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Abstract

We say that a permutation π is a Motzkin permutation if it avoids 132 and there do not
exist a < b such that πa < πb < πb+1. We study the distribution of several statistics
in Motzkin permutations, including the length of the longest increasing and decreas-
ing subsequences and the number of rises and descents. We also enumerate Motzkin
permutations with additional restrictions, and study the distribution of occurrences of
fairly general patterns in this class of permutations.

2000 Mathematics Subject Classification: Primary 05A05, 05A15; Secondary 30B70,
42C05

1. Introduction

1.1. Background. Let α ∈ Sn and τ ∈ Sk be two permutations. We say that α

contains τ if there exists a subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n such that
(αi1 , . . . , αik) is order-isomorphic to τ ; in such a context τ is usually called a pattern.
We say that α avoids τ , or is τ -avoiding , if such a subsequence does not exist. The set
of all τ -avoiding permutations in Sn is denoted Sn(τ). For an arbitrary finite collection
of patterns T , we say that α avoids T if α avoids any τ ∈ T ; the corresponding subset
of Sn is denoted Sn(T ).

While the case of permutations avoiding a single pattern has attracted much attention,
the case of multiple pattern avoidance remains less investigated. In particular, it is
natural, as the next step, to consider permutations avoiding pairs of patterns τ1, τ2.
This problem was solved completely for τ1, τ2 ∈ S3 (see [SS]), for τ1 ∈ S3 and τ2 ∈ S4

(see [W]), and for τ1, τ2 ∈ S4 (see [Bo, Km] and references therein). Several recent
papers [CW, MV1, Kr, MV2, MV3, MV4] deal with the case τ1 ∈ S3, τ2 ∈ Sk for
various pairs τ1, τ2. Another natural question is to study permutations avoiding τ1 and
containing τ2 exactly t times. Such a problem for certain τ1, τ2 ∈ S3 and t = 1 was
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2 RESTRICTED MOTZKIN PERMUTATIONS

investigated in [R], and for certain τ1 ∈ S3, τ2 ∈ Sk in [RWZ, MV1, Kr]. Most results
in these papers are expressed in terms of Catalan numbers, Chebyshev polynomials,
and continued fractions.

In [BS] Babson and Steingŕımsson introduced generalized patterns that allow the re-
quirement that two adjacent letters in a pattern must be adjacent in the permutation.
In this context, we write a classical pattern with dashes between any two adjacent
letters of the pattern (for example, 1423 as 1-4-2-3). If we omit the dash between two
letters, we mean that for it to be an occurrence in a permutation π, the corresponding
letters of π have to be adjacent. For example, in an occurrence of the pattern 12-3-4
in a permutation π, the letters in π that correspond to 1 and 2 are adjacent. For
instance, the permutation π = 3542617 has only one occurrence of the pattern 12-3-4,
namely the subsequence 3567, whereas π has two occurrences of the pattern 1-2-3-4,
namely the subsequences 3567 and 3467. Claesson [C] completed the enumeration of
permutations avoiding any single 3-letter generalized pattern with exactly one adja-
cent pair of letters. Elizalde and Noy [EN] studied some cases of avoidance of patterns
where all letters have to occur in consecutive positions. Claesson and Mansour [CM]
(see also [M1, M2, M3]) presented a complete solution for the number of permutations
avoiding any pair of 3-letter generalized patterns with exactly one adjacent pair of let-
ters. Besides, Kitaev [Ki] investigated simultaneous avoidance of two or more 3-letter
generalized patterns without internal dashes.

A remark about notation: throughout the paper, a pattern represented with no dashes
will always denote a classical pattern (i.e., with no requirement about elements being
consecutive). All the generalized patterns that we will consider will have at least one
dash.

1.2. Preliminaries. Catalan numbers are defined by Cn = 1
n+1

(
2n

n

)
for all n ≥ 0. The

generating function for the Catalan numbers is given by C(x) = 1−
√

1−4x

2x
.

Chebyshev polynomials of the second kind (in what follows just Chebyshev polynomials)

are defined by Ur(cos θ) = sin(r+1)θ
sin θ

for r ≥ 0. Clearly, Ur(t) is a polynomial of degree
r in t with integer coefficients, which satisfies the following recurrence:

(1) U0(t) = 1, U1(t) = 2t, and Ur(t) = 2tUr−1(t)− Ur−2(t) for all r ≥ 2.

The same recurrence is used to define Ur(t) for r < 0 (for example, U−1(t) = 0 and
U−2(t) = −1). Chebyshev polynomials were invented for the needs of approximation
theory, but are also widely used in various other branches of mathematics, including
algebra, combinatorics, and number theory (see [Ri]). The relation between restricted
permutations and Chebyshev polynomials was discovered by Chow and West in [CW],
and later was further studied by Mansour and Vainshtein [MV1, MV2, MV3, MV4],
and Krattenthaler [Kr].

