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Abstract

We recast homogeneous linear recurrence sequences with fixed coefficients in terms
of partial Bell polynomials, and use their properties to obtain various combinatorial
identities and multifold convolution formulas. Our approach relies on a basis of se-
quences that can be obtained as the INVERT transform of the coefficients of the given
recurrence relation. For such a basis sequence with generating function Y (t), and for
any positive integer r, we give a formula for the convolved sequence generated by Y (t)r

and prove that it satisfies an elegant recurrence relation.
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1 Introduction

A linear recurrence sequence (an) of elements in a commutative ring R is a sequence given
by a homogeneous linear recurrence relation

an = c1an−1 + c2an−2 + · · ·+ cdan−d for n ≥ d, (1)

with fixed coefficients c1, . . . , cd ∈ R, together with initial values a0, a1, . . . , ad−1 ∈ R. The
generating function of such a sequence is a rational function of the form f(t) = p(t)

q(t)
with

q(t) = 1− c1t− c2t
2
− · · · − cdt

d,

and a polynomial p(t) of degree at most d − 1 that depends on the initial values. In other
words, the function f(t) is a linear combination of the rational functions

1

q(t)
,

t

q(t)
,

t2

q(t)
, . . . ,

td−1

q(t)
,

and their respective associated sequences form a basis for the space of linear recurrence
sequences with coefficients c1, . . . , cd.

On the other hand, if (cn) is a sequence and Q(t) is the formal power series

Q(t) = 1−
∞
∑

n=1

cnt
n,

then its reciprocal Y (t) = 1
Q(t)

can be written as Y (t) = 1 +
∞
∑

n=1

ynt
n with

yn =
n
∑

k=0

k!

n!
Bn,k(1!c1, 2!c2, 3!c3, . . . ), (2)

where Bn,k = Bn,k(x1, x2, . . . ) denotes the (n, k)-th partial Bell polynomial in the variables
x1, x2, . . . , xn−k+1. This is a direct consequence of Faà di Bruno’s formula (cf. Theorem B in
[7, Section 3.5]), and the sequence (yn) is precisely the INVERT1 transform of (cn).

Observe that if cn = 0 for all n > d, then 1/q(t) = 1/Q(t). Consequently, any linear
recurrence sequence with fixed coefficients can be expressed in terms of partial Bell poly-
nomials in the coefficients of the recurrence. An explicit formula is given in Section 2, see
formula (3), together with a few illustrating examples. As a particular application, we pro-
vide an alternative derivation of the Girard-Waring formulas for the power sum symmetric
functions.

The benefit of the representation (3) is that the partial Bell polynomials absorb the
coefficients of the recurrence and facilitate the derivation of universal identities. This is

1Introduced by Bernstein and Sloane [2]. This is also the operator A discussed by Cameron [5].
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particularly convenient when working with multifold self-convolutions. In Section 3, we
recall a convolution formula given by the authors in [4] and discuss it in the context of
multifold convolutions of linear recurrence sequences. For this type of convolved sequences
we give a universal recurrence formula (of the same depth as the original sequence), which
is obtained by using properties of the partial Bell polynomials. We conclude the paper with
a few examples that illustrate some applications of our main result.

2 Linear Recurrence Sequences

The representation of linear recurrence sequences in terms of partial Bell polynomials, as
discussed in the introduction, can be summarized as follows:

Proposition 1. Let (an) be a linear recurrence sequence satisfying

an = c1an−1 + c2an−2 + · · ·+ cdan−d for n ≥ d ≥ 1,

with initial values a0, a1, . . . , ad−1. Let (yn) be defined as in (2), and let

λ0 = a0, λn = an −
n
∑

j=1

cjan−j for n = 1, . . . , d− 1.

Then an = λ0yn + λ1yn−1 + · · ·+ λd−1yn−d+1, so

an =
d−1
∑

k=0

λk

n−k
∑

j=0

j!

(n− k)!
Bn−k,j(1!c1, 2!c2, . . . ) for n ≥ 1. (3)

Proof. If S denotes the right-shift operator S(a1, a2, . . . ) = (0, a1, a2, . . . ), then the sequences
(yn), S(yn), S

2(yn), . . . , S
d−1(yn), clearly form a basis for the space of all linear recurrence

sequences with coefficients c1, . . . , cd. Thus there are constants λ0, λ1, . . . , λd−1 such that
an = λ0yn+λ1yn−1+ · · ·+λd−1yn−d+1, with the convention that yk = 0 if k < 0. To find the
λk’s, we just need to look at the initial values and solve the equation



















1 0 · · · · · · · · · 0
y1 1 0 · · · · · · 0
y2 y1 1 0 · · · 0
...

