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Abstract

We provide an algebraic setting for cumulants and factorial moments via the classical umbral
calculus. Our main tools are the compositional inverse of the unity umbra, this being related to
logarithmic power series, and a new umbra here introduced, the singleton umbra. We develop
formulae that express cumulants, factorial moments and central moments as umbral functions.
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principaux sont I'inverse compositionnel de I'ombre unité, lié & la série formelle logarithmique, et
un nouvel ombre, ici présenté, 'ombre singleton. De diverses formules sont données exprimant les
cumulants, les moments factoriels et les moments centraux par des fonctions ombral.
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1. Introduction

The main purpose of this paper is to show how the classical umbral calculus provides
a precision algebraic tool for handling cumulants and factorial moments. The classical
umbral calculus consists of a symbolic technique to deal with sequences of nuepbers
indexed by nonnegative integers= 0, 1, 2, 3, .. .: the subscripts are treated as if they were
powers. This technique has been used extensively since the nineteenth century, despite
wide-spread scepticism on the part of the mathematical community, which criticized its
lack of rigorous foundations. To the best of our knowledge, the umbral method was first
proposed by Rev. John Blissard in a series of papers from 1865]d¢ar[the full list of
papers). It is however impossible to give full credit to Blissard for the original idea, since
Blissard's calculus has its mathematical roots in symbolic differentiation. In the thirties,
Bell [1] reviewed the whole subject in several papers, restoring the purport of Blissard’s
idea. In P] he tried to give a rigorous foundation to the mystery at the center of the umbral
calculus, but his attempt did not gain a following. In fact, in the first modern textbook
of combinatorics 11], Riordan often employed this symbolic method without giving any
formal justification. Gian-Carlo Rota was the first to disclose the “umbral magic art” of
shifting froma" to a,, bringing to light the underlying linear functional (cfl4]). This
idea led Rota and his collaborators to conceive a beautiful theond(&8]] which has led
to a large variety of applications (se§ for a list of papers updated to 2000). Some years
later, Roman and Rotd §] gave rigorous form to the umbral tricks in the setting of Hopf
algebra (see als@]). In 1994, however, Rota himself wrote (cL§]):

“...Although the notation of Hopf algebra satisfied the most ardent advocate of
spic-and-span rigor, the translation of “classical” umbral calculus into the newly
found rigorous language made the method altogether unwieldy and unmanageable.
Not only was the eerie feeling of witchcraft lost in the translation, but, after such

a translation, the use of calculus to simplify computation and sharpen our intuition
was lost by the wayside ...”

Then, in the paperl8] The Classical Umbral Calculus (1994) Rota and Taylor try to
restore the feeling intended by the founders of the umbral calculus, introducing notation
indispensable to avoiding the misunderstandings of the past, yet keeping such new notation
to a minimum. In this new setting, the basic device is to represent a unital sequence of
numbers by a symbal, named umbra, that is, to associate the sequeree 4, . . . to the
sequence kv, o2, . .. of powers ofx through an operatdE that resembles the expectation
operator of random variables (r.v.'s). This new way of dealing with sequences of numbers
has been applied to combinatorial and algebraic subjects1(¢R3,7]), wavelet theory

(cf. [19)) and difference equations (cf24]). It has also led to a finely adapted language

for r.v. theory, as shown irlp,5].

The present work is inspired by this last point of view. As a matter of fact, an umbra
carries the structure of a random variable (r.v.), while making no reference to a probability
space, bringing us thus closer to statistical methods. The use of symbolic methods in
statistics is not, however, a novelty. For instance, Stuart and 2@fdrgsort to such
a technique in handling moments about a point. Furthermore, in the umbral calculus,
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guestions concerning convergence of series are not materiel, as we show below when
dealing with cumulants.

Among the sequences of numbers related to r.v.'s, cumulants play a central role,
characterizing all r.v’s occurring in the classical stochastic processes. For instance, a
r.v. having Poisson distribution of parameteis the unique probability distribution for
which all its cumulants are equal ta It seems therefore that a r.v. is better described
by its cumulants than by its moments. Moreover, due to their properties of additivity
and invariance under translation, the cumulants are not necessarily connected with the
moments of any probability distribution. We can define cumulantef any sequence
a,n=123,...hy

in complete disregard to questions of whether any series converges. Using this approach,
many difficulties related to the “problem of cumulants” are resolved. (The “problem
of cumulants” is to characterize those sequences that are cumulants of probability
distributions.) The simplest example is that the second cumulant of a probability
distribution must always be nonnegative, and is zero only if all of the higher cumulants
are zero. Cumulants are subject to no such constraints when they are analyzed from an
algebraic point of view. What is more, in statistics they do not play any dual role with
respect to factorial moments. The algebraic setting here proposed brings to the light their
close relationship, through an umbral analogy, with the well known complementary notions
of compound and randomized Poisson r.v.’s (6f).[

Umbral notations are introduced by means of r.v. semantics. Our intention is thus to
make the reader comfortable with the umbral system of calculation, in a way that requires
no prior knowledge. We skip some technical proofs of formal matters, for which the reader
is referred via citations.

