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CONVOLUTIONS OF BERNOULLI AND EULER
POLYNOMIALS

WENCHANG CHU AND ROBERTA R. ZHOU

ABSTRACT. By means of the generating function technique, several con-
volution identities are derived for the polynomials of Bernoulli and Euler.

The numbers and polynomials of Bernoulli and Euler are very useful in
classical analysis and numerical mathematics. Their basic properties can
briefly be summarized as follows. More comprehensive coverage can be
found in the monographs by Abramowitz—Stegun [1, §23], Comtet [7, §1.14],
Graham-Knuth-Patashnik [11, §6.5] and Rosen [13, §3.1].

The Bernoulli and Euler numbers are defined respectively by the expo-
nential generating functions

U u" 2e" u™
a1 2By amd g =) Bap
n>0 n>0

Some related summation formulae and identities can be found in Agoh—
Dilcher [2, 8] and Chu—Wang [5, 6]. For the corresponding polynomials, the
generating functions read as

= ZBn(x) and Ti- ZE”(QU)H

ev —1 n! ev
n>0 n>0

Both polynomials are expressed through the respective numbers

Bu(z) = zn: (Z)kan—’f and  E,(z) = zn: (Z)];f@— %)H

k=0 k=0

They satisfy the binomial relations

B(r+y) = Zn: <Z> Bp(z)y"™* and E,(z+y) = zn: (Z) Ep(x)y™ "

k=0 k=0
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differential equations
Bl (x) = nBy,_1(z) and E!(x) = nE,_1(x)
reciprocal relations
B,(1—z) = (-1)"Bp(z) and E,(1—2z) = (-1)"E,(z) (1)
as well as difference equations
Bno(14+2) — Bu(z) =na"' and E,(1+2z) + Eu(z) = 22" (2)

There is also an expression of Euler polynomials in terms of Bernoulli
polynomials

2 Buni(@) = 2 Bua(a/2)}, (3

The generating function method (cf. Graham et al [11, Chapter 7] and
Wilf [15]) is powerful in dealing with problems of combinatorial computa-
tions. Motivated by the recent work on bivariate 2—polynomials due to
Chu-Magli [4], the purpose of this paper is to utilize this tool to investigate
the binomial convolutions defined by

Fria(®) Gmiiy
o)~ () Cast)

where a;, v € Ng, A € C and the shifted factorial is defined by
(2)o=1 and (2)p=2(2+1)---(z4+n—-1) for n=1,2,---.

E,(x) =

Consider the exponential generating function

um 2) Guiiy(y) u™
79 ( ) H—a m—1i+y L
Zm' a:y‘ ZZ (t+1)q(m—i+1)y m!

m>0 m>0 i=0

Interchanging the summation order and then making the replacement m —
1+ j, we can reformulate the generating function as follows

u™ (Au)? u?
> —Qn(wy|22) = Z Fiya())  =——Gj\(y)
! VIIEG e | I
= m! (i 4+ «)! = (J+)!
which leads us to the following product expression

3 %Qm(w,y‘?,’g) = 3:7 { 2 (A;!L)iﬂ(x)} : {

m>0 i>o

> Yam) 6
v
This generating function relation will be utilized to compute the convolu-
tions defined by (4). Several identities will be established for Q,, (,y| ]‘;‘g)
in the remaining three sections, respectively dealing with the cases of “a =
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v=0", “a=1, y=0" and “a =+ =1” where A = 1, 2 and {F,G} will
be specified by Bernoulli and Euler polynomials.

l.a=~v=0

In this section, we examine the convolution sums {2, (m,y‘?g) defined

in (4), when a = v = 0 and {F,G} are specified by Bernoulli and Euler
polynomials.