...
. . .

...
...

...
. . .

...
yd−1 yd−2 · · · · · · y1 1





































λ0

λ1

λ2
...
...

λd−1



















=



















a0
a1
a2
...
...

ad−1



















.

By definition, (yn) satisfies the same recurrence as (an), so yn =
∑n

j=1 cjyn−j. Thus the
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inverse of the above d× d matrix is















1 0 · · · · · · 0
−c1 1 0 · · · 0
...

...
. . .

...
...

...
. . .

...
−cd−1 −cd−2 · · · −c1 1















,

and the claimed formula follows by applying this matrix to the vector (a0, . . . , ad−1).

Remark 2. It is worth mentioning, that the representation (3) provides a unifying approach
to linear recurrence sequences in which the coefficients of the recurrence are separated and
organized inside the partial Bell polynomials. In many cases, this gives known and new
combinatorial identities for the sequence at hand (regardless of the order of recursion) as
well as for their repeated convolutions, see Section 3.

For illustration purposes, let us consider a few basic examples.

Example 3. (Generalized Fibonacci) For arbitrary α and coefficients c1 and c2, let (fn) be
the sequence defined by

f0 = 0, f1 = α,

fn = c1fn−1 + c2fn−2 for n ≥ 2.

In the terminology of Proposition 1, we then have λ0 = 0, λ1 = α, and for n ≥ 1 we get

fn = αyn−1 = α
n−1
∑

k=0

k!

(n− 1)!
Bn−1,k(1!c1, 2!c2, 0, . . . ),

and since Bn−1,k(c1, 2c2, 0, . . . ) =
(n−1)!

k!

(

k

n−1−k

)

c2k−n+1
1 cn−1−k

2 , we arrive at

fn = α

n−1
∑

k=0

(

k

n− 1− k

)

c2k−n+1
1 cn−1−k

2 = α

n−1
∑

j=0

(

n− 1− j

j

)

cn−1−2j
1 cj2. (4)

Example 4. (Padovan, A000931 in [9]) Consider the sequence defined by

P0 = 1, P1 = P2 = 0,

Pn = Pn−2 + Pn−3 for n ≥ 3.

Using Proposition 1 with c1 = 0 and c2 = c3 = 1, we get λ0 = 1, λ1 = 0, λ2 = −1, and for
n ≥ 3,

Pn = yn − yn−2 = yn−3 =
n−3
∑

k=0

k!

(n− 3)!
Bn−3,k(0, 2!, 3!, 0, . . . ).
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Now, since k!
(n−3)!

Bn−3,k(0, 2!, 3!, 0, . . . ) =
(

k

n−3−2k

)

, we conclude

Pn =
n−3
∑

k=0

(

k

n− 3− 2k

)

for n ≥ 3. (5)

Example 5. (Tribonacci, A000073 in [9]) Let (tn) be the sequence defined by

t0 = t1 = 0, t2 = 1,

tn = tn−1 + tn−2 + tn−3 for n ≥ 3.

By Proposition 1, we have tn = yn−2, so

tn =
n−2
∑

k=0

k!

(n− 2)!
Bn−2,k(1!, 2!, 3!, 0, . . . ),

and since Bn,k(1!, 2!, 3!, 0, . . . ) =
n!
k!

∑k

ℓ=0

(

k

k−ℓ

)(

k−ℓ

n+ℓ−2k

)

, we get

tn =
n−2
∑

k=0

k
∑

ℓ=0

(

k

k − ℓ

)(

k − ℓ

n− 2 + ℓ− 2k

)

=
n−2
∑

k=0

k
∑

ℓ=0

(

k

ℓ

)(

ℓ

n− 2− k − ℓ

)

.

With the change of variable ℓ = j − k, and changing the order of summation, we arrive at

tn =
n−2
∑

j=0

j
∑

k=0

(

k

j − k

)(

j − k

n− 2− j

)

for n ≥ 2. (6)

Example 6. (Chebyshev) We now consider the Chebyshev polynomials defined by

T0(x) = 1, T1(x) = x,

Tn(x) = 2xTn−1(x)− Tn−2(x) for n ≥ 2.

