
23 11

Article 10.1.8
Journal of Integer Sequences, Vol. 13 (2010),2

3

6

1

47

Convolution and Sulanke Numbers
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Abstract

We show that the Sulanke numbers appear naturally in certain type of convolutions
of sequences. We obtain explicit formulas for them and study some of their properties.
By generalizing the procedure used to study Sulanke numbers we obtain new sequences
with similar properties.

1 Introduction

The Sulanke numbers sn,m, n,m ∈ Z, (A064861 of The On-Line Encyclopedia of Integer
Sequences) are defined by

sn,m =

{
sn,m−1 + sn−1,m, if n + m is even;
sn,m−1 + 2sn−1,m, if n + m is odd,

together with the initial conditions s0,0 = 1 and sn,m = 0 if n < 0 or m < 0. These numbers
were introduced by R. Sulanke [8], in relation with a problem that involves to the so-called
central Delannoy numbers (A001850 of The On-Line Encyclopedia of Integer Sequences).
(Some comments about these numbers will be given shortly.)

The Sulanke numbers can be viewed in a triangular format as follows:

s0,0 (1)
s0,1 (1) s1,0 (2)

s0,2 (1) s1,1 (3) s2,0 (2)
s0,3 (1) s1,2 (5) s2,1 (8) s3,0 (4)

s0,4 (1) s1,3 (6) s2,2 (13) s3,1 (12) s4,0 (4)
...

...
...

...

1Work partially supported by CONACyT (Mexico), project 49187.
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The rules to fill out this triangle are

sn−1,m sn,m−1

ց + +ւ
sn,m

or
2sn−1,m sn,m−1

ց + +ւ
sn,m

depending if n + m is even or odd, respectively.
In a rectangular format Sulanke numbers can be displayed as follows:

s0,0 (1) s0,1 (1) s0,2 (1) s0,3 (1) s0,4 (1) · · ·
s1,0 (2) s1,1 (3) s1,2 (5) s1,3 (6) s1,4 (8) · · ·
s2,0 (2) s2,1 (8) s2,2 (13) s2,3 (25) s2,4 (33) · · ·
s3,0 (4) s3,1 (12) s3,2 (38) s3,3 (63) s3,4 (129) · · ·
s4,0 (4) s4,1 (28) s4,2 (66) s4,3 (192) s4,4 (321) · · ·

...
...

...
...

...

and the rules to fill out this rectangular array are

sn−1,m

↓
+

sn,m−1 −→ + sn,m

or

2sn−1,m

↓
+

sn,m−1 −→ + sn,m

depending if n + m is even or odd, respectively.
The numbers si,i, i = 0, 1, 2, . . ., corresponding to the vertical central line in the triangular

format, or to the diagonal in the rectangular format, are called central Delannoy numbers.
Sulanke [9] presents a list of 29 configurations counted by the central Delannoy numbers, some
of them related with lattice paths in the integer plane. It turns out that Sulanke numbers
have to do with a bijection between two of these configurations. The central Delannoy
numbers form a subset of the Delannoy numbers, introduced by Henri Delannoy [3] by
the end of the 19th century. (Two nice articles are [1, 2], where one can learn historical,
mathematical, and historical-mathematical aspects of the life and work of H. Delannoy.) For
n,m ∈ Z, the Delannoy numbers dn,m are defined as dn,m = dn−1,m + dn−1,m−1 + dn,m−1,
together with the initial condition d0,0 = 1 and dn,m = 0 if n < 0 or m < 0. Two immediate
consequences of this definition are the following: (1) dn,0 = d0,n = 1, (2) dn,1 = d1,n = 2n+1,
for all n = 0, 1, 2, . . .. One can also see that dn,m = dm,n, so the matrix of Delannoy numbers
is symmetric. Some of the di,j numbers are

1 1 1 1 1 · · ·
1 3 5 7 9
1 5 13 25 41
1 7 25 63 129
1 9 41 129 321
...

. . .
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where rows are labeled by i and columns by j (both non-negative integers). The numbers
in the diagonal di,i = (1, 3, 13, 63, 321, . . .), denoted simply as di, are the central Delannoy
numbers.

An explicit formula for di,j is

di,j =

min(i,j)
∑

k=0

(
i

k

)(
j

k

)

2k, (1)

so the central Delannoy numbers are

di =
i∑

k=0

(
i

k

)2

2k. (2)

Thus, Sulanke numbers si,j are related with Delannoy numbers di,j by si,i = di. In fact,
these two sets of numbers have a larger intersection (as we will see in section 3).

Let us use the Pascal triangle parametrization of the indices n,m in the Sulanke numbers,
so that sn,m stands for the number in the line n (beginning with the 0 line) and in the position
m of that line (beginning with m = 0). (We also set sn,m = 0 if m < 0 or m > n.) Thus we
get a family of sequences labeled by the row number (we use the same notation sn,m for the
sequence in the line n), namely,

s0,m = (1, 0, 0, . . .) ,

s1,m = (1, 2, 0, 0, . . .) ,

s2,m = (1, 3, 2, 0, 0, . . .) ,

s3,m = (1, 5, 8, 4, 0, 0, . . .) ,

and so on. We will see in section 3 that these sequences have some interesting properties
under convolution. For example we have s1,m ∗ s2,m = s3,m and s2,m ∗ s4,m = s6,m (however,
s1,m ∗ s3,m is not equal to s4,m). It turns out that the sn,m numbers are in fact coefficients of
certain polynomials, and that they are naturally involved in certain combinatorial formulas,
some of them involving convolutions of sequences. We also obtain explicit formulas for the
elements of these sequences.

Is there a natural way of generalizing the Sulanke numbers pattern? For example, if we
move from (mod 2) to (mod 3), is there a formula f that involves sn,m−1, sn−1,m, sn−1,m−1,
sn−2,m, sn,m−2, . . . such that

sn,m =







sn,m−1 + sn−1,m, if n + m ≡ 0 (mod 3);
sn,m−1 + 2sn−1,m, if n + m ≡ 1 (mod 3);
f, if n + m ≡ 2 (mod 3),

so that the properties of Sulanke numbers (or the natural generalizations of them) are also
valid in this new case? Can we expect something similar if we move to (mod p), where p is a
given positive integer? We show in section 4 a procedure that does this work. In section 5 we
present two concrete examples in order to see in those particular cases how the generalization
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showed in section 4 works, and in section 6 we present some (also natural) lines on which
this work can be continued, and open questions that remain unanswered in this article as
well. Section 2 is devoted to present the most important facts of the mathematical tool with
we will work in sections 3, 4 and 5.

2 Preliminaries

The main tool with we will be working in this article is the so called “Z transform”, of which
we will recall some important facts in this section. (This transform can be considered as the
discrete equivalent of the Laplace transform. The books [5, 10] devote some chapters to the
theory.) This is a nice tool (as hopefully can be seen in this work) that is seldom used within
mathematical world. However, Z transform is a fruitful tool in engineering studies related to
discrete systems. It is common to find engineering books containing complete “mathematical
chapters” in which this transform is explained. (Ogata’s book [6] is an example.)

The Z transform maps complex sequences a = (a0, a1, a2, . . .) into complex (holomorphic)
functions A : U ⊂ C→ C given by the Laurent series

A (z) =
∞∑

n=0

an

zn
.

The simplest case is the sequence δ = (1, 0, 0, . . .), which Z transform is the constant
function A (z) = 1. If a is an eventually zero sequence, a = (a0, a1, . . . , ak, 0, 0, . . .) say, its
Z transform is the rational function A (z) =

∑k

n=0
an

zn defined in C� {0}. In general, the Z

transform of the sequence a = (a0, a1, a2, . . .) is a holomorphic function defined outside the
closure D of the disk D of convergence of the Taylor series

∑
∞

n=0 anz
n. We will also denote

the Z transform of the sequence a = (an)∞n=0 by Z (an).
We mention some of the most important properties of the Z transform, which we will be

using throughout this work without further comments. Avoiding the details of the regions
of convergence, we have that:

(a) Z is linear and injective.

(b) Advance-shifting property. For k ∈ N we have

Z (an+k) = zk
(

Z (an)− a0 −
a1

z
− · · · −

ak−1

zk−1

)

. (3)

Here an+k is the sequence an+k = (ak, ak+1, . . .).