Recall that a Dyck path of length 2n is a lattice path in Z
2 between (0, 0) and (2n, 0)

consisting of up-steps (1, 1) and down-steps (1,−1) which never goes below the x-axis.
Denote by Dn the set of Dyck paths of length 2n, and by D =

⋃
n≥0Dn the class of all

Dyck paths. If D ∈ Dn, we will write |D| = n. Recall that a Motzkin path of length n

is a lattice path in Z
2 between (0, 0) and (n, 0) consisting of up-steps (1, 1), down-steps

(1,−1) and horizontal steps (1, 0) which never goes below the x-axis. Denote by Mn
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the set of Motzkin paths with n steps, and let M =
⋃

n≥0Mn. We will write |M | = n

if M ∈ Mn. Sometimes it will be convenient to encode each up-step by a letter u,
each down-step by d, and each horizontal step by h. Denote by Mn = |Mn| the n-th

Motzkin number. The generating function for these numbers is M(x) = 1−x−
√

1−2x−3x2

2x2 .

Define a Motzkin permutation π to be a 132-avoiding permutation in which there do
not exist indices a < b such that πa < πb < πb+1. Otherwise, if such indices exist,
πa, πb, πb+1 is called an occurrence of the pattern 1-23 (for instance, see [C]). For
example, there are exactly 4 Motzkin permutations of length 3, namely, 213, 231, 312,
and 321. We denote the set of all Motzkin permutations in Sn by Mn. The main reason
for the term “Motzkin permutation” is that |Mn| = Mn, as we will see in Section 2.

It follows from the definition that the set Mn is the same as the set of 132-avoiding
permutations π ∈ Sn where there is no a such that πa < πa+1 < πa+2. Indeed, assume
that π ∈ Sn(132) has an occurrence of 1-23, say πa < πb < πb+1 with a < b. Now,
if πb−1 > πb, then π would have an occurrence of 132, namely πaπb−1πb+1. Therefore,
πb−1 < πb < πb+1, so π has three consecutive increasing elements.

For any subset A ∈ Sn and any pattern α, define A(α) := A ∩ Sn(α). For example,
Mn(α) denotes the set of Motzkin permutations of length n that avoid α.

1.3. Organization of the paper. In Section 2 we exhibit a bijection between the
set of Motzkin permutations and the set of Motzkin paths. Then we use it to obtain
generating functions of Motzkin permutations with respect to the length of the longest
decreasing and increasing subsequences together with the number of rises. The section
ends with another application of the bijection, to the enumeration of fixed points in
permutations avoiding simultaneously 231 and 32-1.

In Section 3 we consider additional restrictions on Motzkin permutations. Using a
block decomposition, we enumerate Motzkin permutations avoiding the pattern 12 . . . k,
and we find the distribution of occurrences of this pattern in Motzkin permutations.
Then we obtain generating functions for Motzkin permutations avoiding patterns of
more general shape. We conclude the section by considering two classes of generalized
patterns (as described above), and we study its distribution in Motzkin permutations.

2. Bijection Θ : Mn −→Mn

In this section we establish a bijection Θ between Motzkin permutations and Motzkin
paths. This bijection allows us to describe the distribution of some interesting statistics
on the set of Motzkin permutations.

2.1. The bijection Θ. We can give a bijection Θ between Mn andMn. In order to do
so we use first the following bijection ϕ from Sn(132) to Dn, which is essentially due to
Krattenthaler [Kr], and also described independently by Fulmek [Fu] and Reifegerste
[Re]. Consider π ∈ Sn(132) given as an n× n array with crosses in the squares (i, πi).
Take the path with up and right steps that goes from the lower-left corner to the
upper-right corner, leaving all the crosses to the right, and staying always as close to
the diagonal connecting these two corners as possible. Then ϕ(π) is the Dyck path
obtained from this path by reading an up-step every time the path goes up and a
down-step every time it goes right. Figure 1 shows an example when π = 67435281.
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Figure 1. The bijection ϕ.

There is an easy way to recover π from ϕ(π). Assume we are given the path from the
lower-left corner to the upper-right corner of the array. Row by row, put a cross in the
leftmost square to the right of this path such that there is exactly one cross in each
column. This gives us π back.

One can see that π ∈ Sn(132) avoids 1-23 if and only if the Dyck path ϕ(π) does not
contain three consecutive up-steps (a triple rise). Indeed, assume that ϕ(π) has three
consecutive up-steps. Then, the path from the lower-left corner to the upper-right
corner of the array has three consecutive vertical steps. The crosses in the correspond-
ing three rows give three consecutive increasing elements in π (this follows from the
definition of the inverse of ϕ), and hence an occurrence of 1-23.

Reciprocally, assume now that π has an occurrence of 1-23. The path from the lower-
left to the upper-right corner of the array of π must have two consecutive vertical steps
in the rows of the crosses corresponding to ‘2’ and ‘3’. But if ϕ(π) has no triple rise,
the next step of this path must be horizontal, and the cross corresponding to ‘2’ must
be right below it. But then all the crosses above this cross are to the right of it, which
contradicts the fact that this was an occurrence of 1-23.

Denote by En the set of Dyck paths of length 2n with no triple rise. We have given a
bijection between Mn and En. The second step is to exhibit a bijection between En and
Mn, so that Θ will be defined as the composition of the two bijections. Given D ∈ En,
divide it in n blocks, splitting after each down-step. Since D has no triple rises, each
block is of one of these three forms: uud, ud, d. From left to right, transform the blocks
according to the rule

uud → u,

ud → h,(2)

d → d.

We obtain a Motzkin path of length n. This step is clearly a bijection.

Up to reflection of the Motzkin path over a vertical line, Θ is essentially the same bijec-
tion that was given by Claesson [C] between Mn andMn, using a recursive definition.