The novelties of this paper are the following.Section 2we introduce new operations
among umbrae such as disjoint sum and disjoint difference, which permit the umbral
representation of r.v. mixtures. l8ection 3 we introduce a new umbra, trsingleton
umbra, which plays a role dual to the Bell umbra, introduced % [Their relationship
is encoded by the compositional inverse of the unity umbra, via the Lagrange inversion
formula. The singleton umbra is the keystone of the umbral presentation of cumulants. So,
in Section 4 we give a new and intrinsic definition of cumulant umbra unlike the recursive
definition given by Rota and Shen ih€]. Starting from this definition, we simplify many
results proved in16]. We also state a very simple inversion theorem which permits us to
generate an umbra from its cumulant.Section 5 we give the definition of the factorial
umbra of an umbra and show that its moments are the factorial moments of the umbra
We also provide an inversion theorem which permits us to generate an umbra from its
factorial umbra. Such inversion theorems state a new and very simple umbral relationship
between cumulants and factorial moments. In the last two sections, we also give various
umbral formulae for cumulants and factorial moments that parallel those known in
statistics but simplify the proofs as well as the forms. This happens for instance for the
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equations expressing cumulants in terms of moments (and vice versa) and also for their
recursive formulas.

Finally, we would like to remark on the preliminary nature of this paper. Despite the fact
that we have defined all basic tools necessary to develop an umbral theory of cumulants
and factorial moments, several applications remain to be developed. The reader interested
is referred to the section “Problem eleven: cumulants” of the Gian-Carlo Rota’s Fubini
lectureTwelve problems in probability no one likes to bring up (cf. [15]).

2. Umbrae and random variables

In the following, we recall the terminology, notations and some basic definitions of
the classical umbral calculus, as it has been introduced by Rota and Tayl#] iand
further developed ing]. Fundamental is the idea of associating a sequence of numbers
1, ap, ag, ... to an indeterminate which is then said to “represent” the sequence. This
device is familiar in probability theory, whewg represents thie-th moment of a r.vX.

In this case, the sequenceal, ay, . . . results from applying the expectation operdfoio
the sequence, IX, X2, . .. consisting of powers of the r.X.
More formally, an umbral calculus consists of the following data:

(a) asetA = {a, B, ...}, called thealphabet, whose elements are namamibrae;

(b) a commutative integral domaR whose quotient field is of characteristic zero;

(c) a linear functionalE, called evaluation, defined on the polynomial ringR[A] and
taking values inR such that

() E[1] = 1; o
(i) E[e'Bl---yX] = E[«'1E[B]]--- E[yK] for any set of distinct umbrae iA and
fori, j, ..., k nonnegative integersiicorrelation property);

(d) an element € A, called augmentation [12], such thatE[e"] = &g, for any
nonnegative integar, where

o [1ifi=j .
5"1—{0 ifizj A EN
(e) an element € A, calledunity umbra B], such thatE[u"] = 1, for any nonnegative
integern.

A sequenceyg = 1, a3, ap, ... in Ris umbrally represented by an umhravhen
E[ai]zai, fori =0,1,2,....

The elements; are callednoments of the umbrax in analogy with r.v. theory. The umbra

€ can be view as a r.v. which takes the value 0 with probability 1 and the umbgraa

r.v. which takes the value 1 with probability 1. Note that the uncorrelation property among
umbrae parallels the analogous property for r.v.'s, andEaf k] # E[a" E[aX].

Example 2.1 (Bell Umbra). TheBell umbra g is the umbra such that
E[Bnl=1 n=012...

where(8)o =1 and(B)n = B(B—1) --- (B — n+ 1) is the lower factorial. It follows that
E[8"] = B, whereBy is then-th Bell number (cf. §]), i.e. the number of partitions of a
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finite nonempty set with elements, or tha-th coefficient in the Taylor series expansion of
the function expe! — 1). Sog is the umbral counterpart of a Poisson r.v. with parameter 1.

We callfactorial moments of an umbrax the elements

A — 1, n=0
M = YE[(@)n], N> 0

where(a)y = a(a — 1)--- (@ — n + 1) is the lower factorial. So the definition ¢f in
Example 2.Icould be reformulated as follows: the Bell scalar umbra is the umbra whose
factorial moments arb, = 1 for any nonnegative integer

2.1. Similar umbrae and dot-product

The notion of similarity among umbrae comes in handy in order to manipulate
sequences such

Z(?)aian—i, neN (1)

i=0
as moments of umbrae. The sequerigeénnot be represented by using only the unabra
with momentsap = 1, a3, &, .. .. Indeeda being correlated to itself, the produgy, -

cannot be written aE[a'a"]. So we need two distinct umbrae having the same sequence
of moments, as happens for r.v.s equal in distribution. Therefore, if we choose an umbra
a’ uncorrelated withw but with the same sequence of moments, it is

n n
n I L n i/ mn—i | _ il
Z(i)aan._E[Z<i)a<a> }-E[(aw)]. 2
i=0 i=0
Then the sequencé)represents the moments of the umbirat o). A way to formalize
this matter is to define two equivalence relations among umbrae.

