inspired by this last point of view. As a matter of fact, an umbra
carries the structure of a random variable (r.v.), while making no reference to a probability
space, bringing us thus closer to statistical methods. The use of symbolic methods in
statistics is not, however, a novelty. For instance, Stuart and Ord [22] resort to such
a technique in handling moments about a point. Furthermore, in the umbral calculus,



396 E. Di Nardo, D. Senato / European Journal of Combinatorics 27 (2006) 394–413

questions concerning convergence of series are not materiel, as we show below when
dealing with cumulants.

Among the sequences of numbers related to r.v.’s, cumulants play a central role,
characterizing all r.v.’s occurring in the classical stochastic processes. For instance, a
r.v. having Poisson distribution of parameterx is the unique probability distribution for
which all its cumulants are equal tox . It seems therefore that a r.v. is better described
by its cumulants than by its moments. Moreover, due to their properties of additivity
and invariance under translation, the cumulants are not necessarily connected with the
moments of any probability distribution. We can define cumulantsκ j of any sequence
an, n = 1,2,3, . . . by

∞∑
n=0

antn

n! = exp

{ ∞∑
j=1

κ j t j

j !

}

in complete disregard to questions of whether any series converges. Using this approach,
many difficulties related to the “problem of cumulants” are resolved. (The “problem
of cumulants” is to characterize those sequences that are cumulants of probability
distributions.) The simplest example is that the second cumulant of a probability
distribution must always be nonnegative, and is zero only if all of the higher cumulants
are zero. Cumulants are subject to no such constraints when they are analyzed from an
algebraic point of view. What is more, in statistics they do not play any dual role with
respect to factorial moments. The algebraic setting here proposed brings to the light their
close relationship, through an umbral analogy, with the well known complementary notions
of compound and randomized Poisson r.v.’s (cf. [6]).

Umbral notations are introduced by means of r.v. semantics. Our intention is thus to
make the reader comfortable with the umbral system of calculation, in a way that requires
no prior knowledge. We skip some technical proofs of formal matters, for which the reader
is referred via citations.

The novelties of this paper are the following. InSection 2, we introduce new operations
among umbrae such as disjoint sum and disjoint difference, which permit the umbral
representation of r.v. mixtures. InSection 3, we introduce a new umbra, thesingleton
umbra, which plays a role dual to the Bell umbra, introduced in [5]. Their relationship
is encoded by the compositional inverse of the unity umbra, via the Lagrange inversion
formula. The singleton umbra is the keystone of the umbral presentation of cumulants. So,
in Section 4, we give a new and intrinsic definition of cumulant umbra unlike the recursive
definition given by Rota and Shen in [16]. Starting from this definition, we simplify many
results proved in [16]. We also state a very simple inversion theorem which permits us to
generate an umbra from its cumulant. InSection 5, we give the definition of the factorial
umbra of an umbraα and show that its moments are the factorial moments of the umbraα.
We also provide an inversion theorem which permits us to generate an umbra from its
factorial umbra. Such inversion theorems state a new and very simple umbral relationship
between cumulants and factorial moments. In the last two sections, we also give various
umbral formulae for cumulants and factorial moments that parallel those known in
statistics but simplify the proofs as well as the forms. This happens for instance for the



E. Di Nardo, D. Senato / European Journal of Combinatorics 27 (2006) 394–413 397

equations expressing cumulants in terms of moments (and vice versa) and also for their
recursive formulas.

Finally, we would like to remark on the preliminary nature of this paper. Despite the fact
that we have defined all basic tools necessary to develop an umbral theory of cumulants
and factorial moments, several applications remain to be developed. The reader interested
is referred to the section “Problem eleven: cumulants” of the Gian-Carlo Rota’s Fubini
lectureTwelve problems in probability no one likes to bring up (cf. [15]).

2. Umbrae and random variables

In the following, we recall the terminology, notations and some basic definitions of
the classical umbral calculus, as it has been introduced by Rota and Taylor in [18] and
further developed in [5]. Fundamental is the idea of associating a sequence of numbers
1, a2, a3, . . . to an indeterminateα which is then said to “represent” the sequence. This
device is familiar in probability theory, whereai represents thei -th moment of a r.v.X .
In this case, the sequence 1, a1, a2, . . . results from applying the expectation operatorE to
the sequence 1, X, X2, . . . consisting of powers of the r.v.X .

More formally, an umbral calculus consists of the following data:

(a) a setA = {α, β, . . .}, called thealphabet, whose elements are namedumbrae;
(b) a commutative integral domainR whose quotient field is of characteristic zero;
(c) a linear functionalE , called evaluation, defined on the polynomial ringR[A] and

taking values inR such that
(i) E[1] = 1;
(ii) E[αiβ j · · · γ k] = E[αi ]E[β j ] · · · E[γ k] for any set of distinct umbrae inA and

for i, j, . . . , k nonnegative integers (uncorrelation property);
(d) an elementε ∈ A, called augmentation [12], such that E[εn] = δ0,n, for any

nonnegative integern, where

δi, j =
{

1 if i = j
0 if i 
= j

i, j ∈ N;
(e) an elementu ∈ A, calledunity umbra [5], such thatE[un] = 1, for any nonnegative

integern.

A sequencea0 = 1, a1, a2, . . . in R is umbrally represented by an umbraα when

E[αi ] = ai , for i = 0,1,2, . . . .