(c) Delay-shifting property. For k ∈ N we have

Z (an−k) = z−kZ (an) . (4)

Here an−k is the sequence an−k = (0, 0, . . . , 0, a0, a1, a2, . . .) (with k zeros at the begin-
ning).
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(d) Multiplication by the sequence n = (0, 1, 2, . . .). If Z (an) = A (z), then

Z (nan) = −z
d

dz
A (z) . (5)

The proof of these facts are easy exercises left to the reader.
The convolution of the sequence a = (a0, a1, a2, . . .) with the sequence b = (b0, b1, b2, . . .),

denoted by a∗b, is the sequence a∗b = (an ∗ bn)∞n=0, where an∗bn =
∑n

i=0 aibn−i. (Sometimes
we will simply say “the sequence an” when referring to the sequence a = (a0, a1, a2, . . .), so
when we say “the convolution an ∗ bn” we must understand that this is a sequence with
generic term an ∗ bn defined before.) Some easy examples are 1 ∗ 1 = n + 1 and n ∗ 1 =
(

n

2

)
, where 1 is the constant sequence (1, 1, . . .). It is easy to check that convolution is

commutative and associative, and that also distributes over the sum. One can see at once
that the sequence δ = (1, 0, 0, . . .) acts neutrally under convolution, i.e., an ∗ δ = an for
any sequence an. A common expression we will find in this work is an ∗ an ∗ · · · ∗ an,
where an is a given sequence and it convolves with itself k times. We will denote this
convolution as ∗kan. Also we will be facing frequently the convolution of two eventually
zero sequences a = (a0, a1, . . . , am, 0, 0, . . .) and b = (b0, b1, . . . , bl, 0, 0, . . .). In this case we
have that ai ∗ bi =

∑m

j=0 ajbi−j, for i = 0, 1, . . . ,m + l, and ai ∗ bi = 0 for i > m + l.

Equivalently, if we consider the polynomials Pm (z) =
∑m

i=0 aiz
i and Ql (z) =

∑l

i=0 biz
i, then

the product Pm (z) Ql (z) is a polynomial of degree m + l which coefficients are the elements
of the sequence a ∗ b. That is

(
m∑

i=0

aiz
i

)(
l∑

i=0

biz
i

)

=
m+l∑

i=0

(ai ∗ bi) zi.

More generally, if Pmk
(z) =

∑mk

i=0 ak,iz
i, k = 1, 2, . . . , n, are n given polynomials, then

n∏

k=1

Pmk
(z) =

m1+m2+···+mn∑

i=0

(a1,i ∗ a2,i ∗ · · · ∗ an,i) zi,

where

a1,i ∗ a2,i ∗ · · · ∗ an,i =

m1+m2+···+mn−1∑

jn−1=0

· · ·

m1+m2∑

j2=0

m1∑

j1=0

a1,j1a2,j2−j1a3,j3−j2 · · · an,i−jn−1
.

It is not difficult to see that

Z ((a1)n ∗ (a2)n ∗ · · · ∗ (ak)n) = Z ((a1)n)Z ((a2)n) · · · Z ((ak)n) , (6)

(the so called Convolution Theorem), where (a1)n , (a2)n , . . . , (ak)n are given sequences.
Now we list the Z transforms of some sequences which we will be using throughout this

work. We begin with the constant sequence 1, which Z transform is plainly

Z (1) =
∞∑

n=0

1

zn
=

1

1− z−1
=

z

z − 1
, (7)
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valid for |z| > 1. By multiplying 1 times n we get the Z transform of the sequence n

Z (n) = −z
d

dz

z

z − 1
=

z

(z − 1)2 . (8)

Similarly we obtain

Z
(
n2
)

= −z
d

dz

z

(z − 1)2 =
z (z + 1)

(z − 1)3 , (9)

and

Z
(
n3
)

= −z
d

dz

z (z + 1)

(z − 1)3 =
z (z2 + 4z + 1)

(z − 1)4 . (10)

All these transforms are also valid for |z| > 1. We will be also using that, for given p

non-negative integer, the sequence
(

n

p

)
has Z transform

Z

((
n

p

))

=
z

(z − 1)p+1 . (11)

The proof of this fact is an easy induction exercise that we leave for the reader. Note
that if 0 ≤ p0 ≤ p, then we have according to (3) that

Z

((
n + p0

p

))

=
zp0+1

(z − 1)p+1 . (12)

Observe also that for given p1, p2, . . . , pk non-negative integers, we have that (according
to (6) and (11))

Z

((
n

p1

)

∗

(
n

p2

)

∗ · · · ∗

(
n

pk

))

= zk−1 z

(z − 1)p1+p2+···+pk+k
. (13)

Thus, from (3) and (11) we obtain that

(
n

p1

)

∗

(
n

p2

)

∗ · · · ∗

(
n

pk

)

=

(
n + k − 1

p1 + p2 + · · ·+ pk + k − 1

)

. (14)

To end this section, we explore some interesting facts that (13) and (14) offer to us. What
we will do now has the flavor of what we will be doing in sections 3, 4 and 5. We begin by
expanding the polynomial zk−1 in powers of z − 1. We have that

zk−1 =
k−1∑

i=0

(
k − 1

i

)

(z − 1)k−1−i
.

What we want to stress in this expression is that, for each k ∈ N, it produces the sequence
ak,i = (ak,0, ak,1, . . . , ak,k−1, 0, 0, . . .) formed by the coefficients ak,i =

(
k−1

i

)
. Let us write this

expansion as follows:

zk−1 =
k−1∑

i=0

ak,i (z − 1)k−1−i
, (15)
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and let us see how some properties of the numbers ak,i appear naturally, and also some
formulas where they are involved as well. We set ak,i = 0 for i < 0.

From (13) and (15) we have that

Z

((
n

p1

)

∗

(
n

p2

)

∗ · · · ∗

(
n

pk

))

=
k−1∑

i=0

ak,i (z − 1)k−1−i z

(z − 1)p1+p2+···+pk+k

=
k−1∑

i=0

ak,i

z

(z − 1)p1+p2+···+pk+i+1 ,

and then, from (11) we obtain that

(
n

p1

)

∗

(
n

p2

)

∗ · · · ∗

(
n

pk

)

=
k−1∑

i=0

ak,i

(
n

p1 + p2 + · · ·+ pk + i

)

,

or

k−1∑

i=0

(
k − 1

i

)(
n

p1 + p2 + · · ·+ pk + i

)

=

(
n + k − 1

p1 + p2 + · · ·+ pk + k − 1

)

,

which is certainly a nice identity.
Now, by using (15) we can easily obtain that

k∑

i=0

ak+1,i (z − 1)k−i =
k∑

i=0

(ak,i + ak,i−1) (z − 1)k−i
,

and then we conclude that ak+1,i = ak,i + ak,i−1, which is simply the well-known property
(

k

i

)

=

(
k − 1

i

)

+

(
k − 1

i− 1

)

.

Now, for given k1, k2, . . . , kp ∈ N, we plainly have that

zk1−1zk2−1 · · · zkp−1 = z(k1+k2+···+kp−p+1)−1.

From this trivial observation together with (15) we obtain that

ak1,i ∗ ak2,i ∗ · · · ∗ akp,i = ak1+k2+···+kp−p+1,i. (16)

Explicitly (16) looks like

kp−1
∑

jp−1=0

· · ·

k3−1∑

j2=0

k2−1∑

j1=0

(
k1 − 1

i− j1 − j2 − · · · − jp−1

)(
k2 − 1

j1

)(
k3 − 1

j2

)

· · ·

(
kp − 1

jp−1

)

=

(
k1 + k2 + · · ·+ kp − p

i

)

,

which is a version of the also well-known Vandermonde convolution.
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3 Sulanke numbers

We begin by considering the sequence n2 which Z transform (recall (9)) can be written as
follows:

Z
(
n2
)

=
z (z + 1)

(z − 1)3 =
z

(z − 1)2 + 2
z

(z − 1)3 , (17)

which means that (recall (11))

n2 =

(
n

1

)

+ 2

(
n

2

)

. (18)

Now let k be a given natural number and consider the convolution ∗kn2. We have

Z
(
∗kn2

)
=

zk (z + 1)k

(z − 1)3k
= z

zk−1 (z + 1)k

(z − 1)3k
. (19)

Let ak,i, i = 0, 1, . . . , 2k − 1, be the coefficients in the expansion of the polynomial

zk−1 (z + 1)k in powers of z − 1. That is

zk−1 (z + 1)k =
2k−1∑

i=0

ak,i (z − 1)2k−1−i
. (20)

Thus we have

Z
(
∗kn2

)
= z

zk−1 (z + 1)k

(z − 1)3k
= z

∑2k−1
i=0 ak,i (z − 1)2k−1−i

(z − 1)3k
=

2k−1∑

i=0

ak,i

z

(z − 1)k+i+1
,

which in turn implies that

∗kn2 =
2k−1∑

i=0

ak,i

(
n

k + i

)

. (21)

Thus, for each k ∈ N we have the sequence ak,i = (ak,0, ak,1, . . . , ak,2k−1, 0, 0, . . .).
Now let us consider the convolution ∗kn2 ∗ n, which Z transform is

Z
(
∗kn2 ∗ n

)
=

zk (z + 1)k

(z − 1)3k

z

(z − 1)2 = z
zk (z + 1)k

(z − 1)3k+2
. (22)

Let bk,i, i = 0, 1, . . . , 2k, be the coefficients in the expansion of the polynomial zk (z + 1)k

in powers of z − 1. That is

zk (z + 1)k =
2k∑

i=0

bk,i (z − 1)2k−i
. (23)

Thus we have that
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Z
(
∗kn2 ∗ n

)
= z

∑2k

i=0 bk,i (z − 1)2k−i

(z − 1)3k+2
=

2k∑

i=0

bk,i

z

(z − 1)k+i+2
,

from where

∗kn2 ∗ n =
2k∑

i=0

bk,i

(
n

k + i + 1

)

. (24)

Then we have sequences bk,i = (bk,0, bk,1, . . . , bk,2k, 0, 0, . . .) for each k ∈ N. Observe that
(23) makes sense for k = 0 if we simply set b0,0 = 1 (and then we understand (24) in this
case —that is ∗0n2 ∗ n— simply as n). So the sequences bk,i are defined for k non-negative
integers, where b0,i = (1, 0, 0, . . .) is the δ sequence.