Two umbraex andy areumbrally equivalent when

Ela] = E[y],
in symbolsx >~ 8. They aresimilar when
a ~ ", n=0,12,...

in symbolse = y. We note that equality implies similarity, which implies umbral
equivalence. The converses are false. We shall denote by the sprahtble dot-product

of n anda, an auxiliary umbra (cf.q8]) similar to the sumx’ + o’ + --- + o’ where
o ,a”,...,a" are a set oh distinct umbrae each similar to the umlaraSo the sequence
in (2) is umbrally represented by the umbra 2We assume that.® is an umbra similar
to the augmentatioa.

We shall hereafter consider the dot produchadnda as an umbra in its own right,
where wesaturate the alphabef with sufficiently many umbrae similar to any expression
whatever. For a formal definition of a saturated umbral calculusXkgelf can be shown
that saturated umbral calculi exist and that every umbral calculus can be embedded in a
saturated umbral calculus.
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The following statements are easily proven:

Proposition 2.2. (i) If n.a = n.p for someinteger n # Othen o = B;

(i) if c € Rthenn.(ca) = c(n.«) for any nonnegative integer n;

(i) n.(m.@) = (nm).a = m.(n.«) for any two nonnegativeintegersn, m;

(iv) (n+ m).a = n.a + m.o’ for any two nonnegative integers n, m and any two distinct
umbraea = o’;

(V) (n.a +n.8) = n.(« + B) for any nonnegative integer n and any two distinct umbrae
« and 8.

Two umbraex andy are said to bénverse to each other whea + y = ¢. We denote
the inverse of the umbra by —1.¢/, with @ = «’. Recall that, in dealing with a saturated
umbral calculus, the inverse of an umbra is not unique, but any two umbrae inverse to any
given umbra are similar.

Example 2.3 (UniformUmbra). The Bernoulli umbra (cf. [18]) represents the sequence
of Bernoulli numberd$B, such that

k;) (E) By = By

The inverse of the Bernoulli umbra is the umbral counterpart of the uniform r.v. over the
interval[O, 1] (cf. [23]).

2.2. Generating functions

The formal power series iR[A][[t]]
u-+ Z a'— ©))

is the generating function (g.f.) of the umbrax, and it is denoted by®. The notion of
umbrally equivalence and similarity can be extended coefficientwise to formal power series
R[A][[t]] (see R4] for a formal construction). So

a=po et ~efl
Moreover, any exponential formal power setigs R[[t]] like

tn

ft)y=1 —

=1+ n;anm

can be umbrally represented by a formal power sef@dsn R[A][[t]]. In fact, if the
sequence,las, ap, . . . is umbrally represented hythen

f(t) = E[e*] i.e. f(t) ~ e,

assuming that we naturally extertel to be linear. We will say thatf (t) is umbrally
represented by. Henceforth, when no confusion is possible, we will just say th@j

1 observe that with this approach we disregard questions of whether any series converges.
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is the g.f. ofa. For example the g.f. of the augmentation umbis 1, while the g.f. of the
unity umbrau is €.

Recall that for a r.v.X, when the moment generating function (m.g.f.) exists,
E[exptX)] = f(t), it admits an exponential expansion in terms of the moments, which
are completely determined by the related distribution function (and vice versa). In this case
the m.g.f. encodes all the information ®f and the notion of equivalence in distribution
among r.v.'s corresponds to the notion of similarity of umbrae.

The first advantage of the umbral notation introduced for g.f.'s is the representation
of operations among g.f’s by operations among umbrae. For example the product of
exponential g.f.'s is umbrally represented by a sum of the corresponding umbrae:

g®) f(t) ~ ™t with f(t) ~ e, g(t) ~ e'l. (4)

Via (4), the g.f. ofn.a is f(t)". If « is an umbra with g.ff (t), the inverse umbra-1.«

has g.f.[ f (t)]~1. The sum of exponential g.f.’s is umbrally represented by a disjoint sum
of umbrae. Thaligoint sum (respectivelydisoint difference) of « andy is the umbray
(respectively) with moments

o Y n=0 respectively " ~ {% n=0
T=1¢"+y", n>0 P y = a"—y", n>0)"

in symbolsy = a-+y (respectively = a—y). By the definition, it follows

f(t) & [g(t) — 1] ~ e+t

Example 2.4 (Unbiased Estimators). Consider a disjoint sum aftimes the umbra. We

will denote this umbra byna. Its g.f. is 14-n[ f (t) —1]. The umbraina has the following
probabilistic counterpart. L€tX;}'_; be a random sample of independent and identically
distributed (i.i.d.) r.v's. As is well-known, the power sum symmetric function

S=3 X
i=1

gives unbiased estimato&/n of the moments oi;. But E[(+na)"] = na;, hence the
umbral corresponding of the power sum symmetric functions sequ&nisethe umbra
-i-nOl-

2.3. Auxiliary umbrae

In the following, supposa an umbra with g.ff (t) andy an umbra with g.fg(t). The
introduction of the g.f. device leads to the definition of new auxiliary umbrae useful for
the development of the system of calculation. For this purpose, we should réplaca
polynomial ring having coefficients iR and any desired number of indeterminates. In this
paper, we deal withR[x, y]. This allows us to define the dot-producboénd« via a g.f.,

i.e. X.«a is the auxiliary umbra having generating function

e ~ f ()%,
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Proposition 2.2till holds, replacingy with x andm with y. Then, an umbra is said to be
scalar if the moments are elements Bfwhile it is said to bepolynomial if the moments
are polynomials.