The elementsai are calledmoments of the umbraα in analogy with r.v. theory. The umbra
ε can be view as a r.v. which takes the value 0 with probability 1 and the umbrau as a
r.v. which takes the value 1 with probability 1. Note that the uncorrelation property among
umbrae parallels the analogous property for r.v.’s, and thatE[αn+k ] 
= E[αn]E[αk].
Example 2.1 (Bell Umbra). TheBell umbra β is the umbra such that

E[(β)n] = 1 n = 0,1,2, . . .

where(β)0 = 1 and(β)n = β(β − 1) · · · (β − n + 1) is the lower factorial. It follows that
E[βn] = Bn whereBn is then-th Bell number (cf. [5]), i.e. the number of partitions of a
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finite nonempty set withn elements, or then-th coefficient in the Taylor series expansion of
the function exp(et − 1). Soβ is the umbral counterpart of a Poisson r.v. with parameter 1.

We callfactorial moments of an umbraα the elements

a(n) =
{

1, n = 0
E[(α)n], n > 0

where(α)n = α(α − 1) · · · (α − n + 1) is the lower factorial. So the definition ofβ in
Example 2.1could be reformulated as follows: the Bell scalar umbra is the umbra whose
factorial moments areb(n) = 1 for any nonnegative integern.

2.1. Similar umbrae and dot-product

The notion of similarity among umbrae comes in handy in order to manipulate
sequences such

n∑
i=0

(
n
i

)
ai an−i , n ∈ N (1)

as moments of umbrae. The sequence (1) cannot be represented by using only the umbraα

with momentsa0 = 1, a1, a2, . . .. Indeed,α being correlated to itself, the productai an−i

cannot be written asE[αiαn−i ]. So we need two distinct umbrae having the same sequence
of moments, as happens for r.v.’s equal in distribution. Therefore, if we choose an umbra
α′ uncorrelated withα but with the same sequence of moments, it is

n∑
i=0

(
n
i

)
ai an−i = E

[
n∑

i=0

(
n
i

)
αi (α′)n−i

]
= E[(α + α′)n]. (2)

Then the sequence (1) represents the moments of the umbra(α + α′). A way to formalize
this matter is to define two equivalence relations among umbrae.

Two umbraeα andγ areumbrally equivalent when

E[α] = E[γ ],
in symbolsα � β. They aresimilar when

αn � γ n, n = 0,1,2, . . .

in symbolsα ≡ γ . We note that equality implies similarity, which implies umbral
equivalence. The converses are false. We shall denote by the symboln.α thedot-product
of n andα, an auxiliary umbra (cf. [18]) similar to the sumα′ + α′′ + · · · + α′′′ where
α′, α′′, . . . , α′′′ are a set ofn distinct umbrae each similar to the umbraα. So the sequence
in (2) is umbrally represented by the umbra 2.α. We assume that 0.α is an umbra similar
to the augmentationε.

We shall hereafter consider the dot product ofn andα as an umbra in its own right,
where wesaturate the alphabetA with sufficiently many umbrae similar to any expression
whatever. For a formal definition of a saturated umbral calculus see [18]. It can be shown
that saturated umbral calculi exist and that every umbral calculus can be embedded in a
saturated umbral calculus.
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The following statements are easily proven:

Proposition 2.2. (i) If n.α ≡ n.β for some integer n 
= 0 then α ≡ β;
(ii) if c ∈ R then n.(cα) ≡ c(n.α) for any nonnegative integer n;
(iii) n.(m.α) ≡ (nm).α ≡ m.(n.α) for any two nonnegative integers n,m;
(iv) (n + m).α ≡ n.α + m.α′ for any two nonnegative integers n,m and any two distinct

umbrae α ≡ α′;
(v) (n.α + n.β) ≡ n.(α + β) for any nonnegative integer n and any two distinct umbrae

α and β.

Two umbraeα andγ are said to beinverse to each other whenα + γ ≡ ε. We denote
the inverse of the umbraα by −1.α′, with α ≡ α′. Recall that, in dealing with a saturated
umbral calculus, the inverse of an umbra is not unique, but any two umbrae inverse to any
given umbra are similar.

Example 2.3 (Uniform Umbra). TheBernoulli umbra (cf. [18]) represents the sequence
of Bernoulli numbersBn such that∑

k≥0

(
n
k

)
Bk = Bn.

The inverse of the Bernoulli umbra is the umbral counterpart of the uniform r.v. over the
interval[0,1] (cf. [23]).

2.2. Generating functions

The formal power series inR[A][[t]]
u +

∑
n≥1

αn tn

n! (3)

is thegenerating function (g.f.) of the umbraα, and it is denoted by eαt . The notion of
umbrally equivalence and similarity can be extended coefficientwise to formal power series
R[A][[t]] (see [24] for a formal construction). So

α ≡ β ⇔ eαt � eβt .

Moreover, any exponential formal power series1 in R[[t]] like

f (t) = 1 +
∑
n≥1

an
tn

n!
can be umbrally represented by a formal power series (3) in R[A][[t]]. In fact, if the
sequence 1, a1, a2, . . . is umbrally represented byα then

f (t) = E[eαt ] i.e. f (t) � eαt ,

assuming that we naturally extendE to be linear. We will say thatf (t) is umbrally
represented byα. Henceforth, when no confusion is possible, we will just say thatf (t)

1 Observe that with this approach we disregard questions of whether any series converges.
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is the g.f. ofα. For example the g.f. of the augmentation umbraε is 1, while the g.f. of the
unity umbrau is ex .