Proposition 1. The sequences ak,i and bk,i are related by

bk,i = ak,i + ak,i−1. (25)

ak+1,i = bk,i + 2bk,i−1. (26)

Proof. By using first (23) and then (20) we get

2k∑

i=0

bk,i (z − 1)2k−i = (z − 1 + 1)
2k−1∑

i=0

ak,i (z − 1)2k−1−i

=
2k−1∑

i=0

ak,i (z − 1)2k−i +
2k∑

i=1

ak,i−1 (z − 1)2k−i

=
2k∑

i=0

(ak,i + ak,i−1) (z − 1)2k−i
,

from where (25) follows. Also, from (20) with k replaced by k + 1, we get

2k+1∑

i=0

ak+1,i (z − 1)2k+1−i = (z + 1) zk (z + 1)k

= (z − 1 + 2)
2k∑

i=0

bk,i (z − 1)2k−i

=
2k∑

i=0

bk,i (z − 1)2k+1−i + 2
2k+1∑

i=1

bk,i−1 (z − 1)2k+1−i

=
2k+1∑

i=0

(bk,i + 2bk,i−1) (z − 1)2k+1−i
,

from where (26) follows.
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Thus, we have two kind of sequences, namely ak,i and bk,i, satisfying relations (25) and
(26). We claim that these are precisely Sulanke numbers sn,m. In fact, the elements ak,j,
j = 0, 1, 2, . . . , 2k − 1, correspond to the Sulanke numbers sj,2k−1−j, and the elements bk,j,
j = 0, 1, 2, . . . , 2k, correspond to the Sulanke numbers sj,2k−j. Reciprocally, the Sulanke
numbers sn,m with n+m even, correspond to the elements bn+m

2
,n, and the Sulanke numbers

sn,m with n + m odd, correspond to the elements an+m+1

2
,n.

We will refer to the first index of the sequences ak,i and bk,i as the level of the sequence.
Then, for each level k ∈ N we have two types of sequences, namely ak,i and bk,i. Relation
(25) tells us how we can obtain the sequence bk,i in terms of the sequence ak,i of the same
level. And (26) tells us how we can move from level k to level k+1 (we use the last sequence
of the level k —namely bk,i— to construct the first sequence of the level k + 1 —namely
ak+1,i—). In fact, we can begin with the sequence b0,i = (1, 0, 0, . . .) in the level k = 0, and
use (26) to move to level 1. We get

a1,i = b0,i + 2b0,i−1 = (1, 0, 0, . . .) + 2 (0, 1, 0, 0, . . .) = (1, 2, 0, 0, . . .) .

(If one wish, one can consider this sequence as the starting point, since this is (18).) Now,
from (25) we get the sequence b1,i

b1,i = a1,i + a1,i−1 = (1, 2, 0, 0, . . .) + (0, 1, 2, 0, 0, . . .) = (1, 3, 2, 0, 0, . . .) .

With (26) we move from level 1 to level 2 using b1,i. We have that

a2,i = b1,i + 2b1,i−1 = (1, 3, 2, 0, 0, . . .) + 2 (0, 1, 3, 2, 0, 0, . . .) = (1, 5, 8, 4, 0, 0, . . .) ,

and we complete level 2 with (25)

b2,i = a2,i + a2,i−1 = (1, 5, 8, 4, 0, 0, . . .) + (0, 1, 5, 8, 4, 0, 0, . . .) = (1, 6, 13, 12, 4, 0, 0, . . .) ,

and so on.
Summarizing, the steps we follow for obtaining all the sequences ak,i and bk,i are

b0,i

(26)
−→ a1,i

(25)
−→ b1,i

︸ ︷︷ ︸

Level 1

(26)
−→ a2,i

(25)
−→ b2,i

︸ ︷︷ ︸

Level 2

(26)
−→ a3,i −→ · · · ,

Some of the first sequences are

b0,i 1 0 0 . . .

a1,i 1 2 0 0 . . .

b1,i 1 3 2 0 0 . . .

a2,i 1 5 8 4 0 0 . . .

b2,i 1 6 13 12 4 0 0 . . .

a3,i 1 8 25 38 28 8 0 0 . . .

b3,i 1 9 33 63 66 36 8 0 0 . . .

a4,i 1 11 51 129 192 168 80 16 0 0 . . .

b4,i 1 12 62 180 321 360 248 96 16 0 0 . . .
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It is possible to obtain the sequence ak+1,i using only the sequence of the same type ak,i

of the previous level (and similarly for bk,i). This is what the following corollary says.

Corollary 2. The following formulas hold

ak+1,i = ak,i + 3ak,i−1 + 2ak,i−2. (27)

bk+1,i = bk,i + 3bk,i−1 + 2bk,i−2. (28)

Proof. Combine (25) and (26) to get

ak+1,i = bk,i + 2bk,i−1 = ak,i + ak,i−1 + 2 (ak,i−1 + ak,i−2) = ak,i + 3ak,i−1 + 2ak,i−2.

Formula (28) is obtained similarly.

Thus, beginning with a1,i = (1, 2, 0, 0, . . .) we obtain

a2,i = a1,i + 3a1,i−1 + 2a1,i−2 = (1, 5, 8, 4, 0, 0, . . .) ,

and then

a3,i = a2,i + 3a2,i−1 + 2a2,i−2 = (1, 8, 25, 38, 28, 8, 0, 0, . . .) ,

and so on. Similarly, from with b0,i = (1, 0, 0, . . .) we obtain

b1,i = b0,i + 3b0,i−1 + 2b0,i−2 = (1, 3, 2, 0, 0, . . .) ,

and then

b2,i = b1,i + 3b1,i−1 + 2b1,i−2 = (1, 6, 13, 12, 4, 0, 0, . . .) ,

and so on.
Let us consider the numbers bk,k. It is clear from (23) that

bk,k =
1

k!

dk

dzk

∣
∣
∣
∣
z=1

zk (z + 1)k
.

Since

dk

dzk

(

zk (z + 1)k
)

=
k∑

j=0

(
k

j

)
(
zk
)(j)
(

(z + 1)k
)(k−j)

=
k∑

j=0

(
k

j

)
k!

(k − j)!

k!

j!
zk−j (z + 1)j

,

we have that

bk,k =
1

k!

k∑

j=0

(
k

j

)
k!

(k − j)!

k!

j!
zk−j (z + 1)j

∣
∣
∣
∣
∣
z=1

=
k∑

j=0

(
k

j

)2

2j,

11



which are the central Delannoy numbers. A common expression for these numbers is

bk,k =
k∑

j=0

(
k

j

)(
k + j

j

)

. (29)

(See [4, p. 48], Formula 2.8. The identity used here is an especial case.) Moreover, since
ak+1,k = bk,k + 2bk,k−1, we see that the numbers ak+1,k, k = 0, 1, 2, . . ., are the elements
above (or bellow) the diagonal formed by the central Delannoy numbers (called subcentral
Delannoy numbers).

The following corollary tells us what is the sum of the elements of each of the sequences
ak,i and bk,i.

Corollary 3. The sum of the elements of the sequences ak,i and bk,i is given by

2k−1∑

j=0

ak,j =
1

2
6k ,

2k∑

j=0

bk,j = 6k. (30)

Proof. These formulas are essentially (20) and (23), with z = 2. However, observe that we
can also use formulas of corollary 2 to obtain

2k+1∑

i=0

ak+1,i =
2k+1∑

i=0

(ak,i + 3ak,i−1 + 2ak,i−2) = 6
2k−1∑

i=0

ak,i.

That is, we have

2k−1∑

i=0

ak,i = 6k−1

1∑

i=0

a1,i = 6k−1 (1 + 2) =
1

2
6k.

Similarly one obtains

2k∑

i=0

bk+1,i = 6k−1

2∑

i=0

b1,i = 6k−1 (1 + 3 + 2) = 6k.

Now we establish the convolution relations between sequences ak,i and bk,i.

Proposition 4. Let k1, k2 ∈ N be given. The sequences ak,i and bk,i satisfy

ak1,i ∗ bk2,i = ak1+k2,i. (31)

and
bk1,i ∗ bk2,i = bk1+k2,i. (32)

12



Proof. From (

zk1−1 (z + 1)k1

)(

zk2 (z + 1)k2

)

= zk1+k2−1 (z + 1)k1+k2 ,

together with (20) and (23) we get at once (31). Similarly, from

(

zk1 (z + 1)k1

)(

zk2 (z + 1)k2

)

= zk1+k2 (z + 1)k1+k2 ,

together with (23) we get (32).