Example 2.5 (Bell Polynomial Umbra). The Bell polynomial umbra ¢ is the umbra
having factorial moments equal ¥ (cf. [5]). This umbra has g.f. exg(¢' — 1)] so that
¢ = x.B, whereg is the Bell umbra. It turns out that the Bell polynomial umkrg is the
umbral counterpart of a Poisson r.v. with parameter

Example 2.6 (Moments about a Point). The momentE[(X — a)"] about a poina € R
of ar.v.X are easily represented by umbrae through the following definition: the untbra
having moments about a poiate R is defined as

o =a —au. %)
If a,be Randb — a = c, then
d=a—(b+cu=ad’+cu,

is the umbral version of the equations giving the moments abouterms of the moments
aboutb (cf. [22] for another symbolic expression).

The dot-producy .« of two umbrae is the auxiliary umbra having g.f.
eV Ot ~ [f(1)]Y ~ e1°9T® ~ gllog f (1)].
The moments of the dot-produgeto are (cf. p])

n
El(y.0)"l =) gi)Bni@s, &, ...,8n-i41) NnN=012 ... (6)
i=0
wheregj) are the factorial moments of the umbyraB,, ; are the (partial) Bell exponential
polynomials (cf. L1]) and & are the moments of the umbsa Observe thaE[y.«] =
g1a1 = E[y] E[e.]. The following properties hold (cf5]):

Proposition 2.7. (a) If n.o = n.y thena = y;

(b) if c € Rthenn.(ca) = c(n.«) for any two distinct umbrae o and »;
(c)ify =y'then(@+n).y =a.y +n.y/

(d) n.(y.0) = (n.y).x.

Observe that from property (b) it follows that
a.X = a.(XU) = X(a.U) = Xa. (7

Remark 1. The auxiliary umbray .« is the umbral version of a random sum. Indeed the
m.g.f.g[log f (t)] correspondsto ar\&y = X1 + Xz + --- + Xy WhereN is a discrete
r.v. having m.g.f.g(t) and X; are i.i.d. r.v’s having m.g.f.f (t). The right-distributive
property of the dot-product.« runs in parallel with the probability theory because a
random sunBy4m is similar toSy + Sv, whereN andM are independent discrete r.v.’s.
The left-distributive property of the dot-produgte does not hold as well as it does in
r.v. theory. In fact, leZ = X + Y be ar.v. withX andY independentr.v.s. As it is easy to
verify, a random sunsy = Z1 + Zo + - - - + Zn, with Z; i.i.d. r.v.s equal in distribution
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to Z, is not equal in distribution t& + S with S = X1 + Xz + --- + Xn, Xi being
i.i.d. r.v’s equal in distribution t&X and withSY| = Y1+ Y2+ -+ Yy, Yi beingi.i.d. r.vs
equal in distribution tor.

Example 2.8 (Randomized Poisson r.v.). Let us consider the Bell polynomial umbxas.
If in the place ofx we put a generic umbra, we get the auxiliary umbra.g whose
factorial moments are

@Bn~a" n=012...

and moments given by the exponential umbral polynomials %¥. [
n
(@B~ Pn(a) ~ Y S(ni)e) n=0,12.... (8)
i=0

Its g.f. is f[e — 1]. The umbrax.8 represents a random sum of independent Poisson
r.v.'s with parameter 1 indexed by an integer My.i.e. a randomized Poisson r.v. with
parametel.

As suggested in13], there is a connection between compound Poisson processes and
polynomial sequence of binomial type, i.e. sequefyggx)} of polynomials with degree
n satisfying the identities
n

POy =3 (T) P () Pn-i ()
for anyn (cf. for instance 9]). Two different approaches can be found 8} §nd in [21].
A natural device to make clear this connection isdhgartition umbrag.«, introduced in
[5]. Its g.f. is exg f (t) — 1] and it suggests interpreting a partition umbra as a compound
Poisson r.v. with parameter 1. As is well-known, a compound Poisson r.v. with parameter
1 is introduced as a random su&y = X3 + X2 + --- + Xy whereN has a Poisson
distribution with parameter 1. The umbgax fits perfectly this probabilistic notion, taking
into consideration that the Bell scalar umbgaplays the role of a Poisson r.v. with
parameter 1. What is more, since a Poisson r.v. with paramé&eembrally represented by
the Bell polynomial umbrx.8, a compound Poisson r.v. with parametds represented
by thepolynomial «-partition umbrax.yr = x.8.« with g.f. exdx(f (t) — 1)]. The name
“partition umbra” has a probabilistic ground. Indeed the parameter of a Poisson r.v. is
usually denoted by = it, with t representing a time interval, so that when this interval
is partitioned into non-overlapping ones, their contributions are stochastically independent
and add tdSy. This last circumstance is umbrally expressed by the relation

