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1. STATEMENT OF RESULTS

Let A, 4 €Z and define a sequence of integers {y,},s, by the binary linear recurrence
70=0,7,=1 and y,, =y, +uy,, for n>0. (1.1)
It is well known [9] that the polynomial P(¢) = 1—Af — ut* has the property that

PO =Yy (1.2)
n=1

is the ordinary formal power series generating function for the sequence {y ,.,},so (cf. [12]. Fur-
thermore, it is easy to see [1] that when the discriminant A = A% + 44 of P(¢) is nonnegative and
A #0, the ratios 7 ,,, /7, converge (in the usual archimedean metric on R) to a reciprocal root «
of P(¢). In this article we show that ratios of these y, also exhibit rapid convergence properties
relating to P(¢) in the p-adic metrics on Q. Precisely, we prove that for all primes p and all posi-
tive integers m the ratios Y / Y -t CONVErge p-adically in Z; this is shown via congruences
that extend those predicted by the theory of formal group laws (cf. [2], [7], [10]) or the theory of
p-adic hypergeometric functions (cf. [13]). When p does not divide y,,A, these ratios converge
to the quadratic character of A modulo p; otherwise, the limit is p or zero. Moreover, when
p>3 and p divides A, one obtains a supercongruence (cf. [2], [5], and eqgs. (1.6), (3.8) below).
These results are then used to give formal-group-law interpretations of some generalized Lucas
sequences {1,}={y,,/7,}, and of the sequence {7} = {F;, /(5F,)} (where {F,} is the familiar
Fibonacci sequence associated to A = g =1) which has been studied in [3]. The results are as
follows.

Theorem 1: (i) If p is a prime not dividing y , A, then for all » € Z* we have

T (Alp) (mod p'2). (1.3)

s

(i) Ifp divides y, A, then for all » €Z* such that Vot 0 we have
Y

™~ I (mod p'Z), (1.4)
mpril
where L = 0 or L = p according to whether or not p divides x.

(iii) The congruence (1.4) holds modulo p"*'Z if p>2 and p divides y, but not A; or if
(A|p) =0 and either p>3 orp=3andr>1.
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Corollary 1: (i) For all primes p and all m,r e Z* we have

Yy =(AID)Y 1 (mod p'2). (1.5)
(ii) If p divides y,, but not A, then for all » eZ" we have
Y g = LY . (mod p¥7), (1.6)

where L =0 or L = p according to whether or not p divides x.

Theorem 2: Suppose A=1and p#—1, and forn>0set A, =7,,/7,. Then the formal power
series

€(t)=i/1n£ (1.7)
n=1 n

is the logarithm of a one-dimensional formal group law over Z which is strictly isomorphic over
Z to the formal multiplicative group law G, (X, V)= X+ Y + X7.

Theorem 3: Let {F,} denote the usual Fibonacci sequence, i.e., the solution to (1.1) in the case
A=p=1,and forn>0set 7, = F;, /(5F,). Then the formal power series

(=31 (18)
n=1 n

is the logarithm of a one-dimensional formal group law over Z which is strictly isomorphic over
Z to the formal multiplicative group law G,,(X, V)= X +Y + XY.

2. PRELIMINARY RESULTS

The congruences (1.5) of Corollary 1(i) are typical of those obtained from the theory of
formal group laws; in fact (1.5) implies (via [10], Theorem A.8) that the formal differential
w = P(t)™" dt is the canonical invariant differential on a formal group law over the ring Z » of p-
adic integers when (A|p) # 0 (cf. egs. (3.6), (3.7) below). Hazewinkel's book [7] is an excellent
reference on formal group laws; the aspects of the theory most relevant to the present article are
also summarized nicely in ([2], pp. 143-45; [5], §2.3; [10], Appendix). Our proof of Theorem 1,
however, uses only the elementary theory of finite and p-adic fields; for an exposition of these
topics, the reader is referred to [8].