1.1. Fy(x) = Bi(x) and Gi(y) = Bi(y). The exponential generating func-
tion corresponding to (5) becomes

(S B}~ {jzo B0} = ey ©

i>0

The generating function displayed in (6) can be expressed as
u2et(z+y) ot 1)u26“($+y—1) u?d ev@ty=1)
(e“—l)Q_JIj Y ev —1 du e*—1

Extracting the coefficient of “%,L across the last equation leads to the con-
volution

m

m
S (1) Bul@) B sly) = 1=m) Bu(@+y—1)+ (a+y—1)mBy1(z+y—1).
k=0
Applying the relation of difference in (2) for Bernoulli polynomials, we can
simplify the last equation to the following formula.

Theorem 1. (Hansen [12, Eq 50.11.2])

Z(?)Bk(x)Bm,k(y) — (1= m)Bp(z+9y)+ (& +y— 1)mBm_1(zx +79).
k=0

We remark that the special case x = y = 0 of the last identity
0—2 i
Z( . )BkBg_k = —(+1)B,
k=2
is originally due to Euler and Ramanujan (cf. [8, Eq 1.2], [9, Eq 1.2] and
[10]).
Replacing x by 1 —x in Theorem 1, then invoking both (1) and
(2) on Bernoulli polynomials, we deduce another convolution formula.
Corollary 2. (Dilcher [8, Eq 3.2] and Hansen [12, Eq 50.11.1])

m

S0 ) Brl@) B () = (1 = m) Bunly = 2) + (y = 2)m By (y - ).
k=0
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The generating function displayed in (6) can be reformulated as
2u2eu(22+y) wletrty=1)  2,uzt+y) 4,24 pu(2z+y—1)
=2z4+y-1) — S —
(ev —1)2(e* + 1) et —1 e?v —1 du e*—1
Extracting the coefficient of %l across this equation and then appealing
to (2) and (3), we derive the following convolution identity.

Theorem 3. (Hansen [12, Eq 50.11.4])

S (W) Bw) Bsly) = (1= m) B2 +9) + ™50 B (02 4y)
k=0

+ m(2x +y— %)Bm_1(2x +y).

1.2. Fy(x) = Ex(x) and Gi(y) = Ek(y). The exponential generating func-
tion corresponding to (5) reads as

(M) } { uw 4et(Az+y)
Y S Ei@) ¢ x> =B ¢ = (0
{ = i! = J! (e +1)(ev+1)

A = 1| The generating function displayed in (7) can be stated as
4BU(£B+y) eu(m+y_1) 4d eu(x"’y_l)
| -1 _ 2
(ev +1)2 (x+y—1) ev+1 du e*+1

u™

Extracting the coefficient of -7 across this equation and then appealing
to (2), we derive the following convolution formula.

Theorem 4. (Dilcher [8, Eq 4.2] and Hansen [12, Eq 51.6.2])

3 (?)Ek(az)Em_k(y) =21 — 2 — ) En(z + 1) + 2Bmer(z +1).
k=0

Replacing x by 1 —z in Theorem 4, then applying the relations
of the difference and reciprocity in (1) and (2) for Euler polynomials, we can
express the resulting equation as another identity.

Corollary 5. (Hansen [12, Eq 51.6.1])
S () Br(@) B k() = 2(y = 2) By — ) = 2B (y - ).
k=0

The generating function displayed in (7) can be expressed as

4eu2z+y) 9eu(2z+y) 9eu(2z+y+1) 9eu(2z+y)

(e2v +1)(e* + 1) et +1  eug] + e2u 41 °
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Extracting the coefficient of "%,L across this equation recovers directly the
following convolution formula.

Theorem 6. (Hansen [12, Eq 51.6.5))
m
m
> 2 (V) B(@) B k(y) = Bm(20 + ) — 27 By (L) 4+ 27y (252).
k=0

1.3. Fi(z) = Bi(z) and Gi(y) = Eg(y). The exponential generating func-
tion corresponding to (5) is given by

2)\ueu()\z+y)

{ 2 (Ai!)iBi(@} : { 2 ijj(y)} T (@D (ev 1) ®

i>0 §>0

The generating function displayed in (8) can be expressed as

Suet@ty)  yeulety) g eulety)

e2u —1  eu—1 et 41

Extracting the coefficient of ’% across the last equation and then taking
into account of (3), we establish the following identity.