Recall that for a r.v.X , when the moment generating function (m.g.f.) exists,
E[exp(t X)] = f (t), it admits an exponential expansion in terms of the moments, which
are completely determined by the related distribution function (and vice versa). In this case
the m.g.f. encodes all the information ofX and the notion of equivalence in distribution
among r.v.’s corresponds to the notion of similarity of umbrae.

The first advantage of the umbral notation introduced for g.f.’s is the representation
of operations among g.f.’s by operations among umbrae. For example the product of
exponential g.f.’s is umbrally represented by a sum of the corresponding umbrae:

g(t) f (t) � e(α+γ )t with f (t) � eαt , g(t) � eγ t . (4)

Via (4), the g.f. ofn.α is f (t)n . If α is an umbra with g.f.f (t), the inverse umbra−1.α′
has g.f.[ f (t)]−1. The sum of exponential g.f.’s is umbrally represented by a disjoint sum
of umbrae. Thedisjoint sum (respectivelydisjoint difference) of α andγ is the umbraη
(respectivelyι) with moments

ηn �
{

u, n = 0
αn + γ n, n > 0

(
respectively ιn �

{
u, n = 0
αn − γ n, n > 0

)
,

in symbolsη ≡ α+̇γ (respectivelyι ≡ α−̇γ ). By the definition, it follows

f (t)± [g(t)− 1] � e(α±̇γ )t .

Example 2.4 (Unbiased Estimators). Consider a disjoint sum ofn times the umbraα. We
will denote this umbra bẏ+nα. Its g.f. is 1+n[ f (t)−1]. The umbra+̇nα has the following
probabilistic counterpart. Let{Xi }n

i=1 be a random sample of independent and identically
distributed (i.i.d.) r.v’s. As is well-known, the power sum symmetric function

Sr =
n∑

i=1

Xr
i

gives unbiased estimatorsSr/n of the moments ofXi . But E[(+̇nα)
r ] = nar , hence the

umbral corresponding of the power sum symmetric functions sequenceSr is the umbra
+̇nα.

2.3. Auxiliary umbrae

In the following, supposeα an umbra with g.f.f (t) andγ an umbra with g.f.g(t). The
introduction of the g.f. device leads to the definition of new auxiliary umbrae useful for
the development of the system of calculation. For this purpose, we should replaceR by a
polynomial ring having coefficients inR and any desired number of indeterminates. In this
paper, we deal withR[x, y]. This allows us to define the dot-product ofx andα via a g.f.,
i.e. x .α is the auxiliary umbra having generating function

e(x .α) � f (t)x .
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Proposition 2.2still holds, replacingn with x andm with y. Then, an umbra is said to be
scalar if the moments are elements ofR while it is said to bepolynomial if the moments
are polynomials.

Example 2.5 (Bell Polynomial Umbra). The Bell polynomial umbra φ is the umbra
having factorial moments equal toxn (cf. [5]). This umbra has g.f. exp[x(et − 1)] so that
φ ≡ x .β, whereβ is the Bell umbra. It turns out that the Bell polynomial umbrax .β is the
umbral counterpart of a Poisson r.v. with parameterx .

Example 2.6 (Moments about a Point). The momentsE[(X − a)n] about a pointa ∈ R
of a r.v.X are easily represented by umbrae through the following definition: the umbraαa

having moments about a pointa ∈ R is defined as

αa ≡ α − a.u. (5)

If a, b ∈ R andb − a = c, then

αa ≡ α − (b + c).u ≡ αb + c.u,

is the umbral version of the equations giving the moments abouta in terms of the moments
aboutb (cf. [22] for another symbolic expression).

The dot-productγ.α of two umbrae is the auxiliary umbra having g.f.

e(γ .α)t � [ f (t)]γ � eγ log f (t) � g[log f (t)].
The moments of the dot-productγ.α are (cf. [5])

E[(γ .α)n] =
n∑

i=0

g(i)Bn,i (a1, a2, . . . , an−i+1) n = 0,1,2, . . . (6)

whereg(i) are the factorial moments of the umbraγ , Bn,i are the (partial) Bell exponential
polynomials (cf. [11]) and ai are the moments of the umbraα. Observe thatE[γ.α] =
g1a1 = E[γ ] E[α.]. The following properties hold (cf. [5]):

Proposition 2.7. (a) If η.α ≡ η.γ then α ≡ γ ;
(b) if c ∈ R then η.(cα) ≡ c(η.α) for any two distinct umbrae α and η;
(c) if γ ≡ γ ′ then (α + η).γ ≡ α.γ + η.γ ′;
(d) η.(γ .α) ≡ (η.γ ).α.

Observe that from property (b) it follows that

α.x ≡ α.(xu) ≡ x(α.u) ≡ xα. (7)

Remark 1. The auxiliary umbraγ.α is the umbral version of a random sum. Indeed the
m.g.f.g[log f (t)] corresponds to a r.v.SN = X1 + X2 + · · · + X N whereN is a discrete
r.v. having m.g.f.g(t) and Xi are i.i.d. r.v.’s having m.g.f.f (t). The right-distributive
property of the dot-productγ.α runs in parallel with the probability theory because a
random sumSN+M is similar toSN + SM , whereN andM are independent discrete r.v.’s.
The left-distributive property of the dot-productγ.α does not hold as well as it does in
r.v. theory. In fact, letZ = X + Y be a r.v. withX andY independent r.v.’s. As it is easy to
verify, a random sumSN = Z1 + Z2 + · · · + Z N , with Zi i.i.d. r.v.’s equal in distribution
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to Z , is not equal in distribution toSX
N + SY

N with SX
N = X1 + X2 + · · · + X N , Xi being

i.i.d. r.v.’s equal in distribution toX and withSY
N = Y1 +Y2 +· · ·+YN , Yi being i.i.d. r.v.’s

equal in distribution toY .