For p a prime number, Z,,Q,,, and [Fp,, denote the ring of p-adic integers, the field of p-adic
numbers, and the finite field of p? elements, respectively. We define K = Q p(JZ ) if p does not
divide A and K =Q p(«/K , \/;) if p divides A. We let O, denote the ring of algebraic integers
of K, N . its unique maximal ideal, and K = O, /M, the residue-class field of K; for x € O,
X denotes its image in K. Let the positive integer d be defined so that K = (de; then, if x €Oy,
the Teichmiiller representative X of x is the unique element of £, satisfying ¥ = x (mod I ;)

A d A . . A . . . . . ~ . d"
and X¥ =x. Itis easily seen that X is given by the p-adic limit ¥ = lim,_,_ x? -
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If p is an odd prime and D is an integer, then \/BEZP if (D|p)=1 and VD ¢Z, if
(D|p)=-1; here (:|p) denotes the Legendre symbol. For ease of notation, we extend the
definition of (A|p) to the case p =2 by

1, if A=1(mod8),
(AR)=

-1, if A=5(mod8), 2.1
., if A=0(mod4).

This is analogous to the Legendre symbol in that JA e, if (A2)=1and JA ¢ Z, if (AR)=-1
If A#0thenP(¢)=(1-az)(1- f), where a, B are distinct elements of O, . It is well
known, and easily computed from (1.2), that in this case we have the Binet form

an _ﬂn
== F 22
I g (22)
for y,. It follows that, for all primes p and all positive integers m, r such that Vot ® 0, we have
Voo mp" _ e’ - -
TP @, 23)
}/mpr’l a™ - ﬁmp

where @ ,(X,Y) = XP 4y XP2Y 4o 4 XYP72 + Y77 s the (two-variable) p™ cyclotomic poly-
nomial.

Considering P(7) R[], if A>0 then a, B €R, and if 1 #0 then a # —f3; therefore, y, # 0
forallnif A>0 and A #0. However, when A <0 one can have y, = 0 in certain cases. We now
show that this can only occur when P(f) is equal to 1—f+1%,1-2¢+2¢%, 1-3t+3t%, or one of

these polynomials with ¢ replaced by 47 for some integer k. We state Proposition 1 explicitly as
follows.

Proposition 1: Suppose P(t)=1-At—ut* = (1—oa)(1- ft) with A, g €Z, and let n €Z*. Then
the following are equivalent:

(A) " =p".
(B) One of the following holds:
() A=0

(ii) nisevenand A =0,
(ii)) nis divisible by 3, and 1 =k, u= —k* for some k €7,
(iv) nis divisible by 4, and A =2k, u=-2k* for some k €Z;
(v) nisdivisible by 6, and A = 3k, u=-3k* for some k €Z.
Proof: Suppose a”" =p". Ifn=1,then a =/, s0 A=(a—f)* =0, asin (i). Now suppose
a # f3; therefore, a, 3, and A are all nonzero, so " = " implies (/)" = 1.
Choose m to be the minimal positive integer such that (/)" =1;then m>1and a/f=¢,,

is a primitive m™ root of unity. It follows that o" = " if and only if n is a multiple of m. If
m=2, then a® = %, so a =-f3, whence 1=« + =0, as in (ii).
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We now suppose m > 2; then £, does not lie in Q. The minimal polynomial of £,, over Q is
the m™ cyclotomic polynomial ® »(X, 1), which is irreducible of degree ¢(m). [Here ¢(m)
denotes Euler's totient.] But {,, = a/ f3 lies in the quadratic field QWA ), so the minimal polyno-
mial of ,, has degree 2 over Q. Thus, ¢(m) = 2, which occurs precisely when m =3, 4, or 6.

For m = 3 we have @,(X,)=X*+X+land ¢, =a/f= (—1ir\/j3—)/2, so arg(a/f) =
+27/3. Since a and /3 are complex conjugates, arg(a/ ) = 2arg(a), whence arg(e) =+7/3 or
127 /3. Therefore, a =k-(1 i\/z) /2 for some real scalar k, whence P() =1—- kt +k*t*. Since
P(t) €Z[t], we must have k €Z, precisely as in (iii). In this case, A = —3k>.

Form =4, we have @,(X,1)=X*+1and ¢, :a/ﬂzi\/——l, so arg(er/ ) ==xx /2. Thus,
arg(@)=x7/4 or £37/4, so a= k-(liJ——l) for some real scalar k. Therefore, P(¢)=1-
2kt +2k*t?, and since P(f) €Z[t], we must have k €Z, precisely as in (iv). In this case,
A=-4k>.

For m = 6, we have ®,(X,1)=X*-X+land ¢, = a/ﬂz(li\/jg)/Z, so arg(a/p) =
+7/3. Thus, arg(a)=tx/60r +57/6, or a = k-(3i«/3)/2 for some real scalar . There-
fore, P(¢) =1-3kt +3k*t*, and since P(¢) €Z[t], we must have k €Z, precisely as in (v). In this
case, A = —3k?.