Theorem 7.

S () Bu@) Bnes®) = Bl +9) = BBmr(a +9) = 27 B (552),
k=0

We point out that the special case £ = 0 of the last theorem recovers the
identity due to Cheon [3, Eq 13] and Srivastava—Pinter [14, Eq 11]:

i(?)BkEmk@) = 2" B, (4).

k=0

Replacing = by 1 — z in Theorem 7 and then applying (1) and
(2) to the resulting equation, we get another identity.

Corollary 8.

m

(=1 (" ) Bu(@) B4 (y) = By — 2) + 3 B (y - @).
k=0

The generating function displayed in (8) can be expressed as

Ayt (2a+y) Que(2z+y) ud et (2z+y=1) uet2z+y—1)
- ory-nY
e*+1

(e?v —1)(e* +1) e —1 + du et +1
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Extracting the coefficient of %

lution

across the last equation gives the convo-

> 24 () Be(@) B k(y) = 27 B (252) + mE (20 +y — 1)
k=0

—mQ2r+y—1)E,—1(2c+y—1).

By means of (1), (2) and (3), this equation simplifies to the following iden-
tity.

Theorem 9.

> 24 (V) Be@) B -s(y) = Bun(22 +9)
k=0
—m{E,(2z+y)— 22 +y— 3)En_12z +y)}.

A =1/2| The generating function displayed in (8) can be expressed as

the partial fractions
euy ue% ue%(w—i—Qy) ue£(1+a¢+2y) ue%(m—my)

2
et 21 2e—1) 2"+ 1)  2ev+ 1)

Extracting the coefficient of “%: across this equation, then interchanging
x and y and finally multiplying the resulting equation by 2", we derive the
following convolution identity.

Theorem 10.

> 2 (V) Bu@) Br-s(y) = B (22 +9)
k=0

_ 2m—2m{Em71(2x+2y+1) +E 71(2:02—&-31)}'

2. a=1AND 7v=0

In this section, we examine the convolution sums €2, (:L’,y‘ l‘fig;) defined

in (4), when a = 1, v = 0 and {F, G} are specified by Bernoulli and Euler
polynomials.

2.1. Fy(x) = Bi(x) and Gi(y) = Bi(y). The exponential generating func-
tion corresponding to (5) becomes

A: { 2 (Ailf)iBz'(x)} g {Z;{By‘(y)} N Alu{:ieﬁ - 1}ezejyr ()

i>1 >0
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The generating function displayed in (9) can be expressed as

1{ uel® 1} uey ( N 1)ueu(x+y71) ud eu(:r+y71) ey
_ =(z4+y—1)———

ulet —1 ev —1

et —1  du e*—1 et —1°

Extracting the coefficient of % across this equation and then appealing
to (2), we derive the following convolution identity.

Theorem 11.

(0 i1 (@) _ m B (u)
> ()T Buesy) = (a+y=1) Bu(a+y) — 72 B (o+y)— 2242,

Replacing by 1 —x in Theorem 11 results in another formula.
Corollary 12.

>0 () Bt
k=0

m Bm
= (¢ —y)Bm(y — @) + ;35 Bmt+1(y — 2) + %{y)

The generating function displayed in (9) can be expressed as

1 2ue2uac uety o ) ueu(Qac—i—y—l) ueu(2m+y)
2u e —1 e T TPy
Uy ud 6u(2:v+y—1)

S 20t —1)  2du et —1

Extracting the coefficient of % across this equation and then applying
(2) and (3), we obtain the following convolution formula.

Theorem 13.

Z2k( )Bl,;i(l )Bm—k(y) =2z +y—3)Bn(2z+y)

B,
e B (20 +y) - Zett o mp (00 4y

A =1/2| The generating function displayed in (9) can be reformulated

as

ue™y 2 ue'? uez (@ +2y=1) ue(3 1Y)
—— —1ls=(x+2y—1) —
2(eu/2 — 1) 2(ev/2 —1)  2(e* —1)
2euY ud62(1+2y 1)
ev —1 du ew/2_-1

et —1 U
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Extracting the coefficient of “%,L across this equation, then interchanging
x and y and finally simplifying the resulting equation by means of (2) and
(3), we derive the following convolution identity.