Example 2.8 (Randomized Poisson r.v.). Let us consider the Bell polynomial umbrax .β.
If in the place ofx we put a generic umbraα, we get the auxiliary umbraα.β whose
factorial moments are

(α.β)n � αn n = 0,1,2, . . .

and moments given by the exponential umbral polynomials (cf. [5])

(α.β)n � Φn(α) �
n∑

i=0

S(n, i)αi n = 0,1,2, . . . . (8)

Its g.f. is f [et − 1]. The umbraα.β represents a random sum of independent Poisson
r.v.’s with parameter 1 indexed by an integer r.v.Y , i.e. a randomized Poisson r.v. with
parameterY .

As suggested in [13], there is a connection between compound Poisson processes and
polynomial sequence of binomial type, i.e. sequence{pn(x)} of polynomials with degree
n satisfying the identities

pn(x + y) =
n∑

i=0

(
n
i

)
pi (x)pn−i(y)

for anyn (cf. for instance [9]). Two different approaches can be found in [3] and in [21].
A natural device to make clear this connection is theα-partition umbraβ.α, introduced in
[5]. Its g.f. is exp[ f (t) − 1] and it suggests interpreting a partition umbra as a compound
Poisson r.v. with parameter 1. As is well-known, a compound Poisson r.v. with parameter
1 is introduced as a random sumSN = X1 + X2 + · · · + X N whereN has a Poisson
distribution with parameter 1. The umbraβ.α fits perfectly this probabilistic notion, taking
into consideration that the Bell scalar umbraβ plays the role of a Poisson r.v. with
parameter 1. What is more, since a Poisson r.v. with parameterx is umbrally represented by
the Bell polynomial umbrax .β, a compound Poisson r.v. with parameterx is represented
by thepolynomial α-partition umbrax .ψ ≡ x .β.α with g.f. exp[x( f (t) − 1)]. The name
“partition umbra” has a probabilistic ground. Indeed the parameter of a Poisson r.v. is
usually denoted byx = λt , with t representing a time interval, so that when this interval
is partitioned into non-overlapping ones, their contributions are stochastically independent
and add toSN . This last circumstance is umbrally expressed by the relation

(x + y).β.α ≡ x .β.α + y.β.α (9)

giving the binomial property for the polynomial sequence represented byx .β.α. In terms
of g.f.’s, the formula (9) means that

hx+y(t) = hx (t)hy(t) (10)

wherehx (t) is the g.f. ofx .β.α. Vice versa every g.f.hx (t) satisfying the equality (10) is the
g.f. of a polynomialα-partition umbra. Theα-partition umbra represents the sequence of



E. Di Nardo, D. Senato / European Journal of Combinatorics 27 (2006) 394–413 403

partition polynomials Yn = Yn(a1, a2, . . . , an) (or complete Bell exponential polynomials
[11]), i.e.

E[(β.α)n] =
n∑

i=0

Bn,i (a1, a2, . . . , an−i+1) = Yn(a1, a2, . . . , an), (11)

whereai are the moments of the umbraα. Moreover everyα-partition umbra satisfies the
relation

(β.α)n � α′(β.α + α′)n−1 α ≡ α′, n = 0,1,2, . . . (12)

and conversely (see [5] for a proof). The previous property will allow a useful umbral
characterization of the cumulant umbra (seeCorollary 4.12in Section 4). The umbraβ.α
plays a central role also in the umbral representation of the composition of exponential
g.f.’s. Indeed, thecomposition umbra of α andγ is the umbraτ ≡ γ.β.α. The umbraτ has
g.f. g[ f (t)− 1] and moments

E[τ n] =
n∑

i=0

gi Bn,i (a1, a2, . . . , an−i+1) (13)

with gi and ai moments of the umbraγ and α respectively. We denote byα〈−1〉 the
compositional inverse ofα, i.e. the umbra having g.f.f −1(t) such thatf −1[ f (t) − 1] =
f [ f −1(t) − 1] = 1 + t . For an intrinsic umbral expression of the compositional inverse
umbra see [5], where there is also stated an umbral version of the Lagrange inversion
formula.

Example 2.9 (Randomized Compound Poisson r.v.). As already underlined inExample
2.8, the umbraγ.β represents a randomized Poisson r.v. Hence it is natural to look at
the composition umbra as a compound randomized Poisson r.v., i.e. a random sum indexed
by a randomized Poisson r.v. Moreover, since(γ .β).α ≡ γ.(β.α) (cf. statement (d) of
Proposition 2.7), the previous relation reveals another aspect of this r.v.: the umbraγ.(β.α)

generalizes the concept of a random sum of i.i.d. compound Poisson r.v.’s with parameter
1 indexed by an integer r.v.X , i.e. a randomized compound Poisson r.v. with random
parameterX .

