
23 11

Article 04.2.2
Journal of Integer Sequences, Vol. 7 (2004),2

3

6

1

47

Convoluted Convolved Fibonacci Numbers

Pieter Moree
Max-Planck-Institut für Mathematik

Vivatsgasse 7
D-53111 Bonn

Germany
moree@mpim-bonn.mpg.de

Abstract

The convolved Fibonacci numbers F
(r)
j are defined by (1−x−x2)−r =

∑

j≥0 F
(r)
j+1x

j .
In this note we consider some related numbers that can be expressed in terms of
convolved Fibonacci numbers. These numbers appear in the numerical evaluation of a
constant arising in the study of the average density of elements in a finite field having
order congruent to a (mod d). We derive a formula expressing these numbers in terms
of ordinary Fibonacci and Lucas numbers. The non-negativity of these numbers can
be inferred from Witt’s dimension formula for free Lie algebras.

This note is a case study of the transform 1
n

∑

d |n µ(d)f(z
d)n/d (with f any formal

series), which was introduced and studied in a companion paper by Moree.

1 Introduction

Let {Fn}∞n=0 = {0, 1, 1, 2, 3, 5, . . . } be the sequence of Fibonacci numbers and {Ln}∞n=0 =
{2, 1, 3, 4, 7, 11, . . . } the sequence of Lucas numbers. It is well-known and easy to derive that
for |z| < (

√
5 − 1)/2, we have (1 − z − z2)−1 =

∑∞
j=0 Fj+1z

j. For any real number r the
convolved Fibonacci numbers are defined by

1

(1− z − z2)r
=

∞
∑

j=0

F
(r)
j+1z

j. (1)

The Taylor series in (1) converges for all z ∈ C with |z| < (
√
5− 1)/2. In the remainder of

this note it is assumed that r is a positive integer. Note that

F
(r)
m+1 =

∑

j1+···+jr=m

Fj1+1Fj2+1 · · ·Fjr+1,
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where the sum is over all j1, . . . , jr with jt ≥ 0 for 1 ≤ t ≤ r. We also have F
(r)
m+1 =

∑m
j=0 Fj+1F

(r−1)
m−j+1.

Convolved Fibonacci numbers have been studied in several papers, for some references
see, e.g., Sloane [10]. The earliest reference to convolved Fibonacci numbers the author is
aware of is in a book by Riordan [9], who proposed as an exercise (at p. 89) to show that

F
(r)
j+1 =

r
∑

v=0

(

r + j − v − 1

j − v

)(

j − v

v

)

. (2)

However, the latter identity is false in general (it would imply F
(1)
j+1 = Fj+1 = j for j ≥ 2 for

example). Using a result of Gould [1, p. 699] on Humbert polynomials (with n = j, m = 2,
x = 1/2, y = −1, p = −r and C = 1) it is easily inferred that (2) holds true with upper
index of summation r replaced by [j/2].

In Section 4 we give a formula expressing the convolved Fibonacci numbers in terms of
Fibonacci- and Lucas numbers. Hoggatt and Bicknell-Johnson [2], using a different method,

derived such a formula for F
(2)
j+1. However, in this note our main interest is in numbers G

(r)
j+1

and H
(r)
j+1 analogous to the convolved Fibonacci numbers, which we name convoluted con-

volved Fibonacci numbers, respectively sign-twisted convoluted convolved Fibonacci numbers.
Given a formal series f(z) ∈ C[[z]], we define its Witt transform as

W (r)
f (z) =

1

r

∑

d | r

µ(d)f(zd)
r
d =

∞
∑

j=0

mf (j, r)z
j , (3)

where as usual µ denotes the Möbius function.
For every integer r ≥ 1 we put

G
(r)
j+1 = mf (j, r) with f =

1

1− z − z2
.