Theorem 14.

sz(?)Bk(f’”)m = (2z+y — 3)Bn(22 +y)
k=

— By (22 +y) — Pntl@D y Enl0) omp (97 4 y),

2.2. Fy(z) = Ex(z) and Gg(y) = Ex(y). The exponential generating func-
tion corresponding to (5) is given by

R s e} 2

i>1 >0 7"

The generating function displayed in (10) can be expressed as
1 { 2eUT } 26Uy eulz+y—1) 4d ezty—1) 2¢eUY

u et +1 uler +1) udu ev+1  uler +1)
um

Extracting the coefficient of it across this equation and then appealing
to (2), we derive the following convolution formula.

Theorem 15.
S ()5

21 =z —y)Eni(r+y) + 2En12(x +y) — Eni(y)
m+1 ’

Replacing = by 1 — z in Theorem 15 and then invoking (1) and
(2), we can express the resulting equation as the following identity.

Corollary 16.

m

ST g )

P k+1

_ 2@—y)Enni(y—z) + 2Enm2(y—2) + Emia(y)
m+1
The generating function displayed in (10) can be reformulated as
1 { 2€2ux } 26wy eu(296+y) eu(296+y+1) eu(2x+y) ey

2ulet+1 B

v+ 1 uer +1)  u(e +1) * u(e?v +1) wu(ev+1)
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Extracting the coefficient of -+ u™ across this equation yields to the following
convolution formula.

Theorem 17.

Z Qk( ) Ezj(l )Emfk(y) — M{Em—i-l(zf + y)

— 2" B () 4 2 B (B5Y) — B () }-

A =1/2| The generating function displayed in (10) can be decomposed

into partial fractions

2e" 2 2¢’s 4e3 (@H+2y) 4e“z+22y+1 4e = 4e™y
X — —1; = - - .
ev+1 u{e"/2 +1 } u(ev/2 +1) u(e“—l—l)+ (e*+1) wu(er+1)

Extracting the coefficient of % - across this equation, then interchanging x
and y and finally simplifying the resulting equation times 2", we obtain the
following convolution identity.

Theorem 18.

m jo N
> 2 (7 )P ) = S {Ena o ) = B ()

+ 2m+1Em+1(2362j> _ 2m+1Em+1($)}.

2.3. Fi(x) = Bi(x) and Gi(y) = Ex(y). The exponential generating func-
tion corresponding to (5) reads as

(s - ) o

i>1 §>0

The generating function displayed in (11) can be stated as
1 { uel” 1} 2eW 2¢eu(z+y) 2e"

ulet—1 ev+1 -1  wulev+1)

Extracting the coefficient of %r 7 across this equation and then appealing
to (3), we derive the following Convolutlon identity.

Theorem 19.

- m Bk+1 (.’E) _ Bmti(z+y) 1 Em+1(y)
Z( k )ki—l—lEm_k(y) = :}LIT - iEm(x + y) - m+7J:1

Replacing x by 1 —z in Theorem 19 and then applying (1) and
(2), we can reformulate the corresponding identity as follows.
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Corollary 20.

- m\ B T —z
S () B ) = Baa)  Bastemnl 4 )
k=0

The generating function displayed in (11) can be expressed as

1 QueuT 20Uy eu(2m—4—y) eu(2:ﬂ+y—1)
= —1 = —(rty-1)
2u -1 et+1 e —1 e +1

d ev(z+y—1) R

du et +1  uler+1)

Extracting the coefficient of “WW,I across this equation and then appealing
to (2), we derive the following convolution formula.

Theorem 21.