Finally, the symbolα.n denotes an auxiliary umbra similar to the productα′α′′ · · ·α′′′
whereα′, α′′, . . . , α′′′ are a set ofn distinct umbrae each similar to the umbraα. We assume
thatα.0 is an umbra similar to the unity umbrau. The moments ofα.n are:

E[(α.n)k] = E[(αk).n] = an
k , k = 0,1,2, . . . , (14)

i.e. then-th power of the moments of the umbraα. Thanks to this notation in [5], the
umbral expression of the Bell exponential polynomials was given as follows:

Bn,i (a1, a2, . . . , an−i+1) �
(

n
i

)
α.i (i.α)n−i (15)

whenevera1 
= 0 and whereα is the umbra with moments

E[αn] = an+1

a1(n + 1)
, n = 1,2, . . . . (16)
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Table 1
Duality between the singleton umbra and the Bell umbra

Umbra Generating function

χ (1 + t) = 1 + ∑∞
n=1

[∑n
k=1 s(n, k)

] tn

n!
x .χ (1 + t)x = 1 + ∑∞

n=1

[∑n
k=1 s(n, k)xk

]
tn

n!
α.χ f [log(1 + t)]
χ.α 1 + log[ f (t)]

β eet−1 = 1 + ∑∞
n=1

[∑n
k=1 S(n, k)

] tn

n!
x .β ex(et−1) = 1 + ∑∞

n=1

[∑n
k=1 S(n, k)xk

]
tn

n!
α.β f (et − 1)

β.α e f (t)−1

Example 2.10 (The Central Umbra). We call central umbra the umbra αa1 having
moments abouta1 = E[α]. From (5), the classical relation between moments and central
moments of a r.v. has the following umbral expression:

(αa1)n �
n∑

k=0

(
n
k

)
(−1)n−k(α′)kα.(n−k), α ≡ α′ n = 1,2, . . .

whereE[(a1.u)k] = ak
1 = E[α.k ] from (14).

3. The singleton umbra

The singleton umbra plays a role dual to the Bell umbra, even if it has no probabilistic
counterpart. The singleton umbra turns out to be an effective symbolic tool for umbral
representation of some well-known r.v.’s, as well as of cumulants and factorial moments.

Definition 3.1 (The Singleton Umbra). An umbraχ is said to be a singleton umbra if

χn � δ1,n n = 1,2, . . . .

The g.f. of the singleton umbraχ is 1+ t .

Example 3.2 (Gamma r.v.). The m.g.f. of a Gamma r.v. with parametersa andc is

M(t) = 1

(1 − ct)a
.

This g.f. is umbrally represented by the inverse of−c(a.χ) (see (ii) ofProposition 2.2
replacingn by a ∈ R).

Table 1highlights the duality between the singleton umbraχ and the Bell umbraβ.
The connection between the singleton umbraχ and the Bell umbraβ is made clear in

the following proposition.
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Proposition 3.3. Let χ be the singleton umbra, β the Bell umbra and u〈−1〉 the
compositional inverse of the unity umbra u. It follows that

χ ≡ u〈−1〉.β ≡ β.u〈−1〉, (17)

β.χ ≡ u ≡ χ.β. (18)

Proof. The g.f. ofu〈−1〉.β.u is 1 + t , sinceu〈−1〉 andu are compositional inverses. So
equivalence (17) follows by property (a) ofProposition 2.7, that is,

u〈−1〉.β.u ≡ χ ≡ χ.u.

Equivalence (18) follows via g.f.’s inTable 1. �

Distributive properties of the singleton umbra with respect to the sum and the disjoint sum
of umbrae are given in the following.

Proposition 3.4.

χ.(α + γ ) ≡ χ.α+̇χ.γ (19)

(α+̇γ ).χ ≡ α.χ+̇γ.χ. (20)

Proof. Let f (t) be the g.f. ofα and g(t) the g.f. of γ . Equivalence (19) follows by
observing that the g.f. ofχ.(α + β) is 1+ log[ f (t)g(t)] = 1 + log[ f (t)] + log[g(t)], so
it is the g.f. ofχ.α+̇χ.β. Equivalence (20) follows by observing that the g.f. of(α+̇β).χ
is f [log(1 + t)] + g[log(1 + t)] − 1, that is, the g.f. ofα.χ+̇β.χ . �

The notion of mixture of r.v.’s has an umbral counterpart in the disjoint sum+̇. Indeed let
{αi }n

i=1 ben umbrae and{pi}n
i=1 ∈ R ben weights such that

n∑
i=1

pi = 1.

The mixed umbraγ of {αi }n
i=1 is the following weighted disjoint sum of{αi }n

i=1:

γ ≡ χ.p1.β.α1+̇χ.p2.β.α2+̇ · · · +̇χ.pn.β.αn (21)

whereβ is the Bell umbra andχ is the singleton umbra. From (19) equivalence (21) can
be rewritten as

γ ≡ χ.(p1.β.α1 + p2.β.α2 + · · · + pn.β.αn).

Since the g.f. of
∑n

i=1 pi .β.αi is exp(
∑n

i=1 pi [ fi (t) − 1]), where fi (t) is the g.f. ofαi ,
from Table 1it follows that the g.f. ofγ is

∑n
i=1 pi fi (t).

Example 3.5 (Bernoulli Umbral r.v.). Let us consider a Bernoulli r.v.X of parameterp.
Its m.g.f. isg(t) = q + pet with q = 1 − p. The Bernoulli umbral r.v. is a mixture of the
umbraε and the unity umbrau:

ξ ≡ χ.q.β.ε+̇χ.p.β.u.
Recalling thatχ.q.β.ε ≡ ε, we have

ξ ≡ χ.p.β.
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Indeed,

E[eξ t ] = 1 + log[ep(et−1)] = q + pet .