Similarly we put

H
(r)
j+1 = (−1)rmf (j, r) with f =

−1
1− z − z2

. (4)

On comparing (4) with (1) one sees that

G
(r)
j+1 =

1

r

∑

d | gcd(r,j)

µ(d)F
( r

d
)

j
d
+1

and H
(r)
j+1 =

(−1)r
r

∑

d | gcd(r,j)

µ(d)(−1) r
dF

( r
d
)

j
d
+1
. (5)

In Tables 1, 2 and 3 below some values of convolved, convoluted convolved, respectively sign-
twisted convoluted convolved Fibonacci numbers are provided. The purpose of this paper
is to investigate the properties of these numbers. The next section gives a motivation for
studying these numbers.

2 Evaluation of a constant

Let g be an integer and p a prime not dividing g. Then by ordp(g) we denote the smallest
positive integer k such that gk ≡ 1 (mod p). Let d ≥ 1 be an integer. It can be shown that
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the set of primes p for which ordp(g) is divisible by d has a density and this density can be
explicitly computed. It is easy to see that the primes p for which ordp(g) is even are the
primes that divide some term of the sequence {gr +1}∞r=0. A related, but much less studied,
question is whether given integers a and d the set of primes p for which ordp(g) ≡ a (mod d)
has a density. Presently this more difficult problem can only be resolved under assumption
of the Generalized Riemann Hypothesis, see, e.g., Moree [6]. In the explicit evaluation of this
density and also that of its average value (where one averages over g) the following constant
appears:

Bχ =
∏

p

(

1 +
[χ(p)− 1]p

[p2 − χ(p)](p− 1)

)

,

where χ is a Dirichlet character and the product is over all primes p (see Moree [5]). Recall
that the Dirichlet L-series for χk, L(s, χk), is defined, for Re(s) > 1, by

∑∞
n=1 χ

k(n)n−s. It
satisfies the Euler product

L(s, χk) =
∏

p

1

1− χk(p)p−s
.

We similarly define L(s,−χk) =
∏

p(1 + χk(p)p−s)−1. The Artin constant, which appears in
many problems involving the multiplicative order, is defined by

A =
∏

p

(

1− 1

p(p− 1)

)

= 0.3739558136 . . .

The following result, which follows from Theorem 2 (with f(z) = −z3/(1 − z − z2)) and
some convergence arguments, expresses the constant Bχ in terms of Dirichlet L-series. Since
Dirichlet L-series in integer values are easily evaluated with very high decimal precision this
result allows one to evaluate Bχ with high decimal precision.

Theorem 1 1) We have

Bχ = A
L(2, χ)

L(3,−χ)

∞
∏

r=1

∞
∏

j=3r+1

L(j, (−χ)r)−e(j,r),

where e(j, r) = G
(r)
j−3r+1.

2) We have

Bχ = A
L(2, χ)L(3, χ)

L(6, χ2)

∞
∏

r=1

∞
∏

j=3r+1

L(j, χr)f(j,r),

where f(j, r) = (−1)r−1H
(r)
j−3r+1.

Proof. Moree [5] proved part 2, and a variation of his proof yields part 1. 2

In the next section it is deduced (Proposition 1) that the numbers e(j, r) appearing in the
former double product are actually positive integers and that the f(j, r) are non-zero integers
that satisfy sgn(f(j, r)) = (−1)r−1. The proof makes use of properties of the Witt transform
that was introduced by Moree [7].
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3 Some properties of the Witt transform

We recall some of the properties of the Witt transform (as defined by (3)) and deduce
consequences for the (sign-twisted) convoluted convolved Fibonacci numbers.

Theorem 2 [5]. Suppose that f(z) ∈ Z[[z]]. Then, as formal power series in y and z, we
have

1− yf(z) =
∞
∏

j=0

∞
∏

r=1

(1− zjyr)mf (j,r).

Moreover, the numbers mf (j, r) are integers. If

1− yf(z) =
∞
∏

j=0

∞
∏

r=1

(1− zjyr)n(j,r),

for some numbers n(j, r), then n(j, r) = mf (j, r).

For certain choices of f identities as above arise in the theory of Lie algebras, see, e.g., Kang
and Kim [3]. In this theory they go by the name of denominator identities.

Theorem 3 [7]. Let r ∈ Z≥1 and f(z) ∈ Z[[z]]. Write f(z) =
∑

j ajz
j.

1) We have

(−1)rW (r)
−f (z) =

{

W (r)
f (z) +W (r/2)

f (z2), if r ≡ 2 (mod 4);

W (r)
f (z), otherwise.