Observe that in particular we have bk,i ∗ b0,i = bk,i and ak,i ∗ b0,i = ak,i, as expected,
since b0,i = (1, 0, 0, . . .) acts neutrally under convolution. Also note that bk,i = ∗kb1,i and
ak,i = a1,i ∗

k−1 b1,i, which means that beginning with the sequences a1,i = (1, 2, 0, 0, . . .) and
b1,i = (1, 3, 2, 0, 0, . . .), it is possible to generate the family of the sequences ak,i and bk,i by
convolutions among them.

Finally we will obtain explicit formulas for the elements of the sequences ak,i and bk,i.

Proposition 5. The elements of the sequences ak,i and bk,i can be obtained from the following
formulas:

ak,i =
k∑

j=0

(
k − 1

2k − 1− i− j

)(
k

j

)

2k−j. (33)

bk,i =
k∑

j=0

(
k

2k − i− j

)(
k

j

)

2k−j. (34)

Proof. According to (20) we have that

2k−1∑

i=0

ak,i (z − 1)2k−1−i = zk−1 (z + 1)k

=

(
k−1∑

i=0

(
k − 1

i

)

(z − 1)i

)(
k∑

j=0

(
k

j

)

(z − 1)j 2k−j

)

=
k−1∑

i=0

k∑

j=0

(
k − 1

i

)(
k

j

)

(z − 1)i+j 2k−j

=
2k−1∑

i=0

(
k∑

j=0

(
k − 1

2k − 1− i− j

)(
k

j

)

2k−j

)

(z − 1)2k−1−i
,

13



from where (33) follows. Similarly, from (23) we have that

2k∑

i=0

bk,i (z − 1)2k−i = zk (z + 1)k

=

(
k∑

i=0

(
k

i

)

(z − 1)i

)(
k∑

j=0

(
k

j

)

(z − 1)j 2k−j

)

=
k∑

i=0

k∑

j=0

(
k

i

)(
k

j

)

(z − 1)i+j 2k−j

=
2k∑

i=0

(
k∑

j=0

(
k

2k − i− j

)(
k

j

)

2k−j

)

(z − 1)2k−i
,

from where (34) follows.

Observe that from (34) we obtain at once that

bk,k =
k∑

j=0

(
k

k − j

)(
k

j

)

2k−j,

which are the central Delannoy numbers.
Thus, in this section we have proved the following theorem.

Theorem 6. Let b0,i = (1, 0, 0, . . .) be given. For k ∈ N, define the sequences ak,i =
(ak,0, ak,1, . . . , ak,2k−1, 0, 0, . . .) and bk,i = (bk,0, bk,1, . . . , bk,2k, 0, 0, . . .) by means of the the
relations

bk,i = ak,i + ak,i−1,

ak+1,i = bk,i + 2bk,i−1.

(a) There exist a bijection between the elements of the sequences ak,i and bk,i and Sulanke
numbers.

(b) For i = 0, 1, 2, . . ., the numbers bi,i are the central Delannoy numbers, and the numbers
ai+1,i are the subcentral Delannoy numbers.

(c) The elements of the sequences ak,i and bk,i are involved in the following formulas

∗kn2 =
2k−1∑

i=0

ak,i

(
n

k + i

)

,

∗kn2 ∗ n =
2k∑

i=0

bk,i

(
n

k + i + 1

)

.

14



(d) The sequences ak,i and bk,i satisfy the following convolution relations

bk1,i ∗ bk2,i = bk1+k2,i,

ak1,i ∗ bk2,i = ak1+k2,i.

(e) The following formulas for the sum of the elements of each sequence hold

2k−1∑

i=0

ak,i =
1

2
6k ,

2k∑

i=0

bk,i = 6k.

(f) The elements of the sequences ak,i and bk,i can be calculated explicitly as follows:

ak,i =
k∑

j=0

(
k − 1

2k − 1− i− j

)(
k

j

)

2k−j,

bk,i =
k∑

j=0

(
k

2k − i− j

)(
k

j

)

2k−j.

4 The general case

In this section we will follow the procedure we used to study Sulanke numbers in previous
section, but now in the natural generalized setting, in which the sequence n2 is replaced by
the sequence np, where p is a given positive integer. We begin with the following lemma.

Lemma 7. For given p ∈ N, there exists a polynomial Qp−1 (z) (of degree p− 1) such that

Z (np) =
zQp−1 (z)

(z − 1)p+1 . (35)

Proof. By induction. For p = 1 it is clear (Q0 (z) = 1). Now

Z
(
np+1

)
= −z

d

dz
Z (np) =

zQp (z)

(z − 1)p+2 ,

where
Qp (z) = (1 + pz) Qp−1 (z) + z (1− z) Q′

p−1 (z)

is a polynomial of degree p, as wanted.

Remark 8. Lemma 7 has a nice surprise in its proof. The formula satisfied by the
polynomials Qp (z) shows us that these are the famous Eulerian polynomials (see Riordan’s
book [7, p. 215]). In fact, if we write Qp (z) =

∑p

i=0 ap,iz
i, we easily see that the coefficients

ap,i satisfy the well-known relation ap,i = (p + 1− i) ap−1,i−1 +(1 + i) ap−1,i corresponding to
Eulerian numbers (A008292 of The On-Line Encyclopedia of Integer Sequences). In section
6 we will comment some consequences of this fact.
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We define the coefficients p(a1)1,i by

Qp−1 (z) =

p−1
∑

i=0

p(a1)1,i (z − 1)p−1−i
. (36)

Thus we have

Z (np) =
zQp−1 (z)

(z − 1)p+1 =

p−1
∑

i=0

p(a1)1,i

z

(z − 1)i+2 ,

and then

np =

p−1
∑

i=0

p(a1)1,i

(
n

i + 1

)

. (37)

The following table contains the sequences p(a1)1,i for p ≤ 4.

p(a1)1,i =
(

p(a1)1,0 , . . . ,p(a1)1,p−1 , 0, 0, . . .
)

np =
∑p−1

i=0
p(a1)1,i

(
n

i + 1

)

1(a1)1,i = (1, 0, 0, . . .) n =

(
n

1

)

2(a1)1,i = (1, 2, 0, 0, . . .) n2 =

(
n

1

)

+ 2

(
n

2

)

3(a1)1,i = (1, 6, 6, 0, 0, . . .) n3 =

(
n

1

)

+ 6

(
n

2

)

+ 6

(
n

3

)

4(a1)1,i = (1, 14, 36, 24, 0, 0, . . .) n4 =

(
n

1

)

+ 14

(
n

2

)

+ 36

(
n

3

)

+ 24

(
n

4

)

Table 1. The sequences p(a1)1,i .

Now let k ∈ N be given. We have

Z
(
∗knp

)
= z

zk−1Qk
p−1 (z)

(z − 1)k(p+1)
. (38)

Define the coefficients p(a1)k,i by

zk−1Qk
p−1 (z) =

kp−1
∑

i=0

p(a1)k,i (z − 1)kp−1−i
. (39)

Then we write (38) as

Z
(
∗knp

)
=

kp−1
∑

i=0

p(a1)k,i

z

(z − 1)k+i+1
,
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which implies that

∗knp =

kp−1
∑

i=0

p(a1)k,i

(
n

k + i

)

. (40)

Now, for 1 ≤ l ≤ p− 1 we have

Z
(
∗knp ∗ nl

)
=

zkQk
p−1 (z)

(z − 1)k(p+1)

zQl−1 (z)

(z − 1)l+1
= z

zkQk
p−1 (z) Ql−1 (z)

(z − 1)k(p+1)+l+1
, (41)

and define the coefficients p(al+1)k,i by

zkQk
p−1 (z) Ql−1 (z) =

kp+l−1
∑

i=0

p(al+1)k,i (z − 1)kp+l−1−i
. (42)

Then

Z
(
∗knp ∗ nl

)
=

kp+l−1
∑

i=0

p(al+1)k,i

z

(z − 1)k+i+2
,

which implies that

∗knp ∗ nl =

kp+l−1
∑

i=0

p(al+1)k,i

(
n

k + i + 1

)

. (43)

In particular, if we set l = 1 in (42) we get

zkQk
p−1 (z) =

kp
∑

i=0

p(a2)k,i (z − 1)kp−i
, (44)

and (43) is in this case

∗knp ∗ n =

kp
∑

i=0

p(a2)k,i

(
n

k + i + 1

)

. (45)

Thus, for each power p ∈ N, p ≥ 2, we have the following family of p sequences, labeled
by the level k ∈ N

17



p(a1)k,i =
(

p(a1)k,0 , . . . ,p(a1)k,kp−1 , 0, 0, . . .
)

,

p(a2)k,i =
(

p(a2)k,0 , . . . ,p(a2)k,kp , 0, 0, . . .
)

,

p(a3)k,i =
(

p(a3)k,0 , . . . ,p(a3)k,kp+1 , 0, 0, . . .
)

,

...

p(ap−1)k,i
=
(

p(ap−1)k,0 , . . . ,p(ap−1)k,(k+1)p−2 , 0, 0, . . .
)

,

p(ap)k,i
=
(

p(ap)k,0 , . . . ,p(ap)k,(k+1)p−1 , 0, 0, . . .
)

.