Example 3.6 (Binomial Umbral r.v.). As is well-known, any binomial r.v.Y with
parametersn ∈ N, p ∈ [0,1], is the sum ofn i.i.d. Bernoulli r.v.’s having parameter
p. Then the binomial umbral r.v. is

n.ξ ≡ n.χ.p.β.

The parallelism is evident if we recall that the m.g.f. of a binomial r.v.Y is f (t) =
(q + pet )n .

4. The cumulant umbra

For a r.v. having momentsa1, a2, . . . , an and cumulantsκ1, κ2, . . . , κn ,

an =
∑
π

cπκπ and κn =
∑
π

dπaπ (22)

the sums here are taken over the partitionsπ = [ jm1
1 , jm2

2 , . . . , jmk
k ] of the integern, and

cπ = n!
( j1!)m1( j2!)m2 · · · ( jk !)mk

1

m1!m2! · · · mk !
dπ = cπ (−1)νπ−1(νπ − 1)! and νπ = m1 + m2 + · · · + mk

aπ =
∏
j∈π

a j and κπ =
∏
j∈π

κ j .

A different formulation of (22) was given by Rota and Shen in [16] by Moebius’ inversion
formula. In this section we show how the umbral calculus simplifies the above expressions,
as well as the recursive formulae for moments in terms of cumulants.

Let α be an umbra with g.f.f (t).

Definition 4.1. The cumulant of an umbraα is the umbraκα defined by

κα ≡ χ.α

whereχ is the singleton umbra.

Definition 4.1gives the umbral version of the second equality in (22). Moreover the
first moment of the cumulant umbraκα is a1, i.e. the first moment of the umbraα, being
E[κα] = E[χ]E[α] = E[α] = a1.

Example 4.2 (Cumulant of the Umbra ε). Sinceε ≡ χ.ε, the umbraε is the cumulant
umbra of itself, i.e.κε ≡ ε.

Example 4.3 (Cumulant of the Umbra u). Sinceχ ≡ χ.u, the umbraχ is the cumulant
umbra of the umbrau, i.e.κu ≡ χ .

Example 4.4 (Cumulant of the Bell Umbra). Sinceu ≡ χ.β (see (18)), the umbrau is
the cumulant umbra of the Bell umbraβ, i.e.κβ ≡ u. FromExample 2.1, a Poisson r.v. of
parameter 1 has cumulants equal to 1.



E. Di Nardo, D. Senato / European Journal of Combinatorics 27 (2006) 394–413 407

Proposition 4.5. The cumulant umbra κα has g.f.

k(t) = 1 + log[ f (t)]. (23)

Proof. SeeTable 1. �

Example 4.6 (Cumulant of the Singleton Umbra). Since 1+ log(1 + t) is the g.f. of the
umbrau〈−1〉, this umbra is the cumulant umbra of the umbraχ , i.e.κχ ≡ u〈−1〉.

Example 4.7 (Cumulant of the Bernoulli Umbral r.v.). From Example 3.5, the cumulant
umbra of the Bernoulli umbral r.v. isχ.(χ.p.β) ≡ u〈−1〉.p.β.

Example 4.8 (Cumulant of the Binomial Umbral r.v.). From Example 3.6, the cumulant
umbra of the Binomial umbral r.v. isχ.(n.χ.p.β), i.e.

χ.(χ ′.p.β ′ + χ ′′.p.β ′′ + · · · + χ ′′′.p.β ′′′),

whereχ ′, χ ′′, . . . , χ ′′′ are a set ofn distinct umbrae each similar to the singleton umbraχ ,
while β ′, β ′′, . . . , β ′′′ are a set ofn distinct umbrae each similar to the Bell umbraβ. From
(19) and recallingExamples 2.4and4.6, it results that

χ.n.χ.p.β ≡ χ.χ ′.p.β ′+̇χ.χ ′′.p.β ′′+̇ · · · +̇χ.χ ′′′.p.β ′′′ ≡ +̇nu〈−1〉.p.β.

This parallels the analogous result in probability theory.

From (23), the moments of the cumulant umbraκα are

(ka)n = E[κn
α] =

[
dn

dtn
log{ f (t)}

]
t=0

which is equivalent to the definition of then-th cumulant of a r.v.X having m.g.f.f (t).
To state the explicit version of the second equality in (22)

kn =
n∑

i=1

(−1)i−1(i − 1)!Bn,i (a1, a2, . . . , an−i+1) (24)

giving cumulants in terms of moments usually requires laborious computations (cf. for
example [10]). The umbral definition of cumulants allows a simple proof of (24).
Indeed, sinceχ ≡ u〈−1〉.β, the cumulant umbra ofα is the umbral composition ofu〈−1〉
andα:

κα ≡ u〈−1〉.β.α (25)

and then its moments are given by (13). Note that Eq. (25) is the umbral version of the
second equality in (22). Finally, equality (24) follows recalling that the moments ofu〈−1〉
are the coefficient of the exponential expansion

1 + log(1 + t) = 1 +
∞∑

i=1

(−1)i−1(i − 1)! t i

i ! .