2) If f(z) ∈ Z[[z]], then so is W (r)
f (z).

3) If f(z) ∈ Z≥0[[z]], then so are W (r)
f (z) and (−1)rW (r)

−f (z).
Suppose that {aj}∞j=0 is a non-decreasing sequence with a1 ≥ 1.

4) Then mf (j, r) ≥ 1 and (−1)rm−f (j, r) ≥ 1 for j ≥ 1.
5) The sequences {mf (j, r)}∞j=0 and {(−1)rm−f (j, r)}∞j=0 are both non-decreasing.

In Moree [7] several further properties regarding monotonicity in both the j and r direction

are established that apply to both G
(r)
j and H

(r)
j . It turns out that slightly stronger results

in this direction for these sequences can be established on using Theorem 8 below.

3.1 Consequences for G
(r)
j and H

(r)
j

Since clearly F
(r)
j+1 ∈ Z we infer from (5) that rG

(r)
j+1, rH

(r)
j+1 ∈ Z. More is true, however:

Proposition 1 Let j, r ≥ 1 be integers. Then
1) G

(r)
j and H

(r)
j are non-negative integers.

2) When j ≥ 2, then G
(r)
j ≥ 1 and H

(r)
j ≥ 1.

3) We have

H
(r)
j =

{

G
(r)
j +G

(r/2)
j+1
2

, if r ≡ 2 (mod 4)and j is odd;

G
(r)
j , otherwise.

4) The sequences {G(r)
j }∞j=1 and {H

(r)
j }∞j=1 are non-decreasing.

The proof easily follows from Theorem 3.
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4 Convolved Fibonacci numbers reconsidered

We show that the convolved Fibonacci numbers can be expressed in terms of Fibonacci and
Lucas numbers.

Theorem 4 Let j ≥ 0 and r ≥ 1. We have

F
(r)
j+1 =

r−1
∑

k=0
r+k≡0 (mod 2)

(

r + k − 1

k

)(

r − k + j − 1

j

)

Lr−k+j
5(k+r)/2

+

r−1
∑

k=0
r+k≡1 (mod 2)

(

r + k − 1

k

)(

r − k + j − 1

j

)

Fr−k+j
5(k+r−1)/2

.

In particular, 5F
(2)
j+1 = (j + 1)Lj+2 + 2Fj+1 and

50F
(3)
j+1 = 5(j + 1)(j + 2)Fj+3 + 6(j + 1)Lj+2 + 12Fj+1.

Proof. Suppose that α, β ∈ C with αβ 6= 0 and α 6= β. Then it is not difficult to show that
we have the following partial fraction decomposition:

(1− αz)−r(1− βz)−r =

r−1
∑

k=0

(−r
k

)

αrβk

(α− β)r+k
(1− αz)k−r +

r−1
∑

k=0

(−r
k

)

βrαk

(β − α)r+k
(1− βz)k−r,

where ( t
k
) = 1 if k = 0 and ( t

k
) = t(t−1) · · · (t−k+1)/k! otherwise (with t any real number).

Using the Taylor expansion (with t a real number)

(1− z)t =
∞
∑

j=0

(−1)j
(

t

j

)

zj,

we infer that (1− αz)−r(1− βz)−r =
∑∞

j=0 γ(j)z
j, where

γ(j) =
r−1
∑

k=0

(−r
k

)

αrβk

(α− β)r+k
(−1)j

(

k − r

j

)

αj+

r−1
∑

k=0

(−r
k

)

βrαk

(β − α)r+k
(−1)j

(

k − r

j

)

βj.

Note that 1 − z − z2 = (1 − αz)(1 − βz) with α = (1 +
√
5)/2 and β = (1 −

√
5)/2. On

substituting these values of α and β and using that α − β =
√
5, αβ = −1, Ln = αn + βn

and Fn = (αn − βn)/
√
5, we find that

F
(r)
j+1 =

r−1
∑

k=0
r+k≡0 (mod 2)

(−1)k
(−r
k

)

(−1)j
(

k − r

j

)

Lr−k+j
5(k+r)/2

+
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r−1
∑

k=0
r+k≡1 (mod 2)

(−1)k
(−r
k

)

(−1)j
(

k − r

j

)

Fr−k+j
5(k+r−1)/2

.