Here c1 = 2x, c2 = −1, so λ0 = 1, λ1 = −x, and for n ≥ 1 we get

Tn(x) = yn − xyn−1

=
n
∑

j=0

j!

n!
Bn,j(2x,−2, 0, . . . )− x

n−1
∑

j=0

j!

(n− 1)!
Bn−1,j(2x,−2, 0, . . . )

=
n
∑

j=0

(

j

n− j

)

(2x)2j−n(−1)n−j
− x

n−1
∑

j=0

(

j

n− 1− j

)

(2x)2j−n+1(−1)n−1−j

=
n
∑

j=0

(

j

n− j

)

(2x)2j−n(−1)n−j
−

1

2

n
∑

j=1

(

j − 1

n− j

)

(2x)2j−n(−1)n−j,
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which can be written as

Tn(x) =

⌊n

2
⌋

∑

k=0

(−1)k
n

2(n− k)

(

n− k

k

)

(2x)n−2k for n ≥ 1. (7)

Similarly, for the Chebyshev polynomials of second kind Un(x), defined by the same
recurrence relation as for Tn(x), but with initial values U0(x) = 1 and U1(x) = 2x, we get

Un(x) = yn =

⌊n

2
⌋

∑

k=0

(−1)k
(

n− k

k

)

(2x)n−2k for n ≥ 1. (8)

2.1 Power Sums

We finish this section by considering the power sum symmetric functions

sn = xn
1 + · · ·+ xn

d

with d variables. The sequence (sn) satisfies the relations (Newton’s identities):

s0 = d

s1 = e1

s2 = e1s1 − 2e2

s3 = e1s2 − e2s1 + 3e3
...

sn = e1sn−1 − e2sn−2 + · · ·+ (−1)d−1edsn−d for n ≥ d,

where e1, . . . , ed are the elementary symmetric functions in x1, . . . , xd. In other words, (sn)
is a linear recurrence sequence of length d with initial values s0, s1, . . . , sd−1. Thus, as a
consequence of Proposition 1, each power sum sn can be expressed in terms of partial Bell
polynomials in e1, . . . , ed. This representation is an efficient way to organize and prove the
Girard-Waring formulas (see, e.g., Gould [8]).

Proposition 7. Let sn = xn
1 + · · · + xn

d and let e1, . . . , ed be the elementary symmetric

functions in the variables x1, . . . , xd. Then, for n ≥ 1, we have

sn =
n
∑

k=1

(−1)n+k (k − 1)!

(n− 1)!
Bn,k(1!e1, 2!e2, . . . , d!ed, 0, . . . ).

Our proof relies on the following basic recursive formula.

Lemma 8. For any sequence x = (x1, x2, . . . ), we have

nBn,k(x) =
n−k+1
∑

j=1

j

(

n

j

)

xjBn−j,k−1(x).
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Proof. This is a consequence of the known identity

Bn,k =
n−k
∑

j=0

(

n− 1

j

)

xj+1Bn−1−j,k−1 =
n−k+1
∑

j=1

(

n− 1

j − 1

)

xjBn−j,k−1,

see [6, Eq. (11.11) p. 415].

nBn,k =
n−k+1
∑

j=1

n

(

n− 1

j − 1

)

xjBn−j,k−1 =
n−k+1
∑

j=1

j

(

n

j

)

xjBn−j,k−1

as claimed.

Proof of Proposition 7. Let sn = xn
1 + · · ·+ xn

d . As mentioned before, (sn) is a linear recur-
rence sequence with coefficients

cj = (−1)j−1ej for j = 1, . . . , d,

and initial values

s0 = d, sk =
k−1
∑

j=1

cjsk−j + kck for k = 1, . . . , d− 1.