X+ Yy).B.a=XB.a+Y.Ba 9)

giving the binomial property for the polynomial sequence representedfy. In terms
of g.f.’'s, the formula ) means that

hx+y(t) = hx(t)hy(t) (10)

wherehy (1) is the g.f. ofx.8.«. Vice versa every g.hy(t) satisfying the equalityl(0) is the
g.f. of a polynomiake-partition umbra. Thex-partition umbra represents the sequence of
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partition polynomials Y, = Yn (a1, a2, . . ., an) (or complete Bell exponential polynomials
[17]),i.e.
n
E[(B.o)"I =) Bni(ana.....an-i11) = Yn(a1, a..... an). (11)

i=0

whereg; are the moments of the umbea Moreover everyr-partition umbra satisfies the
relation

B.a)" ~ o' (B + )L a=ad,n=012,... (12)

and conversely (se&] for a proof). The previous property will allow a useful umbral
characterization of the cumulant umbra (§xollary 4.12in Section 4. The umbras.«

plays a central role also in the umbral representation of the composition of exponential
g.f’s. Indeed, theomposition umbra of « andy is the umbra = y.8.a. The umbra has
g.f.g[f(t) — 1] and moments

n
Elx"1=) 6iBni(as,a ..., ani+1) (13)
i=0

with gi anda moments of the umbrg and« respectively. We denote hy‘~1 the
compositional inverse af, i.e. the umbra having g.ff ~1(t) such thatf ~1[ f (t) — 1] =
f[f~1(t) — 1] = 1+ t. For an intrinsic umbral expression of the compositional inverse
umbra seef], where there is also stated an umbral version of the Lagrange inversion
formula.

Example 2.9 (Randomized Compound Poisson r.v.). As already underlined irfExample

2.8, the umbray.8 represents a randomized Poisson r.v. Hence it is natural to look at
the composition umbra as a compound randomized Poisson r.v., i.e. a random sum indexed
by a randomized Poisson r.v. Moreover, sifges).a = y.(B.«a) (cf. statement (d) of
Proposition 2.7, the previous relation reveals another aspect of this r.v.: the umigar)
generalizes the concept of a random sum of i.i.d. compound Poisson r.v.'s with parameter
1 indexed by an integer r.\X, i.e. a randomized compound Poisson r.v. with random
parameteiX.

Finally, the symbolx" denotes an auxiliary umbra similar to the produtt” - - - «”

wherea’, o”, ..., o’ are a set of distinct umbrae each similar to the umlbraNVe assume
thata 0 is an umbra similar to the unity umbra The moments o&™" are:
El(@™*] = E[(«*)"] = &, k=0,12,..., (14)

i.e. then-th power of the moments of the umbsa Thanks to this notation in5], the
umbral expression of the Bell exponential polynomials was given as follows:

Bn.i(@1. @2, ..., 8n_i11) =~ (?) ol (@) (15)

whenever; # 0 and wherer is the umbra with moments
an+1

_n _
Bl = a(n+1)’

n=12.... (16)
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Table 1
Duality between the singleton umbra and the Bell umbra
Umbra Generating function
x A+0 =14+ 35 [Chy s ] &
X.x @+ 0% = 1+ 102 [Ty stn oxk] &
a.x fllog(1+t)]
X.a 1+ logl f(t)]
-1
p =1 TR R skl
x.B @ _ gy yee, [Zﬂzl s, k)xk] a
ap fe -1
B ef (-1

Example 2.10 (The Central Umbra). We call central umbra the umbraa® having
moments abouty = E[«]. From ), the classical relation between moments and central
moments of a r.v. has the following umbral expression:

n

(Olal)n ~ Z (E) (_1)nfk(a/)ka.(nfk)’ a=co' n= 1,2, ...

k=0
whereE[(a1.u)¥] = a¥ = E[a’X] from (14).

3. The singleton umbra

The singleton umbra plays a role dual to the Bell umbra, even if it has no probabilistic
counterpart. The singleton umbra turns out to be an effective symbolic tool for umbral
representation of some well-known r.v.'s, as well as of cumulants and factorial moments.

Definition 3.1 (The Singleton Umbra). An umbray is said to be a singleton umbra if
Xn:(Sl,n n=1,2,
The g.f. of the singleton umbrais 1+ t.

Example 3.2 (Gammar.v.). The m.g.f. of a Gamma r.v. with parametarandc is
1
(1—ct)a’
This g.f. is umbrally represented by the inverse-af(a.y) (see (ii) of Proposition 2.2
replacingn by a € R).

M(t) =

Table 1highlights the duality between the singleton umjgrand the Bell umbrg.
The connection between the singleton umjprand the Bell umbrg is made clear in
the following proposition.



E. Di Nardo, D. Senato / European Journal of Combinatorics 27 (2006) 394-413 405

Proposition 3.3.Let x be the singleton umbra, g the Bell umbra and u~% the
compositional inverse of the unity umbra u. It follows that

X = U(fl>.,3 = ,3.U<71>, 17)
B.x=u= x.pB. (18)

Proof. The g.f. ofu~Y g.uis 1+ t, sinceu~Y andu are compositional inverses. So
equivalenceX?7) follows by property (a) oProposition 2.7that is,

u<’l>.,3.u =x = x.U
Equivalence18) follows viag.f’'sinTablel O

Distributive properties of the singleton umbra with respect to the sum and the disjoint sum
of umbrae are given in the following.