On noting that (−1)k(−r
k
) = ( r+k−1

k
) and (−1)j(k−r

j
) = ( r−k+j−1

j
), the proof is completed. 2

Let r ≥ 1 be fixed. From the latter theorem one easily deduces the asymptotic behaviour of
F

(r)
j+1 considered as a function of j.

Proposition 2 Let r ≥ 2 be fixed. Let [x] denote the integer part of x. Let α = (1+
√
5)/2.

We have F
(r)
j+1 = g(r)jr−1αj + Or(j

r−2αj), as j tends to infinity, where the implicit error

term depends at most on r and g(r) = αr5−[r/2]/(r − 1)!.

5 The numbers H
(r)
j+1 for fixed r

In this and the next section we consider the numbers H
(r)
j+1 for fixed r, respectively for fixed

j. Very similar results can of course be obtained for the convoluted convolved Fibonacci
numbers G

(r)
j+1.

For small fixed r we can use Theorem 4 in combination with (5) to explicitly express

H
(r)
j+1 in terms of Fibonacci- and Lucas numbers. In doing so it is convenient to work with

the characteristic function χ of the integers, which is defined by χ(r) = 1 if r is an integer
and χ(r) = 0 otherwise. We demonstrate the procedure for r = 2 and r = 3. By (5) we find

2H
(2)
j+1 = F

(2)
j+1 + F j

2
+1χ(

j
2
) and 3H

(3)
j+1 = F

(3)
j+1 − F j

3
+1χ(

j
3
). By Theorem 4 it then follows for

example that

150H
(3)
j+1 = 5(j + 1)(j + 2)Fj+3 + 6(j + 1)Lj+2 + 12Fj+1 − 50F j

3
+1χ(

j

3
).

The asymptotic behaviour, for r fixed and j tending to infinity can be directly inferred from
(5) and Proposition 2.

Proposition 3 With the same notation and assumptions as in Proposition 2 we have H
(r)
j+1 =

g(r)jr−1αj/r +Or(j
r−2αj).

6 The numbers H
(r)
j+1 for fixed j

In this section we investigate the numbers H
(r)
j+1 for fixed j. We first investigate this question

for the convolved Fibonacci numbers.
The coefficient F

(r)
j+1 of zj in (1− z − z2)−r is equal to the coefficient of zj in (1 + F2z +

F3z
3 + · · ·+ Fj+1z

j)r. By the multinomial theorem we then find

F
(r)
j+1 =

∑

∑j
k=1 knk=j

(

r

n1, · · · , nj

)

F n1
2 · · ·F nj

j+1, (6)
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where the multinomial coefficient is defined by

(

r

m1, · · · ,ms

)

=
r!

m1!m2! · · ·ms!(r −m1 − · · · −ms)!

and mk ≥ 0 for 1 ≤ k ≤ s.

Example. We have

F
(r)
5 =

(r

4

)

+ 2

(

r

2, 1

)

+ 4
(r

2

)

+ 3

(

r

1, 1

)

+ 5
(r

1

)

=
7

4
r +

59

24
r2 +

3

4
r3 +

r4

24
.

This gives an explicit description of the sequence {F (r)
5 }∞r=1, which is sequence A006504 of

Sloane’s OEIS [10].

The sequence {( r
m1,··· ,mk

)}∞r=0 is a polynomial sequence where the degree of the polynomial

is m1 + · · · + mk. It follows from this and (6) that {F (r)
j+1}∞r=0 is a polynomial sequence of

degree max{n1 + · · · + nj|
∑j

k=1 knj = j} = j. The leading term of this polynomial in r is
due to the multinomial term having n1 = j and nt = 0 for 2 ≤ t ≤ j. All other terms in (6)

are of lower degree. We thus infer that F
(r)
j+1 = rj/j! +Oj(r

j−1), r →∞. We leave it to the
reader to make this more precise by showing that the coefficient of rj−1 is 3/(2(j − 2)!). If
n1, . . . , nj satisfy max{n1 + · · · + nj|