By Proposition 1, we can write sn =
∑d−1

j=0 λjyn−j with (yn) defined as in (2), and the λj’s
given by λ0 = s0 = d and

λj = sj −

j
∑

i=1

cisj−i =

( j−1
∑

i=1

cisj−i + jcj

)

−

j
∑

i=1

cisj−i = (j − d)cj

for j = 1, . . . , d− 1. Also, recall that (yn) is designed to satisfy the same recurrence relation
as (sn) for n ≥ d. Therefore, yn =

∑d

j=1 cjyn−j, and we can rewrite sn as follows:

sn =
d−1
∑

j=0

λjyn−j = λ0yn +
d−1
∑

j=1

λjyn−j

= d

( d
∑

j=1

cjyn−j

)

+
d−1
∑

j=1

(j − d)cjyn−j

= dcdyn−d +
d−1
∑

j=1

jcjyn−j =
d
∑

j=1

jcjyn−j

=
d
∑

j=1

n−j
∑

k=0

jcj
k!

(n− j)!
Bn−j,k(1!c1, 2!c2, . . . , d!cd, 0, . . . ).
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Since cj = 0 for j > d, we can write the sum over j up to n to facilitate a change of
summation. Then

sn =
n
∑

j=1

n−j
∑

k=0

jcj
k!

(n− j)!
Bn−j,k(1!c1, 2!c2, . . . )

=
n−1
∑

k=0

n−k
∑

j=1

jcj
k!

(n− j)!
Bn−j,k(1!c1, 2!c2, . . . )

=
n−1
∑

k=0

k!

n!

(

n−k
∑

j=1

j

(

n

j

)

(j!cj)Bn−j,k(1!c1, 2!c2, . . . )

)

which by Lemma 8 yields

sn =
n−1
∑

k=0

k!

n!
nBn,k+1(1!c1, 2!c2, . . . ) =

n
∑

k=1

(k − 1)!

(n− 1)!
Bn,k(1!c1, 2!c2, . . . ).

The claimed identity for the power sum sn follows by replacing back cj = (−1)j−1ej and
using the homogeneity properties of the polynomial Bn,k.

3 Convolutions

We now turn our attention to convolutions of sequences of the form

yn =
n
∑

k=0

k!

n!
Bn,k(1!c1, 2!c2, 3!c3, . . . ). (9)

In [4], we considered a more general family of sequences and proved the following result.

Theorem 9 ([4, Theorem 2.1]). Let a and b be arbitrary numbers. Let y0 = 1 and

yn =
n
∑

k=1

(

an+ bk

k − 1

)

(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ) for n ≥ 1.

For r ∈ N, we have

∑

m1+···+mr=n

ym1
· · · ymr

= r
n
∑

k=1

(

an+ bk + r − 1

k − 1

)

(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ).

The proof of this theorem relies on a convolution formula for partial Bell polynomials
given by the authors in [3]. In particular, the special case when a = 0 and b = 1 can be
formulated as follows:
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Corollary 10. For (yn) defined by (9) and r ∈ N, we have

y(r)n =
∑

m1+···+mr=n

ym1
· · · ymr

= r
n
∑

k=1

(

k + r − 1

k − 1

)

(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ) (10)

=
n
∑

k=1

(

k + r − 1

k

)

k!

n!
Bn,k(1!c1, 2!c2, . . . ).

Remark 11. More generally, if δ ≥ 0 is an integer, and if we let y−1 = · · · = y−δ = 0, then

∑

m1+···+mr=n

ym1−δ · · · ymr−δ =
n−δr
∑

k=0

(

k + r − 1

k

)

k!

(n− δr)!
Bn−δr,k(1!c1, 2!c2, . . . ).

Let us now revisit some of the basic examples considered in the previous section.

Example 12. (Generalized Fibonacci) For α, c1, c2 ∈ R, consider (fn) defined by

f0 = 0, f1 = α, fn = c1fn−1 + c2fn−2 for n ≥ 2.

Then, as described in Example 3, we have fn = αyn−1, and therefore

∑

m1+···+mr=n

fm1
· · · fmr

= αr
∑

m1+···+mr=n

ym1−1 · · · ymr−1

= αr

n−r
∑

k=0

(

k + r − 1

k

)

k!

(n− r)!
Bn−r,k(1!c1, 2!c2, 0, . . . )

= αr

n−r
∑

k=0

(

k + r − 1

k

)(

k

n− r − k

)

c2k−n+r
1 cn−r−k

2 .

Example 13. (Padovan) Let (Pn) be defined by

P0 = 1, P1 = P2 = 0, Pn = Pn−2 + Pn−3 for n ≥ 3.

As mentioned in Example 4, we have Pn = yn−3 and so

∑

m1+···+mr=n

Pm1+1 · · ·Pmr+1 =
∑

m1+···+mr=n

ym1−2 · · · ymr−2

=
n−2r
∑

k=0

(

k + r − 1

k

)

k!