Proposition 3.4.
x-(a+y)=xatxy (19)
(a+y).x =a.x+y.x. (20)

Proof. Let f(t) be the g.f. ofa and g(t) the g.f. of y. Equivalence 19) follows by
observing that the g.f. of .(« + 8) is 1+ log[ f (t)g(t)] = 1 + log[ f (t)] + log[g(t)], so
it is the g.f. of x.a+x.B. EquivalenceZ0) follows by observing that the g.f. @f+8).x
is f[log(1+t)] + gllog(1 +t)] — 1, thatis, the g.f. of.x+B.x. O

The notion of mixture of r.v.'s has an umbral counterpart in the disjoint suimdeed let
{a }'_, benumbrae andpi}{._; € Rben weights such that

n
Z pi =1

The mixed umbra of {«; }i'_; is the following weighted disjoint sum dé; }i'_;:

y = x.p1.B.a1tx.p2.B.a2+ -+ x.pn.B.an (21)

whereg is the Bell umbra ang is the singleton umbra. Fromi9) equivalenceZ1) can
be rewritten as

y = x.(pr.B.a1+ pz.f.az + - + pn.B.an).

Since the g.f. o[, pi.B.i is exp> (L, pil fi(t) — 1), where fi(t) is the g.f. ofa;,
from Table 1it follows that the g.f. ofy is Zi"zl pi fi (t).

Example 3.5 (Bernoulli Umbral r.v.). Let us consider a Bernoulli r.X of parametermp.
Its m.g.f. isg(t) = q + pe' with g = 1 — p. The Bernoulli umbral r.v. is a mixture of the
umbras and the unity umbra:

£ = x.0.8.e+x.p.p.u.
Recalling thaty.q.8.¢ = ¢, we have
&= yx.p.B.
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Indeed,
E[¢'] = 1+ log[eP©® D] = q + pe'.

Example 3.6 (Binomial Umbral r.v.). As is well-known, any binomial r.v.Y with
parametersy € N, p € [0, 1], is the sum ofn i.i.d. Bernoulli r.v.'s having parameter
p. Then the binomial umbral r.v. is

n.& =n.x.p.p.

The parallelism is evident if we recall that the m.g.f. of a binomial Yvis f(t) =
(g + peHn.

4. The cumulant umbra

For ar.v. having moments, ap, ..., a, and cumulantsy, «2, .. ., kn,
an = Z Cr ler and  «kp = Z d,a, (22)
s s
the sums here are taken over the partitions [j{"l, jg‘a ce, jIL““] of the integen, and
_ n! 1
TG (2)Me - (i)™ mytmgl - mi!
dy = (D" vy —1)!  and vy =mi+mo+ -+ mg
anzl_[aj and Kj-[:l_[Kj.
jer jer

A different formulation of 22) was given by Rota and Shen ihf] by Moebius’ inversion
formula. In this section we show how the umbral calculus simplifies the above expressions,
as well as the recursive formulae for moments in terms of cumulants.

Leta be an umbra with g.ff (t).

Definition 4.1. The cumulant of an umbra is the umbrac, defined by
Ko = X.O
wherey is the singleton umbra.

Definition 4.1gives the umbral version of the second equality28)( Moreover the
first moment of the cumulant umbka is ay, i.e. the first moment of the umbeg being
El«s] = E[x]E[a] = E[a] = a1.

Example 4.2 (Cumulant of the Umbra ¢). Sincee = yx.¢, the umbras is the cumulant
umbra of itself, i.ex, = ¢.

Example 4.3 (Cumulant of the Umbra u). Sincey = y.u, the umbray is the cumulant
umbra of the umbra, i.e.xy = x.

Example 4.4 (Cumulant of the Bell Umbra). Sinceu = x.8 (see (8)), the umbrau is
the cumulant umbra of the Bell umbgai.e.xg = u. FromExample 2.1a Poisson r.v. of
parameter 1 has cumulants equal to 1.
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Proposition 4.5. The cumulant umbra «,, has g.f.
k(t) =1+ log[ f (t)]. (23)
Proof. SeeTablel O

Example 4.6 (Cumulant of the Singleton Umbra). Since 1+ log(1 + t) is the g.f. of the
umbrau‘=Y, this umbra is the cumulant umbra of the umfgrd.e.x, = u{=b.

Example 4.7 (Cumulant of the Bernoulli Umbral r.v.). From Example 3.5the cumulant
umbra of the Bernoulli umbral r.v. ig.(x.p.8) = ut~Y.p.g.

Example 4.8 (Cumulant of the Binomial Umbral r.v.). From Example 3.6 the cumulant
umbra of the Binomial umbral r.v. ig.(n.x.p.B), i.e.
X(X/ p,B/ _"_ X//. p',B// _"_ .. _"_ X///. p'ﬁ///),

wherey’, x”, ..., x"”" are a set oh distinct umbrae each similar to the singleton umpra
while g’, 87, ..., B are a set of distinct umbrae each similar to the Bell umigraFrom
(19) and recallingexamples 2.4nd4.6, it results that

xNx.pB=x.x-pBH+xx".pB '+ Fxx".p.p" =+u" p.g.
This parallels the analogous result in probability theory.
From 23), the moments of the cumulant umhtaare
n dn
(Ka)n = Elky] = [ﬁ

which is equivalent to the definition of threth cumulant of a r.vX having m.g.f.f (t).
To state the explicit version of the second equalityZ8) (

log{ f (t)}}

t=0

n
kn=) (=1)'"'( —D!Bni(as, a, ..., ani+1) (24)
i=1

giving cumulants in terms of moments usually requires laborious computations (cf. for
example 10]). The umbral definition of cumulants allows a simple proof @)
Indeed, since; = u‘~Y .4, the cumulant umbra af is the umbral composition af‘~?