∑j
k=1 knj = j} = j, then j!/(n1! . . . nj!) is an integral

multiple of a multinomial coefficient and hence an integer. We thus infer that j!F
(r)
j+1 is a

monic polynomial in Z[r] of degree j. Note that the constant term of this polynomial is zero.
To sum up, we have obtained:

Theorem 5 Let j, r ≥ 1 be integers. There is a polynomial

A(j, r) = rj +
3

2
j(j − 1)rj−1 + · · · ∈ Z[r]

with A(j, 0) = 0 such that F
(r)
j+1 = A(j, r)/j!.

Using this result, the following regarding the sign-twisted convoluted convolved Fibonacci
numbers can be established.

Theorem 6 Let χ(r) = 1 if r is an integer and χ(r) = 0 otherwise. We have

H
(r)
1 =

{

1, if r ≤ 2;

0, otherwise,

furthermore H
(r)
2 = 1. We have

2H
(r)
3 = 3 + r − (−1)r/2χ(r

2
) and 6H

(r)
4 = 8 + 9r + r2 − 2χ(

r

3
).

7



Also we have

24H
(r)
5 = 42 + 59r + 18r2 + r3 − (18 + 3r)(−1) r

2χ(
r

2
) and

120H
(r)
6 = 264 + 450r + 215r2 + 30r3 + r4 − 24χ(

r

5
).

In general we have

H
(r)
j+1 =

∑

d | j, 2-d

µ(d)χ(
r

d
)
A( j

d
, r
d
)

r(j/d)!
+

∑

d | j, 2 | d

µ(d)(−1)r/2χ(r
d
)
A( j

d
, r
d
)

r(j/d)!
.

Let j ≥ 3 be fixed. As r tends to infinity we have

H
(r)
j+1 =

rj−1

j!
+

3rj−2

2(j − 2)!
+Oj(r

j−2).

Proof. Using that
∑

d |n µ(d) = 0 if n > 1, it is easy to check that

H
(r)
1 =

(−1)r
r

∑

d | r

µ(r)(−1)r/d−1 =

{

1, if r ≤ 2;

0, if r > 2.

The remaining assertions can be all derived from (5), (6) and Theorem 5. 2

7 Monotonicity

Inspection of the tables below suggests monotonicity properties of F
(r)
j , G

(r)
j and H

(r)
j to hold

true.

Proposition 4

1) Let j ≥ 2. Then {F (r)
j }∞r=1 is a strictly increasing sequence.

2) Let r ≥ 2. Then {F (r)
j }∞j=1 is a strictly increasing sequence.

The proof of this is easy. For the proof of part 2 one can make use of the following simple
observation.

Lemma 1 Let f(z) =
∑

j a(j)z
j ∈ R[[z]] be a formal series. Then f(z) is said to have

k-nondecreasing coefficients if a(k) > 0 and a(k) ≤ a(k + 1) ≤ a(k + 2) < . . . . If a(k) > 0
and a(k) < a(k + 1) < a(k + 2) < . . . , then f is said to have k-increasing coefficients.
If f, g are k-increasing, respectively l-nondecreasing, then fg is (k + l)-increasing.
If f is k-increasing and g is l-nondecreasing, then f + g is max(k, l)-increasing.
If f is k-increasing, then

∑

j≥1 b(j)f
j with b(j) ≥ 0 and b(1) > 0 is k-increasing.

We conclude this paper by establishing the following result:

8



Theorem 7

1) Let j ≥ 4. Then {G(r)
j }∞r=1 is a strictly increasing sequence.

2) Let r ≥ 1. Then {G(r)
j }∞j=2 is a strictly increasing sequence.

3) Let j ≥ 4. Then {H (r)
j }∞r=1 is a strictly increasing sequence.

4) Let r ≥ 1. Then {H (r)
j }∞j=2 is a strictly increasing sequence.

The proof rests on expressing the entries of the above sequences in terms of certain quantities
occurring in the theory of free Lie algebras and circular words (Theorem 8) and then invoke
results on the monotonicity of these quantities to establish the result.