2.2. Statistics in Mn. Here we show applications of the bijection Θ to give generating
functions for several statistics on Motzkin permutations. For a permutation π, denote
by lis(π) and lds(π) respectively the length of the longest increasing subsequence and
the length of the longest decreasing subsequence of π. The following lemma follows
from the definitions of the bijections and from the properties of ϕ (see [Kr]).
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Lemma 1. Let π ∈Mn, let D = ϕ(π) ∈ Dn, and let M = Θ(π) ∈Mn. We have

(1) lds(π) = #{peaks of D} = #{steps u in M}+ #{steps h in M},
(2) lis(π) = height of D = height of M + 1,
(3) #{rises of π} = #{double rises of D} = #{steps u in M}.

Theorem 2. The generating function for Motzkin permutations with respect to the
length of the longest decreasing subsequence and to the number of rises is

A(v, y, x) :=
∑

n≥0

∑

π∈Mn

vlds(π)y#{rises of π}xn =
1− vx−

√
1− 2vx + (v2 − 4vy)x2

2vyx2
.

Moreover,

A(v, y, x) =
∑

n≥0

∑

m≥0

1

n + 1

(
2n

n

)(
m + 2n

2n

)
xm+2nvm+nyn.

Proof. By Lemma 1, we can express A as

A(v, y, x) =
∑

M∈M
v#{steps u in M}+#{steps h in M}y#{steps u in M}x|M |.

Using the standard decomposition of Motzkin paths, we obtain the following equation
for the generating function A.

A(v, y, x) = 1 + vxA(v, y, x) + vyx2A2(v, y, x).(3)

Indeed, any nonempty M ∈ M can be written uniquely in one of the following two
forms:

(1) M = hM1,
(2) M = uM1dM2,

where M1, M2, M3 are arbitrary Motzkin paths. In the first case, the number of hori-
zontal steps of hM1 is one more than in M1, the number of up steps is the same, and
|hM1| = |M1|+ 1, so we get the term vxA(v, y, x). Similarly, the second case gives the
term vyx2A2(v, y, x). Solving equation (3) we get that

A(v, y, x) =
1− vx−

√
1− 2vx + (v2 − 4vy)x2

2vyx2
=

1

1− vx
C

(
vyx2

(1− vx)2

)
,

where C(t) = 1−
√

1−4t

2t
the generating function for the Catalan numbers. Thus,

A(v, y, x) =
∑

n≥0

1

n + 1

(
2n

n

)
ynx2nvn

(1− vx)2n+1
=

∑

n≥0

∑

m≥0

1

n + 1

(
2n

n

)(
m + 2n

2n

)
xm+2nvm+nyn.

�

Theorem 3. For k > 0, let

Bk(v, y, x) :=
∑

n≥0

∑

π∈Mn(12...(k+1))

vlds(π)y#{rises of π}xn
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be the generating function for Motzkin permutations avoiding 12 . . . (k +1) with respect
to the length of the longest decreasing subsequence and to the number of rises. Then
we have the recurrence

Bk(v, y, x) =
1

1− vx− vyx2Bk−1(v, y, x)
,

with B1(v, y, x) = 1
1−vx

. Thus, Bk can be expressed as

Bk(v, y, x) =
1

1− vx− vyx2

1− vx− vyx2

. . .

1− vx− vyx2

1− vx

,

where the fraction has k levels, or in terms of Chebyshev polynomials of the second
kind, as

Bk(v, y, x) =
Uk−1

(
1−vx
2x

√
vy

)

x
√

vyUk

(
1−vx
2x

√
vy

) .

Proof. The condition that π avoids 12 . . . (k+1) is equivalent to the condition lis(π) ≤ k.
By Lemma 1, permutations in Mn satisfying this condition are mapped by Θ to Motzkin
paths of height strictly less than k. Thus, we can express Bk as

Bk(v, y, x) =
∑

M∈M
of height<k

v#{steps u in M}+#{steps h in M}y#{steps u in M}x|M |.

The continued fraction follows now from [Fl]. Alternatively, we can use again the
standard decomposition of Motzkin paths, for k > 1. In the first of the above cases,
the height of hM1 is the same as the height of M1. However, in the second case, in
order for the height of uM2dM3 to be less than k, the height of M2 has to be less than
k − 1. So we obtain the equation

Bk(v, y, x) = 1 + vxBk(v, y, x) + vyx2Bk−1(v, y, x)Bk(v, y, x).

For k = 1, the path can have only horizontal steps, so we get B1(v, y, x) = 1
1−vx

. Now,
using the above recurrence and Equation 1 we get the desired result. �

2.3. Fixed points in the reversal of Motzkin permutations. Here we show an-
other application of Θ. A slight modification of it will allow us to enumerate fixed
points in another class of pattern-avoiding permutations closely related to Motzkin
permutations. For any π = π1π2 . . . πn ∈ Sn, denote its reversal by πR = πn . . . π2π1.
Let M

R
n := {π ∈ Sn : πR ∈ Mn}. In terms of pattern avoidance, M

R
n is the set of

permutations that avoid 231 and 32-1 simultaneously, that is, the set of 231-avoiding
permutations π ∈ Sn where there do not exist a < b such that πa−1 > πa > πb. Recall
that i is called a fixed point of π if πi = i.
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Theorem 4. The generating function
∑

n≥0

∑
π∈MR

n
wfp(π)xn for permutations avoiding

simultaneously 231 and 32-1 with respect to to the number of fixed points is

1

1− wx− x2

1− x−M0(w − 1)x2 − x2

1− x−M1(w − 1)x3 − x2

1−x−M2(w−1)x4− x2

...