If in (42) we set k = 0 we get

Ql−1 (z) =
l−1∑

i=0

p(al+1)0,i (z − 1)l−1−i
,

and then, by comparing with (36) we see that the level k = 0 of the sequences p(al+1)k,i,

1 ≤ l ≤ p−1, correspond to the level k = 1 of the sequences l(a1)1,i. That is, for each p ∈ N,
p ≥ 2, the beginning of the families of sequences p(am)k,i, m = 1, 2, . . . , p, looks as follows:

p(a2)0,i = 1(a1)1,i = (1, 0, 0, ) ,

p(a3)0,i = 2(a1)1,i = (1, 2, 0, 0, . . .) ,

p(a4)0,i = 3(a1)1,i = (1, 6, 6, 0, 0, . . .) ,

...

p(ap)0,i
= p−1(a1)1,i =

(
p−1(a1)1,0 , . . . ,p−1(a1)1,p−2 , 0, 0, . . .

)

,

↓ move to level 1

p(a1)1,i =
(

p(a1)1,0 , . . . ,p(a1)1,p−1 , 0, 0, . . .
)

,

p(a2)1,i =
(

p(a2)1,0 , . . . ,p(a2)1,p−1 ,p(a2)1,p , 0, 0, . . .
)

,

...

Proposition 9. The sequences p(am)k,i, m = 1, 2, . . . , p, are related as follows:
First,

p(a2)k,i = p(a1)k,i + p(a1)k,i−1 . (46)

For 2 ≤ l ≤ p− 1 we have

p(al+1)k,i =
l−1∑

j=0

(
l(a1)1,j

)(
p(a2)k,i−j

)

, (47)
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Finally,

p(a1)k+1,i =

p−1
∑

j=0

(
p(a1)1,j

)(
p(a2)k,i−j

)

. (48)

Proof. From (44) and (39) we get

kp
∑

i=0

p(a2)k,i (z − 1)kp−i = z
(
zk−1Qk

p−1 (z)
)

= (z − 1 + 1)

kp−1
∑

i=0

p(a1)k,i (z − 1)kp−1−i

=

kp−1
∑

i=0

p(a1)k,i (z − 1)kp−i +

kp
∑

i=1

p(a1)k,i−1 (z − 1)kp−i

=

kp
∑

i=0

(
p(a1)k,i + p(a1)k,i−1

)

(z − 1)kp−i
,

which shows (46). From (42) and (44) we get

kp+l−1
∑

i=0

p(al+1)k,i (z − 1)kp+l−i−1 =
(
zkQk

p−1 (z)
)
Ql−1 (z)

=

kp
∑

i=0

p(a2)k,i (z − 1)kp−i

l−1∑

j=0

l(a1)1,j (z − 1)l−1−j

=

kp
∑

i=0

l−1∑

j=0

(
l(a1)1,j

)(
p(a2)k,i

)

(z − 1)kp+l−1−i−j

=

kp+l−1
∑

i=0

(
l−1∑

j=0

(
l(a1)1,j

)(
p(a2)k,i−j

)
)

(z − 1)kp+l−i−1
,

from where (47) follows. From (39) (with k replaced by k + 1), together with (36) and (44)
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we have that
(k+1)p−1
∑

i=0

p(a1)k+1,i (z − 1)(k+1)p−1−i = zkQk+1
p−1 (z)

= Qp−1 (z)
(
zkQk

p−1 (z)
)

=

(
p−1
∑

j=0

p(a1)1,j (z − 1)p−1−j

)(
kp
∑

i=0

p(a2)k,i (z − 1)kp−i

)

=

kp
∑

i=0

p−1
∑

j=0

(
p(a1)1,j

)(
p(a2)k,i

)

(z − 1)(k+1)p−1−i−j

=

(k+1)p−1
∑

i=0

p−1
∑

j=0

(
p(a1)1,j

)(
p(a2)k,i−j

)

(z − 1)(k+1)p−1−i
,

which proves (48).

Thus, beginning with the sequence p(a1)k,i, we use (46) to construct the sequence p(a2)k,i.

Using this later sequence, together with the sequences l(a1)1,j of the level 1 of previous
powers l, l = 2, 3, . . . , p − 1, we construct the sequences p(a3)k,i ,

p(a4)k,i , . . . ,
p(ap)k,i

with
(47). Finally, with (48) we move from the level k to the level k + 1, constructing the first
sequence of this new level, namely p(a1)k+1,i. And thus a new story begins at the level k +1:
Following the relations (46) and (47) we construct the remaining p− 1 sequences of the new
level k + 1. Observe that (47) is consistent with the fact p(al+1)0,i = l(a1)1,i already noticed,
since p(a2)0,i = (1, 0, 0, . . .).

We can write the sequences p(am)k,i, m = 1, 2, . . . , p, in a “Sulanke style” as follows:

sm,n =







sm,n−1 + sm−1,n, if m + n ≡ 0 (mod p);
sm,n−1 + 2sm−1,n, if m + n ≡ 1 (mod p);
sm,n−2 + 6sm−1,n−1 + 6sm−2,n, if m + n ≡ 2 (mod p);
...
p(a1)1,0 sm,n−p+1 + p(a1)1,1 sm−1,n−p+2

+ · · ·+ p(a1)1,p−1 sm−p+1,n
, if m + n ≡ (p− 1) (mod p),

together with the initial condition s0,0 = 1, and the fact that sm,n = 0 if m < 0 or n < 0.
The correspondence with our sequences p(am)k,i, m = 1, 2, . . . , p, is

p(a2)k,i ←→ si,kp−i

p(a3)k,i ←→ si,kp+1−i

p(a4)k,i ←→ si,kp+2−i

...
p(ap)k,i

←→ si,(k+1)p−2−i

p(a1)k,i ←→ si,kp−1−i
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Corollary 10. By means of the sequence p(a2)1,i of level 1, we can construct each sequence
p(am)k+1,i, m = 1, 2, 3, . . . , p, of level k + 1 using only the sequence of the same type p(am)k,i

of the previous level k, as follows:

p(am)k+1,i =

p
∑

j=0

(
p(a2)1,j

)(
p(am)k,i−j

)

. (49)

Proof. By substituting (46) in (48) we get

p(a1)k+1,i =

p−1
∑

j=0

(
p(a1)1,j

)(
p(a2)k,i−j

)

=

p−1
∑

j=0

(
p(a1)1,j

)(
p(a1)k,i−j + p(a1)k,i−j−1

)

=

p
∑

j=0

(
p(a1)1,j + p(a1)1,j−1

)(
p(a1)k,i−j

)

=

p
∑

j=0

(
p(a2)1,j

)(
p(a1)k,i−j

)

,

which proves (49) for m = 1 . Now, we use (46) and the case m = 1 previously proved to
obtain

p(a2)k+1,i = p(a1)k+1,i + p(a1)k+1,i−1

=

p
∑

j=0

(
p(a2)1,j

)(
p(a1)k,i−j + p(a1)k,i−j−1

)

=

p
∑

j=0

(
p(a2)1,j

)(
p(a2)k,i−j

)

,

which proves (49) for m = 2. For 2 ≤ l ≤ p − 1 use (47) and the case m = 2 previously
proved to get

p(al+1)k+1,i =
l−1∑

j=0

(
l(a1)1,j

)(
p(a2)k+1,i−j

)

=
l−1∑

j=0

(
l(a1)1,j

) p
∑

s=0

(
p(a2)1,s

)(
p(a2)k,i−j−s

)

=

p
∑

s=0

(
p(a2)1,s

) l−1∑

j=0

(
l(a1)1,j

)(
p(a2)k,i−j−s

)

=

p
∑

s=0

(
p(a2)1,s

)(
p(al+1)k,i−s

)

,

as wanted.
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Corollary 11. Let us denote the sum
∑p

j=0
p(a2)1,j by pS2. The sum of the elements of the

sequence p (am)k,i can be calculated as follows:
For m = 1

kp−1
∑

i=0

p(a1)k,i =
1

2
(pS2)

k
. (50)

For m = 2, 3, . . . , p
kp+m−2
∑

i=0

p(am)k,i = Qm−2 (2) (pS2)
k
. (51)

Proof. If in (45) we substitute l by m− 1 and set z = 2, we obtain

kp+m−2
∑

i=0

p(am)k,i = 2kQk
p−1 (2) Qm−2 (2) , (52)

where m = 1, 2, . . . , p. In particular if we set m = 2 we get

kp
∑

i=0

p(a2)k,i = 2kQk
p−1 (2) = (pS2)

k
. (53)

(since Q0 (z) = 1). Combining these two expressions we obtain (51). From (53) and (39) we
see at once that (50) holds.