ando:

ke = UV B (25)

and then its moments are given 3). Note that Eq. Z5) is the umbral version of the
second equality inZ2). Finally, equality @4) follows recalling that the moments af 2
are the coefficient of the exponential expansion

00 . ti
_ _ =14 _ i
1+|og(1+t)_1+i;( DI - Dt

Similarly, the three main algebraic properties of cumulants can be easily recovered from
next theorem.
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Theorem 4.9.1tis
(a) (the additivity property)
x(a+y)=xoatx.y, (26)

i.e. the cumulant umbra of a sum of two umbraeis equal to the digoint sum of the two
corresponding cumulant umbrae;
(b) (the semi-invariance under translation property) for anyc € R

x.(e 4+ cu) = x.a+x.c
(c) (the homogeneity property) for anyc € R
x.(Ca) = c(x.a).

Proof. Property (a) follows from19). Property (b) follows fromZ6), settingy = c.u for
anyc € R. Finally, property (c) follows from (b) oProposition 2.7 O

Example 4.10 (Cumulant of the Central Umbra). The sequence of cumulants related to
the central umbra® is the same as the sequencedoexcept that the first cumulant is
equal to 0. Indeed, by the additivity property of the cumulant umbra it is

x.(a —ag.u) = x.a—yx.ay.
The results follows from7).
The umbral version of the first equality i2%) is given in the following theorem.
Theorem 4.11 (Inversion Theorem). Let «, bethe cumulant umbra of «, then
o = By
where 8 isthe Bell umbra.
Proof. We have
Brky=B.xao=Ua=a O

The inversion theorem enables one to calculate the moments of the unfboan its
cumulants. Recallingl(l) it is

an = Ynl(ka)1, (ka)2, ..., (Ka)n] (27)

with a, the n-th moment of the umbra and (ky), the n-th moment of the umbra,.
Eq. 27) is the explicit version of the first equality i2).

Remark 2. The complete Bell polynomials irL() are a polynomial sequence of binomial
type. Since, from the inversion theorem, any umbigithe partition umbra of its cumulant

Ky, it is possible to prove a more general result: every polynomial sequence of binomial
type is completely determined by its sequence of formal cumulants. Indeef] in [

is proved that any polynomial sequence of binomial type represents the moments of a
polynomial umbrax.« and vice versa. So from the inversion theorem any polynomial
sequence of binomial type represents the moments of a polynomial wiyhkg.
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The next corollary follows fromX2) and from the inversion theorem.
Corollary 4.12. If , isthe cumulant umbra of «, then

o™~ kg (kg + )"t (28)
for any nonnegative integer n.

EquivalencesZ8) were assumed by Shen and Rotai6]|[as definition of the cumulant
umbra. In terms of moments, equivalenceg)give

n-1 n—1
an =Z< j >aj(ka)n—j
j=0
that is widely used in statistical setting(.

Example 4.13 (Lévy Process). Let (Xi,t > 0) be a real-valued Lévy process, i.e. a
process starting from 0 and with stationary and independent increments. According to the
Lévy—Khintchine formula (cf.§]), if we assume thak; has a convergent m.g.f. in some
neighbourhood of 0, it is

E[¢’X] = &k® (29)

wherek(#) is the cumulant g.f. oK1. The inversion theorem gives the umbral version of
Eq. 29):

ta =t.8.4q.
4.1. Cumulants of a Poissonr.v's

FromExample 2.9the umbray.S.« corresponds to a compound randomized Poisson
r.v.,i.e.arandomsury = X1+ - -+ Xy with N arandomized Poisson r.v. of parameter a
r.v.Y. In particularx corresponds tX andy corresponds ty. Sincex.(y.f.a) =k, .f.«
the cumulant umbra of the composition®findy is the composition of andk,,. Then
from (13), the cumulants of a compound randomized Poisson r.v. are given by

n
Z kiBn,i(ai, a, ..., an—i+1) (30)
i1

whereg; are the moments of the r.X andk; are the cumulants of the r.¥.. Now set

y = X.Uin y.B.«a. This means to consider a r¥.such thatP(Y = x) = 1. Then, the

random sumSy becomes a compound Poisson r.v. of parameteorresponding to the
polynomiale-partition umbrax.S.«, with « the umbral counterpart of and cumulants

n

Y kiBni(a1, @z, ..., 8n-i+1) ~ Xan. (31)

i=1
Indeed B1) follows from (30) since the moments of x.x are equal to 0, except for the
first, which is equal ta. If x = 1 the cumulant of ther-partition umbra isy, so the
moments ofX are the cumulants of the corresponding compound Poisson r.v. Now, in
X.B.a takea = u. From 31), the cumulants of the Bell polynomial umbxas are equal
to x, as is a Poisson r.v. of paramexer
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Finally, in y.B.a seta = u. The cumulant umbra of.g is «,, .8 with «,, the cumulant
umbra ofy . Its probabilistic counterpart is a randomized Poisson r.v. of parameteiya r.v.
corresponding to the umbnra. From @) the cumulants of a randomized Poisson r.v. of
parameter a r.\ are the moments af, .3, i.e.