,(4)

where after the second level, the coefficient of (w − 1)xn+2 is the Motzkin number Mn.

Proof. We have the following composition of bijections:

M
R
n ←→ Mn ←→ En ←→ Mn

π 7→ πR 7→ ϕ(πR) 7→ Θ(πR)

The idea of the proof is to look at how the fixed points of π are transformed by each
of these bijections.

We use the definition of tunnel of a Dyck path given in [E1], and generalize it to
Motzkin paths. A tunnel of M ∈ M (resp. D ∈ D) is a horizontal segment between
two lattice points of the path that intersects M (resp. D) only in these two points,
and stays always below the path. Tunnels are in obvious one-to-one correspondence
with decompositions of the path as M = XuY dZ (resp. D = XuY dZ), where Y ∈M
(resp. Y ∈ D). In the decomposition, the tunnel is the segment that goes from the
beginning of the u to the end of the d. Clearly such a decomposition can be given for
each up-step u, so the number of tunnels of a path equals its number of up-steps. The
length of a tunnel is just its length as a segment, and the height is the y-coordinate of
the segment.

Fixed points of π are mapped by the reversal operation to elements j such that πR
j =

n + 1− j, which in the array of πR correspond to crosses on the diagonal between the
bottom-left and top-right corners. Each cross in this array naturally corresponds to a
tunnel of the Dyck path ϕ(πR), namely the one determined by the vertical step in the
same row as the cross and the horizontal step in the same column as the cross. It is
not hard to see (and is also shown in [E2]) that crosses on the diagonal between the
bottom-left and top-right corners correspond in the Dyck path to tunnels T satisfying
the condition height(T ) + 1 = 1

2
length(T ).

The next step is to see how these tunnels are transformed by the bijection from En to
Mn. Tunnels of height 0 and length 2 in the Dyck path D := ϕ(πR) are just hills ud

landing on the x-axis. By the rule (2) they are mapped to horizontal steps at height
0 in the Motzkin path M := Θ(πR). Assume now that k ≥ 1. A tunnel T of height
k and length 2(k + 1) in D corresponds to a decomposition D = XuY dZ where X

ends at height k and Y ∈ D2k. Note that Y has to begin with an up-step (since it is a
nonempty Dyck path) followed by a down-step, otherwise D would have a triple rise.
Thus, we can write D = XuudY ′dZ where Y ′ ∈ D2(k−1). When we apply to D the

bijection given by rule (2), X is mapped to an initial segment X̃ of a Motzkin path
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ending at height k, uud is mapped to u, Y ′ is mapped to a Motzkin path Ỹ ′ ∈ Mk−1

of length k − 1, the d following Y ′ is mapped to d (since it is preceded by another

d), and Z is mapped to a final segment Z̃ of a Motzkin path going from height k

to the x-axis. Thus, we have that M = X̃uỸ ′dZ̃. It follows that tunnels T of D

satisfying height(T ) + 1 = 1
2
length(T ) are transformed by the bijection into tunnels

T̃ of M satisfying height(T̃ ) + 1 = length(T̃ ). We will call good tunnels the tunnels
of M satisfying this last condition. It remains to show that the generating function
for Motzkin paths where w marks the number of good tunnels plus the number of
horizontal steps at height 0, and x marks the length of the path, is given by (4).

To do this we imitate the technique used in [E2] to enumerate fixed points in 231-
avoiding permutations. We will separate good tunnels according to their height. It
is important to notice that if a good tunnel of M corresponds to a decomposition
M = XuY dZ, then M has no good tunnels inside the part given by Y . In other words,
the orthogonal projections on the x-axis of all the good tunnels of a given Motzkin path
are disjoint. Clearly, they are also disjoint from horizontal steps at height 0. Using
this observation, one can apply directly the results in [Fl] to give a continued fraction
expression for our generating function. However, for the sake of completeness we will
explain here how to obtain this expression.

For every k ≥ 1, let gtk(M) be the number of tunnels of M of height k and length
k + 1. Let hor(M) be the number of horizontal steps at height 0. We have seen that
for π ∈ M

R
n , fp(π) = hor(Θ(πR)) +

∑
k≥1 gtk(Θ(πR)). We will show now that for

every k ≥ 1, the generating function for Motzkin paths where w marks the statistic
hor(M) + gt1(M) + · · ·+ gtk−1(M) is given by the continued fraction (4) truncated at
level k, with the (k + 1)-st level replaced with M(x).

A Motzkin path M can be written uniquely as a sequence of horizontal steps h and
elevated Motzkin paths uM ′d, where M ′ ∈ M. In terms of the generating function
M(x) =

∑
M∈M x|M |, this translates into the equation M(x) = 1

1−x−x2M(x)
. The gener-

ating function where w marks horizontal steps at height 0 is just

∑

M∈M
whor(M)x|M | =

1

1− wx− x2M(x)
.

If we want w to mark also good tunnels at height 1, each M ′ from the elevated paths
above has to be decomposed as a sequence of horizontal steps and elevated Motzkin
paths uM ′′d. In this decomposition, a tunnel of height 1 and length 2 is produced by
each empty M ′′, so we have

(5)
∑

M∈M
whor(M)+gt1(M)x|M | =

1

1− wx− x2

1− x− x2[w − 1 + M(x)]

.