Observe that by using (52) and (53) we can write

kp+m−2
∑

i=0

p(am)k,i = (pS2)
k−1 2Qp−1 (2) Qm−2 (2) ,

and then (again from (52) with k = 1)

kp+m−2
∑

i=0

p(am)k,i = (pS2)
k−1

p+m−2
∑

i=0

p(am)1,i . (54)

Thus, by knowing pS2 and the value of the sum of the elements of the sequence p(am)1,i

at the level k = 1, we can obtain the sum of the elements of the sequence p(am)k,i at the
level k.
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We comment that it is possible to obtain (54) from (49) as follows:

kp+m−2
∑

i=0

p(am)k,i =

kp+m−2
∑

i=0

p
∑

j=0

(
p(a2)1,j

)(
p(am)k−1,i−j

)

=

p
∑

j=0

p(a2)1,j

kp+m−2
∑

i=0

p(am)k−1,i−j

=

p
∑

j=0

p(a2)1,j

kp+m−2
∑

i=j

p(am)k−1,i−j

=

(
p
∑

j=0

p(a2)1,j

)



(k−1)p+m−2
∑

i=0

p(am)k−1,i



 ,

from where we obtain (54).

Proposition 12. Let k1, k2 ∈ N be given. The following convolution relations hold

p(a1)k1,i ∗
p(a2)k2,i = p(a1)k1+k2,i , (55)

p(a2)k1,i ∗
p(a2)k2,i = p(a2)k1+k2,i , (56)

and, for 2 ≤ l ≤ p− 1
p(al+1)k1,i ∗

p(a2)k2,i = p(al+1)k1+k2,i . (57)

Proof. From (39) and (44) we see that

(
zk1−1Qk1

p−1 (z)
) (

zk2Qk2

p−1 (z)
)

= zk1+k2−1Qk1+k2

p−1 (z) .

This shows (55). By using (44) we also have

(
zk1Qk1

p−1 (z)
) (

zk2Qk2

p−1 (z)
)

= zk1+k2Qk1+k2

p−1 (z) ,

which shows (56).Now, if 2 ≤ l ≤ p− 1 we use (42) and (44) to write

(
zk1Qk1

p−1 (z) Ql−1 (z)
) (

zk2Qk2

p−1 (z)
)

= zk1+k2Qk1+k2

p−1 (z) Ql−1 (z) ,

from where (57) follows.

5 Cases p = 3 and p = 4

We follow the same steps of previous section in the cases p = 3 and p = 4.
In the case p = 3 we have

Z
(
n3
)

=
z (z2 + 4z + 1)

(z − 1)4 . (58)
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Since z2 + 4z + 1 = (z − 1)2 + 6 (z − 1) + 6, we have the first sequence 3(a1)1,i =
(1, 6, 6, 0, 0, . . .). Thus

Z
(
n3
)

=
z

(z − 1)2 + 6
z

(z − 1)3 + 6
z

(z − 1)4 ,

and then

n3 =

(
n

1

)

+ 6

(
n

2

)

+ 6

(
n

3

)

. (59)

For k ∈ N we have that

Z
(
∗kn3

)
= z

zk−1 (z2 + 4z + 1)
k

(z − 1)4k
,

and we define the coefficients 3(a1)k,i by

zk−1
(
z2 + 4z + 1

)k
=

3k−1∑

i=0

3(a1)k,i (z − 1)3k−1−i
. (60)

Then

Z
(
∗kn3

)
=

3k−1∑

i=0

3(a1)k,i

z

(z − 1)k+i+1
,

which means that

∗kn3 =
3k−1∑

i=0

3(a1)k,i

(
n

k + i

)

. (61)

Now, from the sequence ∗kn3 ∗ n, which has Z transform

Z
(
∗kn3 ∗ n

)
= z

zk (z2 + 4z + 1)
k

(z − 1)4k+2
,

we define the coefficients 3(a2)k,i by

zk
(
z2 + 4z + 1

)k
=

3k∑

i=0

3(a2)k,i (z − 1)3k−i
. (62)

When k = 0 we have 3(a2)0,0 = 1, so the sequence 3(a2)0,i is 3(a2)0,i = (1, 0, 0, . . .). Then
we have

Z
(
∗kn3 ∗ n

)
=

3k∑

i=0

3(a2)k,i

z

(z − 1)k+i+2
,
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from where

∗kn3 ∗ n =
3k∑

i=0

3(a2)k,i

(
n

k + i + 1

)

. (63)

Next we consider the sequence ∗kn3 ∗ n2 , which has Z transform

Z
(
∗kn3 ∗ n2

)
= z

zk (z2 + 4z + 1)
k
(z + 1)

(z − 1)4k+3
,

and define 3(a3)k,i by

zk
(
z2 + 4z + 1

)k
(z + 1) =

3k+1∑

i=0

3(a3)k,i (z − 1)3k+1−i
. (64)

When k = 0 the polynomial zk (z2 + 4z + 1)
k
(z + 1) is equal to z + 1 = (z − 1) + 2, so

we set 3(a3)0,0 = 1 and 3(a3)0,1 = 2. Thus 3(a3)0,i = (1, 2, 0, 0, . . .). Then we have

Z
(
∗kn3 ∗ n2

)
=

3k+1∑

i=0

3(a3)k,i

z

(z − 1)k+i+2
,

which means that

∗kn3 ∗ n2 =
3k+1∑

i=0

3(a3)k,i

(
n

k + i + 1

)

. (65)

Now we establish relations among the sequences 3(a1)k,i , 3(a2)k,i and 3(a3)k,i. From (60)
and (62) we have

3k∑

i=0

3(a2)k,i (z − 1)3k−i = z

3k−1∑

i=0

3(a1)k,i (z − 1)3k−1−i
,

and from here we obtain that

3(a2)k,i = 3(a1)k,i + 3(a1)k,i−1 . (66)

Now, by from (62) and (64) we get

3k+1∑

i=0

3(a3)k,i (z − 1)3k+1−i = (z + 1)
3k∑

i=0

3(a2)k,i (z − 1)3k−i
,

and from here we get

3(a3)k,i = 3(a2)k,i + 2
(

3(a2)k,i−1

)

. (67)

Finally, from (60) (with k replaced by k + 1) and (62) we have that

25



3k+2∑

i=0

3(a1)k+1,i (z − 1)3k+2−i =
(
z2 + 4z + 1

)
3k∑

i=0

3(a2)k,i (z − 1)3k−i
,

and from this expression we get

3(a1)k+1,i = 3(a2)k,i + 6
(

3(a2)k,i−1

)

+ 6
(

3(a2)k,i−2

)

. (68)

Thus we have three kind of sequences 3(a1)k,i ,
3(a2)k,i and 3(a3)k,i related as follows:

3(a2)k,i = 3(a1)k,i + 3(a1)k,i−1 ,

3(a3)k,i = 3(a2)k,i + 2
(

3(a2)k,i−1

)

,

3(a1)k+1,i = 3(a2)k,i + 6
(

3(a2)k,i−1

)

+ 6
(

3(a2)k,i−2

)

.

We can begin with 3(a2)0,i = (1, 0, 0, . . .), and then use (67) to obtain 3(a3)0,i = 3(a2)k,i +

2
(

3(a2)k,i−1

)

= (1, 0, 0, . . .) + 2 (0, 1, 0, 0, . . .) = (1, 2, 0, 0, . . .). Now we move to level 1 with

(68)

3(a1)1,i = 3(a2)0,i + 6
(

3(a2)0,i−1

)

+ 6
(

3(a2)0,i−2

)

= (1, 6, 6, 0, 0, . . .) .

(This sequence is (59) and can be taken as the starting point.) Continuing with the level
k = 1 we have according to (66) that

3(a2)1,i = 3(a1)1,i + 3(a1)1,i−1 = (1, 7, 12, 6, 0, 0, . . .) ,

and according to (67)

3(a3)1,i = 3(a2)1,i + 2
(

3(a2)1,i−1

)

= (1, 9, 26, 30, 12, 0, 0, . . .) ,

and now we move to level k = 2 with (68)

3(a1)2,i = 3(a2)1,i + 6
(

3(a2)1,i−1

)

+ 6
(

3(a2)1,i−2

)

= (1, 13, 60, 120, 108, 36, 0, 0, . . .) ,

and son on. The first sequences are
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3(a2)0,i 1 0 0 . . .
3(a3)0,i 1 2 0 0 . . .
3(a1)1,i 1 6 6 0 0 . . .
3(a2)1,i 1 7 12 6 0 0 . . .
3(a3)1,i 1 9 26 30 12 0 0 . . .
3(a1)2,i 1 13 60 120 108 36 0 0 . . .
3(a2)2,i 1 14 73 180 228 144 36 0 0 . . .
3(a3)2,i 1 16 101 326 588 600 324 72 0 0 . . .
3(a1)3,i 1 20 163 702 1746 2592 2268 1080 216 0 0 . . .
3(a2)3,i 1 21 183 865 2448 4338 4860 3348 1296 216 0 0 . . .
3(a3)3,i 1 23 225 1231 4178 9234 13536 13068 7992 2808 432 0 0 . . .