Similarly, the three main algebraic properties of cumulants can be easily recovered from
next theorem.
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Theorem 4.9. It is

(a) (the additivity property)

χ.(α + γ ) ≡ χ.α+̇χ.γ, (26)

i.e. the cumulant umbra of a sum of two umbrae is equal to the disjoint sum of the two
corresponding cumulant umbrae;

(b) (the semi-invariance under translation property) for any c ∈ R

χ.(α + c.u) ≡ χ.α+̇χ.c;
(c) (the homogeneity property) for any c ∈ R

χ.(cα) ≡ c(χ.α).

Proof. Property (a) follows from (19). Property (b) follows from (26), settingγ ≡ c.u for
anyc ∈ R. Finally, property (c) follows from (b) ofProposition 2.7. �

Example 4.10 (Cumulant of the Central Umbra). The sequence of cumulants related to
the central umbraαa1 is the same as the sequence forα, except that the first cumulant is
equal to 0. Indeed, by the additivity property of the cumulant umbra it is

χ.(α − a1.u) ≡ χ.α−̇χ.a1.

The results follows from (7).

The umbral version of the first equality in (22) is given in the following theorem.

Theorem 4.11 (Inversion Theorem). Let κα be the cumulant umbra of α, then

α ≡ β.κα

where β is the Bell umbra.

Proof. We have

β.κα ≡ β.χ.α ≡ u.α ≡ α. �

The inversion theorem enables one to calculate the moments of the umbraα from its
cumulants. Recalling (11) it is

an = Yn[(ka)1, (ka)2, . . . , (ka)n] (27)

with an the n-th moment of the umbraα and (ka)n the n-th moment of the umbraκα.
Eq. (27) is the explicit version of the first equality in (22).

Remark 2. The complete Bell polynomials in (11) are a polynomial sequence of binomial
type. Since, from the inversion theorem, any umbraα is the partition umbra of its cumulant
κα , it is possible to prove a more general result: every polynomial sequence of binomial
type is completely determined by its sequence of formal cumulants. Indeed, in [5] it
is proved that any polynomial sequence of binomial type represents the moments of a
polynomial umbrax .α and vice versa. So from the inversion theorem any polynomial
sequence of binomial type represents the moments of a polynomial umbrax .β.κα.
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The next corollary follows from (12) and from the inversion theorem.

Corollary 4.12. If κα is the cumulant umbra of α, then

αn � κα(κα + α)n−1 (28)

for any nonnegative integer n.

Equivalences (28) were assumed by Shen and Rota in [16] as definition of the cumulant
umbra. In terms of moments, equivalences (28) give

an =
n−1∑
j=0

(
n − 1

j

)
a j (ka)n− j

that is widely used in statistical settings [20].

Example 4.13 (Lévy Process). Let (Xt , t ≥ 0) be a real-valued Lévy process, i.e. a
process starting from 0 and with stationary and independent increments. According to the
Lévy–Khintchine formula (cf. [6]), if we assume thatXt has a convergent m.g.f. in some
neighbourhood of 0, it is

E[eθXt ] = etk(θ) (29)

wherek(θ) is the cumulant g.f. ofX1. The inversion theorem gives the umbral version of
Eq. (29):

t .α ≡ t .β.κα.

4.1. Cumulants of a Poisson r.v.’s

FromExample 2.9, the umbraγ.β.α corresponds to a compound randomized Poisson
r.v., i.e. a random sumSN = X1+· · ·+X N with N a randomized Poisson r.v. of parameter a
r.v. Y . In particularα corresponds toX andγ corresponds toY . Sinceχ.(γ .β.α) ≡ κγ .β.α

the cumulant umbra of the composition ofα andγ is the composition ofα andκγ . Then
from (13), the cumulants of a compound randomized Poisson r.v. are given by

n∑
i=1

ki Bn,i (a1, a2, . . . , an−i+1) (30)

whereai are the moments of the r.v.X andki are the cumulants of the r.v.Y . Now set
γ ≡ x .u in γ.β.α. This means to consider a r.v.Y such thatP(Y = x) = 1. Then, the
random sumSN becomes a compound Poisson r.v. of parameterx corresponding to the
polynomialα-partition umbrax .β.α, with α the umbral counterpart ofX and cumulants

n∑
i=1

ki Bn,i (a1, a2, . . . , an−i+1) � xan. (31)

Indeed (31) follows from (30) since the momentski of χ.x are equal to 0, except for the
first, which is equal tox . If x = 1 the cumulant of theα-partition umbra isα, so the
moments ofX are the cumulants of the corresponding compound Poisson r.v. Now, in
x .β.α takeα ≡ u. From (31), the cumulants of the Bell polynomial umbrax .β are equal
to x , as is a Poisson r.v. of parameterx .
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Finally, in γ.β.α setα ≡ u. The cumulant umbra ofγ.β is κγ .β with κγ the cumulant
umbra ofγ . Its probabilistic counterpart is a randomized Poisson r.v. of parameter a r.v.Y ,
corresponding to the umbraγ . From (8) the cumulants of a randomized Poisson r.v. of
parameter a r.v.Y are the moments ofκγ .β, i.e.

n∑
i=0

S(n, i)ki

with ki the cumulants of the r.v.Y .

5. The factorial umbra

The factorial moments of a r.v. do not play a very prominent role in statistics, but they
provide very concise formulae for the moments of some discrete distributions, such as the
binomial distribution.

Let α be an umbra with g.f.f (t).

Definition 5.1. An umbraϕα is said to be anα-factorial umbra if

ϕα ≡ α.χ

whereχ is the singleton umbra.