(n− 2r)!
Bn−2r,k(0, 2!, 3!, 0, . . . )

=
n−2r
∑

k=0

(

k + r − 1

k

)(

k

n− 2r − 2k

)

.

9



And, with a little more work, we also get

∑

m1+···+mr=n

Pm1
· · ·Pmr

=
r
∑

ℓ=1

(

r

ℓ

) n−3ℓ
∑

k=0

(

k + ℓ− 1

k

)(

k

n− 3ℓ− 2k

)

.

Example 14. (Tribonacci) Let (tn) be defined by

t0 = t1 = 0, t2 = 1, tn = tn−1 + tn−2 + tn−3 for n ≥ 3.

As discussed in the previous section, we have tn = yn−2, so

∑

m1+···+mr=n

tm1
· · · tmr

=
∑

m1+···+mr=n

ym1−2 · · · ymr−2

=
n−2r
∑

k=0

(

k + r − 1

k

)

k!

(n− 2r)!
Bn−2r,k(1!, 2!, 3!, 0, . . . )

=
n−2r
∑

k=0

k
∑

ℓ=0

(

k + r − 1

k

)(

k

ℓ

)(

ℓ

n− 2r − k − ℓ

)

.

We now present a recurrence relation for convolved sequences of the form (10).

Theorem 15. For any sequence of the form yn =
n
∑

k=0

k!
n!
Bn,k(1!c1, 2!c2, . . . ), and for r ∈ N,

consider the convolved sequence

y(r)n =
∑

m1+···+mr=n

ym1
· · · ymr

for n ≥ 0.

Then, for n ≥ 1, we have the recurrence relation

n y(r)n =
n
∑

m=1

(

n+m(r − 1)
)

cm y
(r)
n−m. (11)

Proof. By definition, we have y
(r)
0 = 1 and y

(r)
1 = rc1, so (11) is true for n = 1. For n > 1,

write
n
∑

m=1

(

n+m(r − 1)
)

cm y
(r)
n−m = nrcn +

n−1
∑

m=1

(

n+m(r − 1)
)

cm y
(r)
n−m.
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Now, by means of the identity (10), we have

1

r

n−1
∑

m=1

(

n+m(r − 1)
)

cmy
(r)
n−m

=
1

r

n−1
∑

m=1

(

n+m(r − 1)
)

cm

n−m
∑

k=1

r
(

k+r−1
k−1

) (k−1)!
(n−m)!

Bn−m,k(1!c1, 2!c2, . . . )

=
n−1
∑

k=1

(

k+r−1
k−1

)

(k − 1)!
n−k
∑

m=1

n+m(r−1)
(n−m)!

cmBn−m,k(1!c1, 2!c2, . . . )

=
n
∑

k=2

(

k+r−2
k−2

)

(k − 2)!
n−1
∑

m=k−1

n+(n−m)(r−1)
m!

cn−mBm,k−1(1!c1, 2!c2, . . . ).

We split the last equation into two terms and get

=
n
∑

k=2

(

k+r−2
k−2

)

(k − 2)!

(

n−1
∑

m=k−1

n
m!
cn−mBm,k−1 +

n−1
∑

m=k−1

(n−m)(r−1)
m!

cn−mBm,k−1

)

.

On the one hand,

n
∑

k=2

(

k+r−2
k−2

)

(k − 2)!
n−1
∑

m=k−1

n
m!
cn−mBm,k−1(1!c1, 2!c2, . . . )

=
n
∑

k=2

(

k+r−2
k−2

) (k−2)! k
(n−1)!

(

1

k

n−1
∑

m=k−1

(

n

m

)

(n−m)! cn−mBm,k−1(1!c1, 2!c2, . . . )

)

=
n
∑

k=2

(

k+r−2
k−2

)

(k−2)! k
(n−1)!

Bn,k(1!c1, 2!c2, . . . ).

On the other hand,

n
∑

k=2

(

k+r−2
k−2

)

(k − 2)!
n−1
∑

m=k−1

(n−m)(r−1)
m!

cn−mBm,k−1

=
n
∑

k=2

(

k+r−2
k−2

) (k−2)!(r−1)
(n−1)!