Indeed, the M0(= 1) possible empty paths M ′′ have to be accounted as w, not as 1.
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Let us now enumerate simultaneously horizontal steps at height 0 and good tunnels at
heights 1 and 2. We can rewrite (5) as

1

1− wx− x2

1− x− x2

[
w − 1 +

1

1− x− x2M(x)

]
.

Combinatorially, this corresponds to expressing each M ′′ as a sequence of horizontal
steps and elevated paths uM ′′′d, where M ′′′ ∈ M. Notice that since uM ′′′d starts at
height 2, a tunnel of height 2 and length 3 is created whenever M ′′′ ∈ M1. Thus, if
we want w to mark also these tunnels, such an M ′′′ has to be accounted as wx, not x.
The corresponding generating function is

∑
M∈M whor(M)+gt1(M)+gt2(M)x|M |

=
1

1− wx− x2

1− x− x2

[
w − 1 +

1

1− x− x2[(w − 1)x + M(x)]

]
.

Now it is clear how iterating this process indefinitely we obtain the continued fraction
(4). From the generating function where w marks hor(M) + gt1(M) + · · · + gtk(M),
we can obtain the one where w marks hor(M) + gt1(M) + · · ·+ gtk+1(M) by replacing
the M(x) at the lowest level with

1

1− x− x2[Mk(w − 1)xk + M(x)]
,

to account for tunnels of height k and length k + 1, which in the decomposition corre-
spond to elevated Motzkin paths at height k. �

3. Restricted Motzkin permutations

In this section we consider those Motzkin permutations in Mn that avoid an arbitrary
pattern τ . More generally, we enumerate Motzkin permutations according to the num-
ber of occurrences of τ . Subsection 3.1 deals with the increasing pattern τ = 12 . . . k.
In Subsection 3.2 we show that if τ has a certain form, we can express the generating
function for τ -avoiding Motzkin permutations in terms of the the corresponding gen-
erating functions for some subpatterns of τ . Finally, Subsection 3.3 studies the case of
the generalized patterns 12-3- . . . -k and 21-3- . . . -k.

We begin by introducing some notation. Let Mτ (n) be the number of Motzkin per-
mutations in Mn(τ), and let Nτ (x) =

∑
n≥0 Mτ (n)xn be the corresponding generating

function.

Let π ∈ Mn. Using the block decomposition approach (see [MV4]), we have two
possible block decompositions of π, as shown in Figure 2. These decompositions are
described in Lemma 5, which is the basis for all the results in this section.
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β

n

n

n-t+1

α

β

Figure 2. The block decomposition for π ∈Mn.

Lemma 5. Let π ∈Mn. Then one of the following holds:

(i) π = (n, β) where β ∈Mn−1,

(ii) there exists t, 2 ≤ t ≤ n, such that π = (α, n− t + 1, n, β), where

(α1 − (n− t + 1), . . . , αt−2 − (n− t + 1)) ∈Mt−2 and β ∈Mn−t.

Proof. Given π ∈ Mn, take j so that πj = n. Then π = (π′, n, π′′), and the condition
that π avoids 132 is equivalent to π′ being a permutation of the numbers n− j +1, n−
j + 2, . . . , n − 1, π′′ being a permutation of the numbers 1, 2, . . . , n − j, and both π′

and π′′ being 132-avoiding. On the other hand, it is easy to see that if π′ is nonempty,
then π avoids 1-23 if and only if the minimal entry of π′ is adjacent to n, and both
π′ and π′′ avoid 1-23. Therefore, π avoids 132 and 1-23 if and only if either (i) or (ii)
hold. �

3.1. The pattern τ = 12 . . . k. From Theorem 3 we get the following expression for
Nτ :

N12...k(x) =
Uk−2

(
1−x
2x

)

xUk−1

(
1−x
2x

) .

This result can also be easily proved using the block decomposition given in Lemma 5.
Now we turn our attention to analogues of [BCS, Theorem 1]. Let N(x1, x2, . . .) be the
generating function ∑

n≥0

∑

π∈Mn

∏

j≥1

x
12...j(π)
j ,

where 12 . . . j(π) is the number of occurrences of the pattern 12 . . . j in π.

Theorem 6. The generating function
∑
n≥0

∑
π∈Mn

∏
j≥1

x
12...j
j (π) is given by the following

continued fraction:

1

1− x1 −
x2

1x2

1− x1x2 −
x2

1x
3
2x3

1− x1x
2
2x3 −

x2
1x

5
2x

4
3x4

. . .

,

in which the n-th numerator is
n+1∏
i=1

x
( n

i−1)+(n−1

i−1)
i and the n-th denominator is

n∏
i=1

x
(n−1

i−1)
i .
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Proof. By Lemma 5, we have two possibilities for the block decomposition of an arbi-
trary Motzkin permutation π ∈ Mn. Let us write an equation for N(x1, x2, . . .). The
contribution of the first decomposition is x1N(x1, x2, . . .), and the second decomposi-
tion gives x2

1x2N(x1x2, x2x3, . . .)N(x1, x2, . . .). Therefore,

N(x1, x2, . . .) = 1 + x1N(x1, x2, . . .) + x2
1x2N(x1x2, x2x3, . . .)N(x1, x2, . . .),

where 1 is the contribution of the empty Motzkin permutation. The theorem follows
now by induction. �

3.1.1. Counting occurrences of the pattern 12 . . . k in a Motzkin permutation. Using
Theorem 6 we can enumerate occurrences of the pattern 12 . . . k in Motzkin permuta-
tions.