Example 5.2 (ε-Factorial Umbra). Sinceε ≡ ε.χ , theε-factorial umbra is similar to the
umbraε, i.e.ϕε ≡ ε.

Example 5.3 (u-Factorial Umbra). Sinceχ ≡ u.χ , theu-factorial umbra is similar to the
umbraχ , i.e.ϕu ≡ χ .

Example 5.4 (β-Factorial Umbra). Sinceu ≡ β.χ from (18), theβ-factorial umbra is
similar to the unity umbrau, i.e.ϕβ ≡ u. FromExample 2.1, a Poisson r.v. of parameter 1
has factorial moments equal to 1.

Example 5.5 (χ-Factorial Umbra). FromExample 4.6, it isχ.χ ≡ u〈−1〉. Theχ-factorial
umbra turns out to beu〈−1〉, i.e.ϕχ ≡ u〈−1〉.

Proposition 5.6. The α-factorial umbra has g.f.

g(t) = f [log(1 + t)]. (32)

Proof. SeeTable 1. �

Theα-factorial umbra has moments equal to the factorial moments of the umbraα, as the
following proposition shows.

Proposition 5.7. Let ϕα be an α-factorial umbra. Then

ϕn
α � (α)n, n = 0,1,2, . . . .

Proof. By Eq. (6) andDefinition 5.1it is

E[(ϕα)n] = E[(α.χ)n] =
n∑

k=0

(a)k Bn,k(δ1,1, δ1,2, . . . , δ1,n−k+1) (33)
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where(a)k are the factorial moments of the umbraα andδ1,i are the moments of the umbra
χ . By (15) we have

Bn,k(δ1,1, δ1,2, . . . , δ1,n−k+1) �
(

n
k

)
χ.k(k.χ)n−k .

Since the umbraχ has moments equal to 0 andχ.k � 1, then

Bn,k(δ1,1, δ1,2, . . . , δ1,n−k+1) =
{

0, if n > k
1, if n = k.

(34)

Hence the Eq. (33) becomesE[(ϕα)n] = (a)n. �

Example 5.8 (Factorial Umbra of the Central Umbra). From property (c) ofProposition
2.7,

αa1.χ ≡ (α − a1.u).χ ≡ α.χ − a1.χ
′ ≡ ϕα − ϕa1.u ,

with χ ′ ≡ χ . Then the factorial umbra of the central umbraαa1 is the difference between
the factorial umbra ofα and the factorial umbra of the umbra having moments equal toa1.
By (32) its g.f. becomesf [log(1 + t)](1 − t)a1.

Example 5.9 (Factorial Moments of the Binomial r.v.). Since the factorial moments char-
acterize a binomial r.v., we show how to evaluate them by umbral methods. As showed in
Example 3.6, the umbral counterpart of a binomial r.v. isn.χ.p.β. Due to (18) and (7) the
corresponding factorial umbra isn.(χ.p.β).χ ≡ n.χ.p ≡ p(n.χ). Its g.f. is

g(t) = (1 + t p)n =
n∑

j=0

(n) j p j t j

j !

so the factorial moments are(n) j p j . If n = 1, the factorial umbra ispχ and, fromExample
3.5, the first factorial moment of a Bernoulli r.v. is equal top while the others are equal to
0.

Example 5.10 (Factorial Umbra of the Cumulant Umbra). If κα is the cumulant umbra of
α, thenκα.χ is the factorial cumulant umbra ofα, with g.f. 1+ log[ f (log(1+ t))] by (32).

The following theorem produces the umbraα from its factorial umbraϕα.

Theorem 5.11 (Inversion Theorem). Let ϕα be the factorial umbra of α. It is

α ≡ ϕα.β

with β the Bell umbra.

Proof. By Proposition 3.3,

ϕα.χ ≡ α.χ.β ≡ α. �

Corollary 5.12. Let ϕα be the factorial umbra of α and κα its cumulant umbra. It is

ϕα.β ≡ β.κα.
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5.1. Factorial moments of a Poisson r.v.’s

Since(γ .β.α).χ ≡ γ.β.(ϕα) the factorial umbra of the umbral compositionγ.β.α is the
umbral composition ofγ and the factorial umbra ofα. From (13) a compound randomized
Poisson r.v.SN = X1+· · ·+ X N with N a Poisson r.v. with parameter a r.v.Y has factorial
moments

n∑
k=1

gk Bn,k[(µ)1, (µ)2, . . . , (µ)n−k+1] (35)

where(µ)i are the factorial moments of the r.v.X andgk are the moments of the r.v.Y .
Now settingγ ≡ x .u in γ.β.α, we havegk = xk . Then from (35)

n∑
k=1

xk Bn,k[(µ)1, (µ)2, . . . , (µ)n−k+1] (36)

are the factorial moments of a compound Poisson r.v. with parameterx . Setα ≡ u in x .β.α.
We have(x .β.u).χ ≡ x .β.χ ≡ x .u so that the factorial moments ofx .β.α are equals toxn

as well as for its probabilistic counterpart, a Poisson r.v. with parameterx .
Finally, setα ≡ u in γ.β.α. We have(γ .β.u).χ ≡ γ.β.χ ≡ γ so that the factorial

moments ofγ.β are equal to the moments ofγ . Then a randomized Poisson r.v. with
parameter a r.v.Y has factorial moments equal to the moments of the r.v.Y .
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