7.1 Circular words and Witt’s dimension formula

We will make use of an easy result on cyclic words. A word a1 · · · an is called circular or
cyclic if a1 is regarded as following an, where a1a2 · · · an, a2 · · · ana1 and all other cyclic shifts
(rotations) of a1a2 · · · an are regarded as the same word. A circular word of length n may
conceivably be given by repeating a segment of d letters n/d times, with d a divisor of n.
Then one says the word is of period d. Each word belongs to an unique smallest period: the
minimal period.

Consider circular words of length n on an alphabet x1, . . . , xr consisting of r letters. The
total number of ordinary words such that xi occurs ni times equals

n!

n1! · · ·nr!
,

where n1 + · · · + nr = n. Let M(n1, . . . , nr) denote the number of circular words of length
n1 + · · · + nr = n and minimal period n such that the letter xi appears exactly ni times.
This leads to the formula

n!

n1! · · ·nr!
=

∑

d | gcd(n1,...,nr)

n

d
M(

n1

d
,
n2

d
, . . . ,

nr
d
). (7)

whence it follows by Möbius inversion that

M(n1, . . . , nr) =
1

n

∑

d | gcd(n1,...,nr)

µ(d)
n
d
!

n1

d
! · · · nr

d
!
. (8)

Note that M(n1, . . . , nr) is totally symmetric in the variables n1, . . . , nr. The numbers
M(n1, . . . , nr) also occur in a classical result in Lie theory, namely Witt’s formula for the
homogeneous subspaces of a finitely generated free Lie algebra L: if H is the subspace
of L generated by all homogeneous elements of multidegree (n1, . . . , nr), then dim(H) =
M(n1, . . . , nr), where n = n1 + · · ·+ nr.

In Theorem 8 a variation of M(n1, . . . , nr) appears.

Lemma 2 [7]. Let r be a positive integer and let n1, . . . , nr be non-negative integers and put
n = n1 + · · ·+ nr. Let

V1(n1, . . . , nr) =
(−1)n1

n

∑

d | gcd(n1,...,nr)

µ(d)(−1)
n1
d

n
d
!

n1

d
! · · · nr

d
!
.

9



Then

V1(n1, . . . , nr) =

{

M(n1, . . . , nr) +M(n1

2
, . . . , nr

2
), if n1 ≡ 2 (mod 4) and 2 | gcd(n1, . . . , nr);

M(n1, . . . , nr) otherwise.

The numbers V1(n1, . . . , nr) can also be interpreted as dimensions (in the context of free Lie
superalgebras), see, e.g., Petrogradsky [8].

The numbers M and V1 enjoy certain monotonicity properties.

Lemma 3 [7]. Let r ≥ 1 and n1, . . . , nr be non-negative numbers.
1) The sequence {M(m,n1, . . . , nr)}∞m=0 is non-decreasing if n1 + · · · + nr ≥ 1 and strictly
increasing if n1 + · · ·+ nr ≥ 3.
2) The sequence {V1(m,n1, . . . , nr}∞m=0 is non-decreasing if n1 + · · · + nr ≥ 1 and strictly
increasing if n1 + · · ·+ nr ≥ 3.

Using (7) one infers (on taking the logarithm of either side and expanding it as a formal
series) that

1− z1 − · · · − zr =
∞
∏

n1,...,nr=0

(1− zn1
1 · · · znr

r )M(n1,··· ,nr), (9)

where (n1, . . . , nr) = (0, . . . , 0) is excluded in the product. From the latter identity it follows
that

1 + z1 − z2 − · · · − zr =

∞
∏

n1,...,nr=0
2 |n1

(1− zn1
1 · · · znr

r )M(n1,...,nr)

∞
∏

n1,...,nr=0
2-n1

(

1− z2n1
1 · · · z2nr

r

1− zn1
1 · · · znr

r

)M(n1,...,nr)

,

whence, by Lemma 2,

1 + z1 − z2 − · · · − zr =
∞
∏

n1,...,nr=0

(1− zn1
1 · · · znr

r )(−1)n1V1(n1,...,nr). (10)

Theorem 8 Let r ≥ 1 and j ≥ 0. We have

G
(r)
j+1 =

[j/2]
∑

k=0

M(r, k, j − 2k) and H
(r)
j+1 =

[j/2]
∑

k=0

V1(r, k, j − 2k).