Theorem 7. Fix k ≥ 2. The generating function for the number of Motzkin permuta-
tions which contain 12 . . . k exactly r times is given by

(
Uk−2

(
1−x
2x

)
− xUk−3

(
1−x
2x

))r−1

U r+1
k−1

(
1−x
2x

) ,

for all r = 1, 2, . . . , k.

Proof. Let x1 = x, xk = y, and xj = 1 for all j 6= 1, k. Let Gk(x, y) be the function
obtained from N(x1, x2, . . .) after this substitution. Theorem 6 gives

Gk(x, y) =
1

1− x− x2

1− x− x2

. . . −
. . .

1− x− x2y

1− xy − x2yk+1

. . .

.

So, Gk(x, y) can be expressed as follows. For all k ≥ 2,

Gk(x, y) =
1

1− x− x2Gk−1(x, y)
,

and there exists a continued fraction H(x, y) such that G1(x, y) = y

1−xy−yk+1H(x,y)
. Now,

using induction on k together with (1) we get that there exists a formal power series
J(x, y) such that

Gk(x, y) =
Uk−2

(
1−x
2x

)
−

(
Uk−3

(
1−x
2x

)
− xUk−4

(
1−x
2x

))
y

xUk−1

(
1−x
2x

)
− x

(
Uk−2

(
1−x
2x

)
− xUk−3

(
1−x
2x

))
y

+ yk+1J(x, y).

The series expansion of Gk(x, y) about the point y = 0 gives

Gk(x, y) =
[
Uk−2

(
1−x
2x

)
−

(
Uk−3

(
1−x
2x

)
− xUk−4

(
1−x
2x

))
y
]

·∑
r≥0

(Uk−2( 1−x
2x )−xUk−3( 1−x

2x ))
r

xUr+1

k−1(
1−x
2x )

yr + yk+1J(x, y).

Hence, by using the identities

U2
k (t)− Uk−1(t)Uk+1(t) = 1 and Uk(t)Uk−1(t)− Uk−2(t)Uk+1(t) = 2t
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we get the desired result. �

3.1.2. More statistics on Motzkin permutations. We can use the above theorem to find
the generating function for the number of Motzkin permutations with respect to various
statistics.

For another application of Theorem 6, recall that i is a free rise of π if there exists j

such that πi < πj . We denote the number of free rises of π by fr(π). Using Theorem 6
for x1 = x, x2 = q, and xj = 1 for j ≥ 3, we get the following result.

Corollary 8. The generating function
∑

n≥0

∑
π∈Mn

xnqfr(π) is given by the following
continued fraction:

1

1− x− x2q

1− xq − x2q3

1− xq2 − x2q5

. . .

,

in which the n-th numerator is x2q2n−1 and the n-th denominator is xqn−1.

For our next application, recall that πj is a left-to-right maximum of a permutation π

if πi < πj for all i < j. We denote the number of left-to-right maxima of π by lrm(π).

Corollary 9. The generating function
∑

n≥0

∑
π∈Mn

xnqlrm(π) is given by the following
continued fraction:

1

1− xq − x2q

1− x− x2

1− x− x2

. . .

.

Moreover,
∑

n≥0

∑

π∈Mn

xnqlrm(π) =
∑

m≥0

xm(1 + xM(x))mqm.

Proof. Using Theorem 6 for x1 = xq, and x2j = x−1
2j+1 = q−1 for j ≥ 1, together with

[BCS, Proposition 5] we get the first equation as claimed. The second equation follows
from the fact that the continued fraction

1

1− x− x2

1− x− x2

. . .

is given by the generating function for the Motzkin numbers, namely M(x). �
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3.2. General restriction. Let us find the generating function for those Motzkin per-
mutations which avoid τ in terms of the generating function for Motzkin permutations
avoiding ρ, where ρ is a permutation obtained by removing some entries from τ . The
next theorem is analogous to the result for 123-avoiding permutations that appears in
[Kr, Theorem 9].

Theorem 10. Let k ≥ 4, τ = (ρ′, 1, k) ∈ Mk, and let ρ ∈ Mk−2 be the permutation
obtained by decreasing each entry of ρ′ by 1. Then

Nτ (x) =
1

1− x− x2Nρ(x)
.

Proof. By Lemma 5, we have two possibilities for the block decomposition of a nonempty
Motzkin permutation in Mn. Let us write an equation for Nτ (x). The contribu-
tion of the first decomposition is xNτ (x), and from the second decomposition we get
x2Nρ(x)Nτ (x). Hence,

Nτ (x) = 1 + xNτ (x) + x2Nρ(x)Nτ (x),

where 1 corresponds to the empty Motzkin permutation. Solving the above equation
we get the desired result. �

As an extension of [Kr, Theorem 9], let us consider the case τ = 23 . . . (k − 1)1k.
Theorem 10 for τ = 23 . . . (k − 1)1k (ρ = 12 . . . (k − 2)) gives

N23...(k−1)1k(x) =
1

1− x− x2N12...(k−2)(x)
.

Hence, by Theorem 3 together with (1) we get

N23...(k−1)1k(x) =
Uk−3

(
1−x
2x

)

xUk−2

(
1−x
2x

) .