We can write the sequences 3(a1)k,i ,
3(a2)k,i and 3(a3)k,i in a “Sulanke style” as follows:

sm,n =







sm,n−1 + sm−1,n, if m + n ≡ 0 (mod 3);
sm,n−1 + 2sm−1,n, if m + n ≡ 1 (mod 3);
sm,n−2 + 6sm−1,n−1 + 6sm−2,n, if m + n ≡ 2 (mod 3),

together with the initial condition s0,0 = 1, and the fact that sm,n = 0 if m < 0 or n < 0.
The correspondence with our sequences 3(a1)k,i ,

3(a2)k,i and 3(a3)k,i is 3(a2)k,i ↔ si,3k−i,
3(a3)k,i ↔ si,3k+1−i and 3(a1)k,i ↔ si,3k−1−i.

Combining (66) and (68) we obtain that

3(a1)k+1,i = 3(a1)k,i + 7
(

3(a1)k,i−1

)

+ 12
(

3(a1)k,i−2

)

+ 6
(

3(a1)k,i−3

)

.

One can see easily that the same relation is valid if a1 is substituted by a2 or a3. That
is, we have that

3(am)k+1,i = 3(am)k,i + 7
(

3(am)k,i−1

)

+ 12
(

3(am)k,i−2

)

+ 6
(

3(am)k,i−3

)

, (69)

for m = 1, 2, 3. For example, if m = 1 we have 3(a1)1,i = (1, 6, 6, 0, 0, . . .). Thus, with (69)
we obtain

3(a1)2,i = 3(a1)1,i + 7
(

3(a1)1,i−1

)

+ 12
(

3(a1)1,i−2

)

+ 6
(

3(a1)1,i−3

)

= (1, 13, 60, 120, 108, 36, 0, 0, . . .) .

Again (69) gives us

3(a1)3,i = 3(a1)2,i + 7
(

3(a1)2,i−1

)

+ 12
(

3(a1)2,i−2

)

+ 6
(

3(a1)2,i−3

)

= (1, 20, 163, 702, 1746, 2592, 2268, 1080, 216, 0, 0, . . .) ,

and so on.
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Now, since 3S2 =
∑3

j=0
3(a2)1,j = 1 + 7 + 12 + 6 = 26, we have according to (50) and (51)

3k−1∑

i=0

3(a1)k,i =
1

2
(26)k

,

3k∑

i=0

3(a2)k,i = 26k ,

3k+1∑

i=0

3(a3)k,i = 3 (26)k
.

Finally we establish relations involving convolutions of the sequences 3(a1)k,i ,
3(a2)k,i and

3(a3)k,i. For given k1, k2 ∈ N, we have

(

zk1−1
(
z2 + 4z + 1

)k1

)(

zk2
(
z2 + 4z + 1

)k2

)

= zk1+k2−1
(
z2 + 4z + 1

)k1+k2
,

and then, from (60) and (62) we obtain that

(
3(a1)k1,i

)

∗
(

3(a2)k2,i

)

= 3(a1)k1+k2,i .

Similarly, since

(

zk1
(
z2 + 4z + 1

)k1

)(

zk2
(
z2 + 4z + 1

)k2

)

= zk1+k2
(
z2 + 4z + 1

)k1+k2
,

we have according to (62) that

(
3(a2)k1,i

)

∗
(

3(a2)k2,i

)

= 3(a2)k1+k2,i .

Finally, since

(

zk1
(
z2 + 4z + 1

)k1 (z + 1)
)(

zk2
(
z2 + 4z + 1

)k2

)

= zk1+k2
(
z2 + 4z + 1

)k1+k2 (z + 1) ,

we have according to (62) and (64) that

(
3(a3)k1,i

)

∗
(

3(a2)k2,i

)

= 3(a3)k1+k2,i .

We mention that it is possible to give explicit formulas for the elements of the se-
quences 3(a1)k,i,

3(a2)k,i and 3(a3)k,i, just by doing the explicit expansions of the polynomials

zk−1 (z2 + 4z + 1)
k
, zk (z2 + 4z + 1)

k
and zk (z2 + 4z + 1)

k
(z + 1) in powers if z − 1, corre-

sponding to (60), (62) and (64), respectively. We omit the details of the calculations and
only show the corresponding expressions (just for the records)

3(a1)k,i =
k∑

j1=0

j1∑

j2=0

(
k − 1

3k − 1− i− j1 − j2

)(
k

j1

)(
j1

j2

)

6k−j2 ,

3(a2)k,i =
k∑

j1=0

j1∑

j2=0

(
k

3k − i− j1 − j2

)(
k

j1

)(
j1

j2

)

6k−j2 ,

3(a3)k,i =
1∑

j3=0

k∑

j1=0

j1∑

j2=0

(
k

3k + 1− i− j1 − j2 − j3

)(
k

j1

)(
j1

j2

)(
2

j3 + 1

)

6k−j2 .
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Now we present the results in the case p = 4. We have

n4 =

(
n

1

)

+ 14

(
n

2

)

+ 36

(
n

3

)

+ 24

(
n

4

)

.

The coefficients 4(a1)k,i,
4(a2)k,i,

4(a3)k,i and 4(a4)k,i are defined by

zk−1 (z + 1)k
(
z2 + 10z + 1

)k
=

4k−1∑

i=0

4(a1)k,i (z − 1)4k−1−i
,

zk (z + 1)k
(
z2 + 10z + 1

)k
=

4k∑

i=0

4(a2)k,i (z − 1)4k−i
,

zk (z + 1)k+1 (
z2 + 10z + 1

)k
=

4k+1∑

i=0

4(a3)k,i (z − 1)4k+1−i
,

zk (z + 1)k
(
z2 + 10z + 1

)k (
z2 + 4z + 1

)
=

4k+2∑

i=0

4(a4)k,i (z − 1)4k+2−i
.

These coefficients are involved in the formulas

∗kn4 =
4k−1∑

i=0

4(a1)k,i

(
n

k + i

)

,

∗kn4 ∗ n =
4k∑

i=0

4(a2)k,i

(
n

k + i + 1

)

,

∗kn4 ∗ n2 =
4k+1∑

i=0

4(a3)k,i

(
n

k + i + 1

)

,

∗kn4 ∗ n3 =
4k+2∑

i=0

4(a4)k,i

(
n

k + i + 1

)

.

The relations among coefficients are in this case

4(a2)k,i = 4(a1)k,i + 4(a1)k,i−1 ,

4(a3)k,i = 4(a2)k,i + 2
(

4(a2)k,i−1

)

,

4(a4)k,i = 4(a2)k,i + 6
(

4(a2)k,i−1

)

+ 6
(

4(a2)k,i−2

)

,

4(a1)k+1,i = 4(a2)k,i + 14
(

4(a2)k,i−1

)

+ 36
(

4(a2)k,i−2

)

+ 24
(

4(a2)k,i−3

)

.

The formula that allows us to construct each sequence at the level k + 1 in terms of the
sequence of the same type at the level k is

4(am)k+1,i = 4(am)k,i +15
(

4(am)k,i−1

)

+50
(

4(am)k,i−2

)

+60
(

4(am)k,i−3

)

+24
(

4(am)k,i−4

)

,
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where m = 1, 2, 3.4.
The sums of the elements of each sequence are

4k−1∑

i=0

4(a1)k,i =
1

2
(150)k

,

4k+1∑

i=0

4(a3)k,i = 3 (150)k
,

4k∑

i=0

4(a2)k,i = (150)k
,

4k+2∑

i=0

4(a4)k,i = 13 (150)k
.

For k1, k2 ∈ N, we have the following convolution relations

4(a1)k1,i ∗
4(a2)k2,i = 4(a1)k1+k2,i ,

4(a2)k1,i ∗
4(a2)k2,i = 4(a2)k1+k2,i ,

4(a3)k1,i ∗
4(a2)k2,i = 4(a3)k1+k2,i ,

4(a4)k1,i ∗
4(a2)k2,i = 4(a4)k1+k2,i .

The first sequences in this case are

4(a2)0,i 1 0 0 . . .
4(a3)0,i 1 2 0 0 . . .
4(a4)0,i 1 6 6 0 0 . . .
4(a1)1,i 1 14 36 24 0 0 . . .
4(a2)1,i 1 15 50 60 24 0 0 . . .
4(a3)1,i 1 17 80 160 144 48 0 0 . . .
4(a4)1,i 1 21 146 450 684 504 144 0 0 . . .
4(a1)2,i 1 29 296 1324 3024 3696 2304 576 0 0 . . .
4(a2)2,i 1 30 325 1620 4348 6720 6000 2880 576 0 0 . . .
4(a3)2,i 1 32 385 2270 7588 15416 19440 14880 6336 1152 0 0 . . .
4(a4)2,i 1 36 511 3750 16018 42528 72408 79200 53856 20736 3456 0 0 . . .