Z Bit1(z)
k k4+1{Z _ 1) Bmt1(2z+y)
2 ( ) k+1 Em—k(y) - 2{ 211+1 v Em+1(2x + y)

+@Qr+y—3)E, (22 +y) - W}

A = 1/2| The generating function displayed in (11) can be expressed as
the partial fractions

2% 2 ue'> eslet) Rt 4e™y
e +1" ul2(ew/2 1) w21 ev+1 e+ 1  u(er+1)

Extracting the coefficient of % T across this equation, then interchanging x
and y and finally simplifying the resulting equation times 2™, we derive the
following convolution identity.

Theorem 22.

- Bm— T m— x
S 2 ) Bula) Tecktll) B gt (B

_ melEm(va;ry) gm+1 ETZL::; )

2.4. Fy(x) = Ex(x) and Gi(y) = Bi(y). The exponential generating func-
tion corresponding to (5) is given below

L) - )

i>1 §>0
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The generating function displayed in (12) can be expressed as

1 2ew ue™y 2¢u(@+y) ew
it -1 — —
i

e“—l_ et —1 v —1

Extracting the coefficient of °—+ across this equation and then appealing
to (3), we derive the following convolutlon identity.

Theorem 23.
" rm\ Eri(z) _ Bailzty) 1 Bumt1(y)
kZ_ﬂ( k )ﬁBm—k(y) = :117“ - EEm(m +y) — %4}1

Replacing = by 1 — z in Theorem 23 and then utilizing (1) and

(2), we can express the resulting equation as follows.

Corollary 24.

m

m\ Eri1(x ST .
S () B g ) = Bateml gy g 4 Bl
k=0

The generating function displayed in (12) can be expressed as
1 262uac ety eu(Qa:—f—y) eu(2$+y+1) 6u(2m+y) Uy
Qu{ 241 }

et —1  2(er—1) 2(e2+1) 2(e+1) 2(et—1)

Extracting the coefficient of % across this equation and then appealing
to (2), we derive the following convolution formula.

Theorem 25.

By ()
k k1P _ Bmy1(22ty)  om-2p 224yt
ZZ ( ) E+1 — 7 Bmk(y) = 2(m~+1) 2 Em (55— 2 )

2m 2E (29:+y) Tnti(ly))

A =1/2| The generating function displayed in (12) can be expressed as
the partial fractions

ue” 2 2% 205 (x+2y) o2 (a+2y—1)
e 1" u{e“/2+1 a }:d‘—l_%x—'—zy_l)e“m—l-l
2e%  Ad ez @21
B + du ew/2 41 °

Extracting the coefficient of % o across this equation, then interchanging x
and y and finally simplifying the resulting equation through (2) and (3), we
derive the following convolution identity.
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Theorem 26.
ok (11 En—i11(y)
—k+1 Bi1(2 Bt (2
ZQk( k )Bk(x> = k++ 1 sG] Beall) _F (22 +y)
k=0

+ 2z +y— 3 En (20 +y) + Eni2),

3.a=v=1

In this section, we examine the convolution sums {2, (m,y‘gg) defined

in (4), when a = v = 1 and {F,G} are specified by Bernoulli and Euler
polynomials.

3.1. Fiy(z) = Bi(z) and Gg(y) = Bi(y). The exponential generating func-
tion corresponding to (5) becomes

)\u_; { Z ()‘i!)iBz'(l')}X{ Z Q;.ZBJ'(Z/)} = /\iz{)e\i\f/\_u:_l}x{;eiyl_l}'

i>1 j>1
(13)
The generating function displayed in (13) can be expressed as

ux uy u(z+y—1) u(z+y—1)
1{ue _l}x{ue —1}:(33—1—?;—1)6 de

u? et — 1 e —1 et —1  du ev—1
el evy 1
u(e* —1)  wu(er—1)  wu?

m
u

Extracting the coefficient of -7 across this equation and then appealing
to (2), we derive the following convolution identity.

Theorem 27.

(M By+1(z) Bk +1(y) _ _ 1\Bmyi1(z+y)  Bmi2(z+y)
kz()(k:) Frl m—kr1 - @ty DT m+2

Bmi2(x) Bm+2(y)

(m+1)(m+2) (m+1)(m+2)"

Replacing = by 1 — z in Theorem 27 and then applying (1) and
(2), we can restate the resulting equation as the following identity.