Zn: s(n, ik
i=0

with k; the cumulants of the r.\.

5. The factorial umbra

The factorial moments of a r.v. do not play a very prominent role in statistics, but they
provide very concise formulae for the moments of some discrete distributions, such as the
binomial distribution.

Let« be an umbra with g.ff (t).

Definition 5.1. An umbrag, is said to be ai-factorial umbra if
Yo = a.x
wherey is the singleton umbra.

Example 5.2 (e-Factorial Umbra). Sinces = ¢.y, thee-factorial umbra is similar to the
umbrag, i.e. ¢, = ¢.

Example 5.3 (u-Factorial Umbra). Sincey = u.y, theu-factorial umbra is similar to the
umbray, i.e.gy = x.

Example 5.4 (B-Factorial Umbra). Sinceu = B.x from (18), the g-factorial umbra is
similar to the unity umbra, i.e.¢g = u. FromExample 2.1a Poisson r.v. of parameter 1
has factorial moments equal to 1.

Example 5.5 (x-Factorial Umbra). FromExample 4.6itis x.x = u{~Y. They-factorial
umbra turns out to bet=?, i.e.¢, = u=v.

Proposition 5.6. The a-factorial umbra has g.f.
g(t) = fllog1+t)]. (32)
Proof. SeeTablel O

Thea-factorial umbra has moments equal to the factorial moments of the umlasathe
following proposition shows.

Proposition 5.7. Let ¢, be an a-factorial umbra. Then
Pl ~(@n, nN=012....
Proof. By Eq. (6) andDefinition 5.1it is

n
El(¢a)"] = El(. )" = ) _(@kBnk(81,1, 812, .., 81n—kt1) (33)
k=0
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where(a) are the factorial moments of the umlarands; ; are the moments of the umbra
x. By (15) we have

n e
Bnk(81,1, 81,2, ..., 81,n—k+1) = <k) x Kk k.

Since the umbrg has moments equal to 0 agd ~ 1, then

0, ifn>k
Bnk(81,1,681.2, ..., 81 n—k+1) = {1 it i K (34)

Hence the Eq.33) becomeE[(¢,)"1 = (@)n. O

Example 5.8 (Factorial Umbra of the Central Umbra). From property (c) oProposition
2.7,

oy =(@—aU).x =a.x —ax = @u — Paru

with ¥’ = x. Then the factorial umbra of the central umbf is the difference between
the factorial umbra o and the factorial umbra of the umbra having moments equal.to
By (32) its g.f. becomed [log(1 + t)](1 — t)&.,

Example 5.9 (Factorial Moments of the Binomial r.v.). Since the factorial moments char-
acterize a binomial r.v., we show how to evaluate them by umbral methods. As showed in
Example 3.6the umbral counterpart of a binomial r.vrig¢.p.8. Due to (L8) and (7) the
corresponding factorial umbrams(x.p.8).x =n.x.p = p(n.x). lts g.f. is

n )
gt = (L+tp" =D (M) P
j=0 '

so the factorial moments a(®) j pl.If n = 1, the factorial umbraipy and, fromExample
3.5, the first factorial moment of a Bernoulli r.v. is equalpavhile the others are equal to
0.

Example 5.10 (Factorial Umbra of the Cumulant Umbra). If «, is the cumulant umbra of
a, thenk,. x is the factorial cumulant umbra af, with g.f. 1+ log[ f (log(1+1))] by (32).

The following theorem produces the umlarérom its factorial umbrap, .
Theorem 5.11 (Inversion Theorem). Let ¢, be the factorial umbra of «. It is
o =gq.p
with g the Bell umbra.
Proof. By Proposition 3.3
Qu-X =0.x.p=a. O
Corollary 5.12. Let ¢, be the factorial umbra of « and «,, its cumulant umbra. It is

Pa-B = Pka.
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5.1. Factorial moments of a Poissonr.v.s

Since(y.B.a).x = y.B.(py) the factorial umbra of the umbral compositiprg.« is the
umbral composition of and the factorial umbra ef. From (L3) a compound randomized
Poissonr.vSy = X1+ ---+ Xy with N a Poisson r.v. with parameter a iWhas factorial
moments

n
Y OBkl (02, - -, (Wn—k1] (35)
k=1

where(uw); are the factorial moments of the rX. andgx are the moments of the r.V..
Now settingy = x.u in y.B.a, we havegx = xK. Then from 5)

n
Y X Bkl (1, (W2, -, (Win—k+1] (36)
k=1

are the factorial moments of a compound Poisson r.v. with parame$ete = uin x.5.a.
We have(x..U).x = X.8.x = X.u so that the factorial moments gf.« are equals ta"
as well as for its probabilistic counterpart, a Poisson r.v. with parameter

Finally, sete = uin y.B.a. We have(y.B.u).x = y.B.x = y so that the factorial
moments ofy.B are equal to the moments ¢f Then a randomized Poisson r.v. with
parameter a r.W has factorial moments equal to the moments of ther.v.
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