We can write these sequences in a “Sulanke style” as follows:

sm,n =







sm,n−1 + sm−1,n, if m + n ≡ 0 (mod 4);
sm,n−1 + 2sm−1,n, if m + n ≡ 1 (mod 4);
sm,n−2 + 6sm−1,n−1 + 6sm−2,n, if m + n ≡ 2 (mod 4);
sm,n−3 + 14sm−1,n−2 + 36sm−2,n−1 + 24sm−3,n, if m + n ≡ 3 (mod 4),

together with the initial condition s0,0 = 1, and the fact that sm,n = 0 if m < 0 or n < 0. The
correspondence with our sequences ak,i, bk,i and ck,i is 4(a2)k,i ↔ si,4k−i,

4(a3)k,i ↔ si,4k+1−i,
4(a4)k,i ↔ si,4k+2−i and 4(a1)k,i ↔ si,4k−1−i.

In this case we also have the following explicit formulas for the elements of the sequences
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4(a1)k,i =
k∑

j1=0

j1∑

j2=0

k∑

j3=0

(
k − 1

4k − 1− i− j1 − j2 − j3

)(
k

j1

)(
j1

j2

)(
k

j3

)

22k−j2−j36k−j2 ,

4(a2)k,i =
k∑

j1=0

j1∑

j2=0

k∑

j3=0

(
k

4k − i− j1 − j2 − j3

)(
k

j1

)(
j1

j2

)(
k

j3

)

22k−j2−j36k−j2 ,

4(a3)k,i =
k∑

j1=0

j1∑

j2=0

k+1∑

j3=0

(
k

4k + 1− i− j1 − j2 − j3

)(
k

j1

)(
j1

j2

)(
k + 1

j3

)

22k+1−j2−j36k−j2 ,

4(a4)k,i =
k∑

j1=0

j1∑

j2=0

k∑

j3=0

((
k

4k−i−j1−j2−j3

)

+6

(
k + 1

4k−i+2−j1−j2−j3

))(
k

j1

)(
j1

j2

)(
k

j3

)

22k−j2−j36k−j2 .

6 Final remarks

The case p = 2 corresponding to Sulanke numbers seems not to be just a particular case of
the generalized setting presented in section 4. In fact, we have the following conjecture.

Conjecture 13. Let p ∈ N be given. The convolutions ∗kn2p ∗ nl, l = 0, 1, . . . , 2p− 1, have
a factorization passing through identities (21) and (24) where Sulanke numbers ak,i and bk,i

are involved (or some identities similar to them).

For example, we have the following expressions for the sequences ∗kn4, ∗kn4 ∗n, ∗kn4 ∗n2

and ∗kn4 ∗ n3

∗kn4 = ∗k (δ + 12n) ∗
2k−1∑

i=0

ak,i

(
n

k + i

)

,

∗kn4 ∗ n = ∗k (δ + 12n) ∗
2k∑

i=0

bk,i

(
n

k + i + 1

)

,

∗kn4 ∗ n2 = ∗k (δ + 12n) ∗
2k+1∑

i=0

ak+1,i

(
n

k + i + 1

)

,

∗kn4 ∗ n3 = ∗k (δ + 12n) ∗
2k∑

i=0

bk,i

((
n

k + i + 1

)

+ 6

(
n + 1

k + i + 3

))

.

In order to show each one of these identities one can verify that both sides of each one
have the same Z transform. For example, for the first identity we have (by using that
Z (δ) = 1, the convolution theorem and (19))
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Z

(

∗k (δ + 12n) ∗
2k−1∑

i=0

ak,i

(
n

k + i

))

=

(

1 +
12z

(z − 1)2

)k
zk (z + 1)k

(z − 1)3k

=
zk (z + 1)k (z2 + 10z + 1)

k

(z − 1)5k

= Z
(
∗kn4

)
.

The fact that Qp−1 (z) are the Eulerian polynomials (see remark 8) opens a new possibility
for developing the ideas of this work. The model we followed here were Sulanke numbers, so
we were interested in the expansion of Qp−1 (z) in powers of z − 1, from which we defined
the sequence p(a1)1,i as the coefficients of such expansion. This led us to the first important
formula of section 4, namely

np =

p−1
∑

i=0

p(a1)1,i

(
n

i + 1

)

. (70)

But if we leave Qp−1 (z) simply as Qp−1 (z) =
∑p−1

i=0 ap−1,iz
i, we obtain from (35) that

Z (np) =
zQp−1 (z)

(z − 1)p+1 =
z
∑p−1

i=0 ap−1,iz
i

(z − 1)p+1 =

p−1
∑

i=0

ap−1,iz
i z

(z − 1)p+1 ,

and then

np =

p−1
∑

i=0

ap−1,i

(
n + i

p

)

. (71)

This is (a version of) the well-known Worpitzky’s identity (obtained by J. Worpitzky [11]
in 1882). It is clear that both formulas (70) and (71) have the same flavor: they show how np

decomposes as a linear combination of binomial coefficients. In (70) the binomial coefficients
are

(
n

1

)
,
(

n

2

)
, . . . ,

(
n

p

)
, and the coefficients of them are the (generalized) Sulanke numbers

p(a1)1,0 ,p(a1)1,1 , . . . ,p(a1)1,p−1, respectively. In the Worpitzky’s formula (71) the binomial

coefficients are
(

n

p

)
,
(

n+1
p

)
, . . . ,

(
n+p−1

p

)
, and the coefficients of them are the Eulerian numbers

ap−1,0, ap−1,1, . . . , ap−1,p−1, respectively. It is natural to expect that a similar structure to that
showed in section 4 occur if we begin with Worpitzky’s identity instead of (70). In this case
we expect sequences p(bm)k,i involved (as coefficients) in formulas that express convolutions

∗knp ∗ nm−1 as linear combinations of binomial coefficients. And clearly these sequences
p(bm)k,i have to do with Eulerian numbers. For example, in the case p = 4 we have four kind

of sequences 4(b1)k,i ,
4(b2)k,i ,

4(b3)k,i and 4(b4)k,i related by
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4(b2)k,i = 4(b1)k,i−1 ,

4(b3)k,i = 4(b2)k,i + 4(b2)k,i−1 ,

4(b4)k,i = 4(b2)k,i + 4
(

4(b2)k,i−1

)

+ 4(b2)k,i−2 ,

4(b1)k+1,i = 4(b2)k,i + 11
(

4(b2)k,i−1

)

+ 11
(

4(b2)k,i−2

)

+ 4(b2)k,i−3 .

For m = 1, 2, 3, 4, we can obtain the sequence 4(bm)k+1,i in the level k + 1 by using only

the sequence 4(bm)k,i of the same type in the level k

4(bm)k+1,i = 4(bm)k,i−1 + 11
(

4(bm)k,i−2

)

+ 11
(

4(bm)k,i−3

)

+ 4(bm)k,i−4 .

These sequences are involved in the following formulas

∗kn4 =
4k−1∑

i=0

4(b1)k,i

(
n + i

5k − 1

)

,

∗kn4 ∗ n =
4k∑

i=0

4(b2)k,i

(
n + i

5k + 1

)

,

∗kn4 ∗ n2 =
4k+1∑

i=0

4(b3)k,i

(
n + i

5k + 2

)

,

∗kn4 ∗ n3 =
4k+2∑

i=0

4(b4)k,i

(
n + i

5k + 3

)

,

which could be called Worpitzky-type identities.
Beginning with 4(b2)0,i = (1, 0, 0, . . .) we can construct all the sequences 4(b3)0,i ,

4(b4)0,i

and 4(bm)k,i, k ∈ N, m = 1, 2, 3, 4. Some of them are

4(b2)0,i 1 0 0 . . .
4(b3)0,i 1 1 0 0 . . .
4(b4)0,i 1 4 1 0 0 . . .
4(b1)1,i 1 11 11 1 0 0 . . .
4(b2)1,i 0 1 11 11 1 0 0 . . .
4(b3)1,i 0 1 12 22 12 1 0 0 . . .
4(b4)1,i 0 1 15 56 56 15 1 0 0 . . .
4(b1)2,i 0 1 22 143 244 143 22 1 0 0 . . .
4(b2)2,i 0 0 1 22 143 244 143 22 1 0 0 . . .
4(b3)2,i 0 0 1 23 165 387 387 165 23 1 0 0 . . .
4(b4)2,i 0 0 1 26 232 838 1262 838 232 26 1 0 0 . . .
4(b1)3,i 0 0 1 33 396 2060 4422 4422 2060 396 33 1 0 0 . . .
4(b2)3,i 0 0 0 1 33 396 2060 4422 4422 2060 396 33 1 0 0 . . .
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We have the same convolution relations of those obtained in the Sulanke case, namely

4(b1)k1,i ∗
4(b2)k2,i = 4(b1)k1+k2,i ,

4(b2)k1,i ∗
4(b2)k2,i = 4(b2)k1+k2,i ,

4(b3)k1,i ∗
4(b2)k2,i = 4(b3)k1+k2,i ,

4(b4)k1,i ∗
4(b2)k2,i = 4(b4)k1+k2,i .

Finally, questions about generating functions of the sequences presented in this work,
and questions about combinatorial content of the identities obtained here as well, are tasks
that remain to do in future works.
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