Corollary 28.

i(_l)k (m) Bii1(2) Bn—k1(y)

Bm+1(y—2) | Bmi2(y—2)
L +

k+1 m—k+1_(m_y) m+1 m+2

Bm42(1—x) Bm42(y)
+ (m+-;2)(m+2) + (m+1Y(in+2)'
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The generating function displayed in (13) can be expressed as

1 [ 2ue?w® e ue'y A 1 eu(2z+y)
2u2 | e —1 ev —1 C2u? 2(e?u — 1)

6u(2x-|—y—1) eQuaﬂ Uy d eu(Z:E—i—y—l)
2(et —1) u(eQu —1) 2u(e*—1) 2du e*—1

+2x+y-—1)

Extracting the coefficient of % o7 across this equation and then appealing
to (2) and (3), we derive the followmg convolution formula.

Theorem 29.
Bi+1(2) Bin—k+1(y)
k k+1 k+1 _ En(2z+4y) _ 3 Bmt1(224y)
_ Bm+2(22+y) _ Bm+2(22) + Emq1(22) _ Bm+2(y)
2(m+2) 2(m~+1)(m+2) 4(m+1) 2(m+1)(m+2) "

3.2. Fy(z) = Ex(z) and Gg(y) = Ex(y). The exponential generating func-
tion corresponding to (5) reads as

Au_;{ 3 ()\;!L)iEi(x)}x{ Z?jEj(y)} = ;@{(ﬂ‘l}x{iﬁ_l}'

i>1 §>1
(14)
The generating function displayed in (14) can be expressed as

1 2eUT 26Uy eu(eryfl)
= 1\« -1, =4 —1)———=
u2{e“+1 } {e“+1 } (+y )u2(6“+1)

4d  ev@ty=1) 2e"* 2e" 1
Cwldu et 41 (et +1)  ul(et+1) + u?’

Extracting the coefficient of %l across this equation and then appealing
to (2), we derive the following convolution identity.

Theorem 30.

(M Bg1(2) Brpa(y) Epio(a+y) Eumss(a+y)
kZ:O( k > k+1 m—k+1 2(1 —T- y) (m+1)(m+2) + 2(m+l)(m+2)
Em2(x) Emi2(y)

(m+1)(m+2) (m+1)(m+2)"

Replacing by 1 — z in Theorem 30 and then using (1) and
(2), we obtain the following formula.
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Corollary 31.

m

k(MM Ek+1 (x> E’I’l’L*k‘i’l (y) _ Emy2(y—1) Erm3(y—2)
kzo(_l) ( k ) E+1 m—k+1 2@~ Y ity 2w me2)

Em (1*1) Em (y)
+ ey T e oa )

The generating function displayed in (14) can be expressed as

1 9e2uT 2euY eu(?x—i—y) 6u(2ac—i—y—i—1)
-1l xq——=1;= —
2u2{e2“—|— 1 } {e“—i— 1 } u?(e* +1)  w?(e*™ +1)

eu(21’+y) e2ux euy 1
+ w2(e2+1)  u2(e2v+1)  ul(e*+1) o

Extracting the coefficient of %L across this equation and then appealing
to (2), we derive the following convolution formula.

Theorem 32.
Epi1(z) Em—p1(y)
k k+1 k+1 . 1
Zz ( ) Fr L bl =~ G Eme2(20 +y)
gm+1 2x+y+1 om+1 2z
— rnme P2 (57) + e Pm2 (55

m+1
- % Epio(z) — mEmw(y)'

3.3. Fx(z) = Bi(z) and Gg(y) = Ex(y). The exponential generating func-
tion corresponding to (5) is given by

Au;{ 3 (Ai?f>iBi(x)}x{ Z?jEj(y)} = A;{%‘l}x{eﬁyfl}'

i>1 j=1
(15)
The generating function displayed in (15) can be expressed as

1 [ ue"® 2evY 2@ +y) eur 2eY 1
— —1bxd 1Y = - - +—.
u? et —1 et +1 u(e2v —1) wu(e —1) wu2(e*+1) u?