Proof. By Theorem 2 and the definition of G
(r)
j we infer that

1− y

1− z − z2
=

∞
∏

j=0

∞
∏

r=1

(1− zjyr)G
(r)
j+1 .

The left hand side of the latter equality equals (1 − z − z2 − y)/(1 − z − z2). On invoking

(9) with z1 = z, z2 = z2 and z3 = y the claim regarding G
(r)
j follows from the uniqueness

assertion in Theorem 2.
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The proof of the identity for H
(r)
j+1 is similar, but makes use of identity (10) instead of

(9). 2

Proof of Theorem 7. 1) For j ≥ 5, k + j − 2k ≥ j − [j/2] ≥ 3 and hence each of the terms
M(r, k, j − 2k) with 0 ≤ k ≤ [j/2] is strictly increasing in r by Lemma 3. For 3 ≤ j ≤ 4, by
Lemma 3 again, all terms M(r, k, j − 2k) with 0 ≤ k ≤ [j/2] are non-decreasing in r and at
least one of them is strictly increasing. The result now follow by Theorem 8.
2) In the proof of part 1 replace the letter ‘M ’ by ‘V1’.

3) For r = 1 we have G
(1)
j+! = Fj+1 and the result is obvious. For r = 2 each of the terms

M(r, k, j − 2k) with 0 ≤ k ≤ [j/2] is non-decreasing in j. For j ≥ 2 one of these is strictly

increasing. Since in addition G
(2)
2 < G

(2)
3 the result follows for r = 2. For r ≥ 3 each of the

terms M(r, k, j − 2k) with 0 ≤ k ≤ [j/2] is strictly increasing in j. The result now follows
by Theorem 8.
4) In the proof of part 3 replace the letter ‘G’ by ‘H and ‘M ’ by ‘V1’. 2
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8 Tables

Table 1: Convolved Fibonacci numbers F
(r)
j

r\j 1 2 3 4 5 6 7 8 9 10 11

1 1 1 2 3 5 8 13 21 34 55 89
2 1 2 5 10 20 38 71 130 235 420 744
3 1 3 9 22 51 111 233 474 942 1836 3522
4 1 4 14 40 105 256 594 1324 2860 6020 12402
5 1 5 20 65 190 511 1295 3130 7285 16435 36122

Table 2: Convoluted convolved Fibonacci numbers G
(r)
j

r\j 1 2 3 4 5 6 7 8 9 10 11

1 1 1 2 3 5 8 13 21 34 55 89
2 0 1 2 5 9 19 34 65 115 210 368
3 0 1 3 7 17 37 77 158 314 611 1174
4 0 1 3 10 25 64 146 331 710 1505 3091
5 0 1 4 13 38 102 259 626 1457 3287 7224
6 0 1 4 16 51 154 418 1098 2726 6570 15308
7 0 1 5 20 70 222 654 1817 4815 12265 30217
8 0 1 5 24 89 309 967 2871 8043 21659 56123
9 0 1 6 28 115 418 1396 4367 12925 36542 99385
10 0 1 6 33 141 552 1946 6435 20001 59345 168760

Table 3: Sign twisted convoluted convolved Fibonacci numbers H
(r)
j

r\j 1 2 3 4 5 6 7 8 9 10 11

1 1 1 2 3 5 8 13 21 34 55 89
2 1 1 3 5 11 19 37 65 120 210 376
3 0 1 3 7 17 37 77 158 314 611 1174
4 0 1 3 10 25 64 146 331 710 1505 3091
5 0 1 4 13 38 102 259 626 1457 3287 7224
6 0 1 5 16 54 154 425 1098 2743 6570 15345
7 0 1 5 20 70 222 654 1817 4815 12265 30217
8 0 1 5 24 89 309 967 2871 8043 21659 56123
9 0 1 6 28 115 418 1396 4367 12925 36542 99385
10 0 1 7 33 145 552 1959 6435 20039 59345 168862
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