Corollary 11. For all k ≥ 1,

Nk(k+1)(k−1)(k+2)(k−2)(k+3)...1(2k)(x) =
Uk−1

(
1−x
2x

)

xUk

(
1−x
2x

) ,

and

N(k+1)k(k+2)(k−1)(k+3)...1(2k+1)(x) =
Uk

(
1−x
2x

)
+ Uk−1

(
1−x
2x

)

x
(
Uk+1

(
1−x
2x

)
+ Uk

(
1−x
2x

)) .

Proof. Theorem 10 for τ = k(k + 1)(k − 1)(k + 2)(k − 2)(k + 3) . . . 1(2k) gives

Nτ (x) =
1

1− x− x2N(k−1)k(k−2)(k+1)(k−3)(k+2)...1(2k−2)(x)
.

Now we argue by induction on k, using (1) and the fact that N12(x) = 1
1−x

. Similarly,
we get the explicit formula for N(k+1)k(k+2)(k−1)(k+3)...1(2k+1)(x). �

Theorem 3 and Corollary 11 suggest that there should exist a bijection between the
sets Mn(12 . . . (k +1)) and Mn(k(k +1)(k− 1)(k +2)(k− 2)(k +3) . . . 1(2k)). Finding
it remains an interesting open question.
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Theorem 12. Let τ = (ρ′, t, k, θ′, 1, t− 1) ∈Mk such that ρ′
a > t > θ′b for all a, b. Let

ρ and θ be the permutations obtained by decreasing each entry of ρ′ by t and decreasing
each entry of θ′ by 1, respectively. Then

Nτ (x) =
1− x2Nρ(x)Ñθ(x)

1− x− x2(Nρ(x) + Ñθ(x))
,

where Ñθ(x) = 1
1−x−x2Nθ(x)

.

Proof. By Lemma 5, we have two possibilities for block decomposition of a nonempty
Motzkin permutation π ∈Mn. Let us write an equation for Nτ (x). The contribution of
the first decomposition is xNτ (x). The second decomposition contributes x2Nρ(x)Nτ (x)

if α avoids ρ, and x2(Nτ (x)−Nρ(x))Ñθ(x) if α contains ρ. This last case follows from
Theorem 10, since if α contains ρ, β has to avoid (θ, 1, t− 1). Hence,

Nτ (x) = 1 + xNτ (x) + x2Nρ(x)Nτ (x) + x2(Nτ (x)−Nρ(x))Ñθ(x),

where 1 is the contribution of the empty Motzkin permutation. Solving the above
equation we get the desired result. �

For example, for τ = 546213 (τ = ρ46θ13), Theorem 12 gives Nτ (x) = 1−2x
(1−x)(1−2x−x2)

.

The last two theorems can be generalized as follows.

Theorem 13. Let τ = (τ 1, t1 + 1, t0, τ
2, t2 + 1, t1, . . . , τ

m, tm + 1, tm−1) where tj−1 >

τ j
a > tj for all a and j. We define σj = (τ 1, t1 + 1, t0, . . . , τ

j) for j = 2, . . . , m, σ0 = ∅,
and θj = (τ j , tj + 1, tj−1, . . . , τ

m, tm + 1, tm−1) for j = 1, 2, . . . , m. Then

Nτ (x) = 1 + xNτ (x) + x2
m∑

j=1

(Nσj (x)−Nσj−1)Nθj (x).

(By convention, if ρ is a permutation of {i+1,i+2,. . . ,i+l}, then Nρ is defined as Nρ′,
where ρ′ is obtained from ρ decreasing each entry by i.)

Proof. By Lemma 5, we have two possibilities for block decomposition of a nonempty
Motzkin permutation π ∈Mn. Let us write an equation for Nτ (x). The contribution of
the first decomposition is xNτ (x). The second decomposition contributes x2(Nσj (x)−
Nσj−1(x))Nθj (x) if α avoids σj and contains σj−1 (which happens exactly for one value
of j), because in this case β must avoid θj. Therefore, adding all the possibilities of
contributions with the contribution 1 for the empty Motzkin permutation we get the
desired result. �

For example, this theorem can be used to obtain the following result.

Corollary 14. (i) For all k ≥ 3

N(k−1)k12...(k−2)(x) =
Uk−3

(
1−x
2x

)

xUk−2

(
1−x
2x

) ;

(ii) For all k ≥ 4

N(k−1)(k−2)k12...(k−3)(x) =
Uk−4

(
1−x
2x

)
− xUk−5

(
1−x
2x

)

x
(
Uk−3

(
1−x
2x

)
− xUk−4

(
1−x
2x

)) ;
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(iii) For all 1 ≤ t ≤ k − 3,

N(t+2)(t+3)...(k−1)(t+1)k12...t(x) =
Uk−4

(
1−x
2x

)

xUk−3

(
1−x
2x

) .

3.3. Generalized patterns. In this section we consider the case of generalized pat-
terns (see Subsection 1.1), and we study some statistics on Motzkin permutations.

3.3.1. Counting occurrences of the generalized patterns 12-3- . . . -k and 21-3- . . . -k. Let
F (t, X, Y ) = F (t, x2, x3, . . . , y2, y3, . . .) be the generating function

∑

n≥0

∑

π∈Mn

tn
∏

j≥2

x
12-3-...-j(π)
j y

21-3-...-j(π)
j ,

where 12-3- . . . -j(π) and 21-3- . . . -j(π) are the number of occurrences of the pattern
12-3- . . . -j and 21-3- . . . -j in π, respectively.