Extracting the coefficient of —+ across this equation and then appealing
to (3), we derive the following convolution identity.

Theorem 33.

i(m) Biy1(x) Ep—r1(y) _ Bmi2(z+y)  Emgi(z+y)
k k _|_ 1 m — k + 1 - (m+1)(m+2) 2(m+1)

_ _Bmga(x) _ Emya(y)
(m~+1)(m+2) (m+1)(m+2) "
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Replacing = by 1 — 2 in Theorem 33 and then invoking (1) and
(2), we can reformulate the resulting equation as the following formula.

Corollary 34.

i(_l)k(ﬂ) Biy1(®) Em—k+1(Y) _ Bmisy—2)  Emii(y—2)

e k E+1 m—k+1 - (m+1)(m+2) 2(m+1)

Bnio(1—2) Frio(y)
+ ey T (m+1)+(2my-&-2)'

A = 2| The generating function displayed in (15) can be expressed as

1 Que2uT 2euY u(2z+y) u(2z+y—1)
{ue_l}x{ e 1}_6—(2x—|—y—1)€

2u? | e?v —1 ev+1 u(e?* — 1) u(e* +1)
d eu(2w+y71) e2uz
udu e +1  u(e2 —1)
e 1

uZ(e* + 1) + 202

u™

Extracting the coefficient of -7 across this equation and then appealing
to (2) and (3), we derive the following convolution formula.

Theorem 35.
e (M Bii1(2) Enki1(¥)  Byyo(aty) 3\ By (20+y)
2.2 (o) T o T =m0y — i
_ Em+2(2x+y) _ Bm+2(2$)
2(m+1) 2(m+1)(m+2)
+ Em+1(295) Em+2(y)

4(m+1) — 2(m+1)(m+2)"

A =1/2| The generating function displayed in (15) can be expressed as
the partial fractions

2eY 2 ue's 2 2 (@+2y) e2?®
— 1P X =4 — —1p ==+ —
ev+1 u? | 2(ev/2 — 1) u? o u(ew'2 —1)  wu(ew/2—1)
uEE2Y uz+22y+1 Aoty

2 e
Culer+1)  u(er+1) uer+1)

u™

Extracting the coefficient of -5 across this equation, then interchanging x
and y, we derive the following convolution identity.
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Theorem 36.

E+1 m—k+1 2(m+1)(m+2) ~ 2(m+1)(m+2)

2"t E,, m—1 2 2
~ Tt~ e { B (50 + B (B2

Z2k( )Ek+1( ) Bmkarl(y) _ Bmi2(2z+y) Bmya(y)

By manipulating the generating function equation (5), one can derive
other convolution formulae for 2, (3:, y| ;g) with different o, v and A values.
Because the resulting convolution identities are generally quite complicated,
we confine ourselves to presenting only two further summation formulae
which may serve to show the existence of similar convolution sums.

’a: 1, v=2, A=1 and Fy(x) = Gi(z) :Bk(l')‘

% m Bk—i—l(x) Bm—k+2(y) Brmt2(z+y) By y3(z+y)
Z( k ) E+1 (m—k+1) =@+ Y = Diihimsd ~ tmil)mt)

k=0

—(y—3) Brpal(o) - _ Bums(2) — Bini3(y)
Yy (m+1)(m+2)  (mtD)(m+2)(m+3)  (m+1)(m+2)(m+3)"

la=1,7=0, A=3and Fi(y) = Gk(y) = Ex(y)|

Z?,k( )Ek-i—l( )Em—k(y): prew | (3x+y 1) Eps (%)

k+1
.3m 3z+y—1 .gm—1 3z+y—2 3z+y—2
— 23 Bna( ””*é’ )= 22 (Baty=2) Bt (F750) + 237 B2 (F757)
3 .3m 3 o
— 2802 Buty—3) B (B55) + 235 By o (3512) — Bptld)
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