(

n−1
∑

m=k−1

(

n−1
m

)

(n−m)!cn−mBm,k−1(1!c1, 2!c2, . . . )

)

=
n
∑

k=2

(

k+r−2
k−2

)

(k−2)!(r−1)
(n−1)!

Bn,k(1!c1, 2!c2, . . . ).

11



Therefore,

1

r

n−1
∑

m=1

(

n+m(r − 1)
)

cmy
(r)
n−m =

n
∑

k=2

(

k+r−2
k−2

) (k−2)!
(n−1)!

(k + r − 1)Bn,k(1!c1, 2!c2, . . . )

=
n
∑

k=2

(

k+r−1
k−1

)

(k−1)!
(n−1)!

Bn,k(1!c1, 2!c2, . . . ),

and so

n−1
∑

m=1

(

n+m(r − 1)
)

cmy
(r)
n−m = r

n
∑

k=2

(

k+r−1
k−1

)

(k−1)!
(n−1)!

Bn,k(1!c1, 2!c2, . . . )

= n
n
∑

k=2

(

k+r−1
k

)

k!
n!
Bn,k(1!c1, 2!c2, . . . ) = n(y(r)n − rcn).

Finally, adding the term nrcn to both sides of this equation, we arrive at (11).

To illustrate our result, we now consider a few basic examples.

Example 16. Let (an) be the sequence defined by

a0 = 1, a1 = 1, an = an−1 + an−2 for n ≥ 2.

This is a shift of the Fibonacci sequence (an = Fn+1), and an =
n
∑

k=0

k!
n!
Bn,k(1, 2, 0, . . . ).

By means of Corollary 10, we have

a(r)n =
∑

m1+···+mr=n

am1
· · · amr

=
n
∑

k=1

(

k + r − 1

k

)(

k

n− k

)

,

and according to Theorem 15, this sequence satisfies

na(r)n = (n+ r − 1)a
(r)
n−1 + (n+ 2(r − 1))a

(r)
n−2.

For r = 2, 3, 4, this gives the recurrence relations (cf. [9]):

na(2)n = (n+ 1)a
(2)
n−1 + (n+ 2)a

(2)
n−2, (A001629)

na(3)n = (n+ 2)a
(3)
n−1 + (n+ 4)a

(3)
n−2, (A001628)

na(4)n = (n+ 3)a
(4)
n−1 + (n+ 6)a

(4)
n−2. (A001872)

Example 17. Let (an) be the sequence defined by

a0 = 1, a1 = 0, a2 = 1, and

an = an−2 + an−3 for n ≥ 3.

12



This is a shifted version of the Padovan sequence, and an =
n
∑

k=0

k!
n!
Bn,k(0, 2!, 3!, 0, . . . ).

By Theorem 15, the corresponding convolved sequence (cf. Example 13)

a(r)n =
n
∑

k=1

(

k + r − 1

k

)(

k

n− 2k

)

satisfies the recurrence relation

na(r)n = (n+ 2(r − 1))a
(r)
n−2 + (n+ 3(r − 1))a

(r)
n−3.

For r = 2, we get a shift of the sequence A228577 in [9] (number of gaps of length 1 in all
possible covers of a line of length n by segments of length 2). In this case, we obtain

na(2)n = (n+ 2)a
(2)
n−2 + (n+ 3)a

(2)
n−3.

Example 18. Let (an) be the sequence defined by

a0 = 1, a1 = 1, a2 = 2, and

an = an−1 + an−2 + an−3 for n ≥ 3.

This is a shift of the Tribonacci sequence discussed in Examples 5 and 14. More precisely,

an = tn+2 =
n
∑

k=0

k!
n!
Bn,k(1!, 2!, 3!, 0, . . . ), and the convolved sequence (a

(r)
n )n≥1 takes the form

a(r)n =
n
∑

k=1

(

k + r − 1

k

) k
∑

ℓ=0

(

k

k − ℓ

)(

k − ℓ

n+ ℓ− 2k

)

,

which satisfies

na(r)n = (n+ r − 1)a
(r)
n−1 + (n+ 2(r − 1))a

(r)
n−2 + (n+ 3(r − 1))a

(r)
n−3.

For r = 2, we obtain a recurrence relation for A073778 in [9]:

na(2)n = (n+ 1)a
(2)
n−1 + (n+ 2)a

(2)
n−2 + (n+ 3)a

(2)
n−3.
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