Theorem 15. We have

F (t, X, Y ) = 1− t

ty2 −
1

1 + tx2(1− y2y3) + tx2y2y3F (t, X ′, Y ′)

,

where X ′ = (x2x3, x3x4, . . .) and Y ′ = (y2y3, y3y4, . . .). In other words, the generating
function F (t, x2, x3, . . . , y2, y3, . . .) is given by the continued fraction

1− t

ty2 −
1

1 + tx2 −
t2x2y2y3

ty2y3 −
1

1 + tx2x3 −
t2x2x3y2y

2
3y4

ty2y
2
3y4 −

1

1 + tx2x
2
3x4 −

t2x2x
2
3x4y2y

3
3y

3
4y5

. . .

.

Proof. As usual, we consider the two possible block decompositions of a nonempty
Motzkin permutation π ∈ Mn. Let us write an equation for F (t, X, Y ). The con-
tribution of the first decomposition is t + ty2(F (t, X, Y ) − 1). The contribution of
the second decomposition gives t2x2, t2x2y2(F (t, X, Y )− 1), t2x2y2y3(F (t, X ′, Y ′)− 1),
and t2x2y

2
2y3(F (t, X, Y ) − 1)(F (t, X ′, Y ′) − 1) for the four possibilities (see Figure 2)

α = β = ∅, α = ∅ 6= β, β = ∅ 6= α, and β, α 6= ∅, respectively. Hence,

F (t, X, Y ) = 1 + t + ty2(F (t, X, Y )− 1) + t2x2 + t2x2y2y3(F (t, X ′Y ′)− 1)
+t2x2y2(F (t, X, Y )− 1) + t2x2y

2
2y3(F (t, X, Y )− 1)(F (t, X ′, Y ′)− 1),

where 1 is as usual the contribution of the empty Motzkin permutation. Simplifying
the above equation we get

F (t, X, Y ) = 1− t

ty2 −
1

1 + tx2(1− y2y3) + tx2y2y3F (t, X ′, Y ′)

.

The second part of the theorem now follows by induction. �
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As a corollary of Theorem 15 we recover the distribution of the number of rises and
number of descents on the set of Motzkin permutations, which also follows easily from
Theorem 2.

Corollary 16. We have

∑

n≥0

∑

π∈Mn

tnp#{rises in π}q#{descents in π} =
1− qt− 2pq(1− q)t2 −

√
(1− qt)2 − 4pqt2

2pq2t2
.

As an application of Theorem 15 let us consider the case of Motzkin permutations
which contain either 12-3- . . . -k or 21-3- . . . -k exactly r times.

Theorem 17. Fix k ≥ 2. Let N12-3-...-k(x; r) be the generating function for the number
of Motzkin permutations which contain 12-3- . . . -k exactly r times. Then

N12-3-...-k(x; 0) =
Uk−1

(
1−x
2x

)

xUk

(
1−x
2x

) ,

and for all r = 1, 2, . . . , k − 1,

N12-3-...-k(x; r) =
xr−1U r−1

k−2

(
1−x
2x

)

(1− x)rU r+1
k−1

(
1−x
2x

) .

Proof. Let t = x, xk = y, xj = 1 for all j 6= k, and yj = 1 for all j. Let G̃k(x, y) be the
function obtained from F (t, X, Y ) after this substitution. Theorem 15 gives

G̃k(x, y) = 1− x

x− 1

1 + x− x2

1− x

1 + x− x2

. . . −
. . .

x− 1

1 + xy − x2y

x− 1

1 + xyk+1 − . . .

.

Therefore, G̃k(x, y) can be expressed as follows. For all k ≥ 2,

G̃k(x, y) = 1− x

x− 1

1 + xG̃k−1(x, y)

,

and there exists a continued fraction H̃(x, y) such that

G̃1(x, y) = y − xy

x− 1

1 + xyk+1H̃(x, y)

.
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Now, using induction on k together with (1) we get that there exists a formal power

series J̃(x, y) such that

G̃k(x, y) =
(1− x)Uk−2

(
1−x
2x

)
− xyUk−3

(
1−x
2x

)

x(1− x)Uk−1

(
1−x
2x

)
− x2yUk−2

(
1−x
2x

) + yk+1J̃(x, y).

Similarly as in the proof of Theorem 7, expanding G̃k(x, y) in series about the point
y = 0 gives the desired result. �

Using the same idea as in Theorem 17, we can apply Theorem 15 to obtain the following
result.

Theorem 18. Fix k ≥ 2. Let N21-3-...-k(x; r) be the generating function for the number
of Motzkin permutations which contain 21-3- . . . -k exactly r times. Then

N21-3-...-k(x; 0) =
Uk−3

(
1−x
2x

)
− xUk−4

(
1−x
2x

)

x
(
Uk−2

(
1−x
2x

)
− xUk−3

(
1−x
2x

)) ,

and for all r = 1, 2, . . . , k − 1,

N12-3-...-k(x; r) =
xr(1 + x)rU r−1

k−2

(
1−x
2x

)
(
Uk−2

(
1−x
2x

)
− xUk−3

(
1−x
2x

))r+1 .
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