We have shown that (A) implies (B). Using the above calculations, we find that (B) implies
(A) by direct computation. This concludes the proof.

When y, #0, it is also well known that &,,(n) = 4,,,/ 4,, is an integer for all n €Z". In fact,
it is easily seen from the Binet form (2.2) that ¢, (n) satisfies the recursion (1.1) with A and u
replaced by A, =a”+f" and (=1)""' 4" =-a”B", respectively, and the parameters A, =
Ay +247 -, and (=1)""" i clearly lie in Z. Our method will be to use (2.3) to deduce integral
congruences for the integers Y / Y from the following p-adic congruences for powers of «
and f.

Proposition 2: Suppose P(t)=1-At—ut* = (1-at)(1- fr) with A, u e Z.
(i) If (A|p)=1, then @™ =™ (mod p'Z,);
(i) If (A|p) =1, then ™ = ™ (mod p’O,);
(iii)) If p>2 and (A|p) =0, then a™ =a™  =B™ =™ (mod p’ 2D ,);
(iv) T (AR)=0, then @ =™ " (mod2"O,) and & = o™ (mod2 'O ).

Proof: If x,y,p’ €O, andx =y (mod p*O ) write x = y+z with z € p°O ;; then
p-1
xP = yP +(;(i’)yf’"‘sz+zP (2.4)

and hence x? = y? (mod p**'O ) if sp > s+1. Thus, we need only prove these results in the case
r =1 and in addition that a*” = a*" (mod 29 ) when (AR2) = 0; we may also assume m =1 with
no loss of generality.

If (Alp)=1, thend=1,K=Q,, 0, =7,, M =pZ,, and K =F,. The statement a” = a
(mod pZ ) is Fermat's little theorem, which proves (i) in the case r = 1.
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If (A|p) = -1, thend =2 and a, # are conjugates in the unramified extension K of Q, (their
minimal polynomial over Q, is 12+ Au't—u"). We note that p does not divide u, since if p
divides u then A= A* (mod4pZ) and then (A|p)=1. Therefore, @, B are units in O, (since
afi=-u), and @, B are conjugates in K over [, (their minimal polynomial being R T -

7). Since K = [sz and x > x? is the nontrivial automorphism of [sz over [, we have a” = 8
and 7 =@; therefore, a” = fand ¥ = amodulo PN ,. Since K is unramified, we have I, =
POy, yielding the » = 1 case of (ii).

If (A|p) = 0, then ¢ divides A = (a — f)*, where g =p if p>2 and g = 4 if p = 2. Therefore,
a = f (mod g"*9 ), giving the middle congruence of (iii) and the first part of (iv) in the case
r=1 Asin (i) and (ii) above, we have a” = aor f(mod I ) according to whether d =1 or
d =2, which completes (iii) for = 1, since I, = p"*O,. Finally, if (A]2) =0, then 2 divides
A, and thus @, B are roots of > —x'; this shows that K = I, and so a, f=0 orl(mod
229 ,.). Writing a=y+z with 22", and y=0 or 1, we use (2.4) to check that
a’ ey+29, and a* ey +49D,, proving the r = 2 case of the second statement of (iv).

Remarks: This proposition and its proof remain valid for 4, u lying in Z, (not just in Z) pro-
vided one replaces the Legendre symbol with the Hilbert symbol. Furthermore, this proposition
implies that, for each m € Z" and each prime p, the sequence {a”’pdr} is a p-adically Cauchy
sequence in £ ; the limit is the Teichmiiller representative a”.

3. DEMONSTRATION OF THEOREMS
Proof of Theorem 1: From Proposition 2(i), (ii), we have
™, if (Alp) =1,
" = (mod "), 3.1
r-1
B, it (Alp)=-1,

and similarly for ™. Since ®,eZ[X,Y]and @ ,(X,Y) =D, (¥, X), we have, in either case,
4

}/ mp — (Dp(aMPf— ’ﬂmpr* )E(Dp(ampr”Bmpr)E.“E q)p(&m’ﬁm) (modeQK) (32)

mpr—l

provided Yt 0. Evaluating lim, , o™ i using (3.1), we find that

e _[a", iT(AID)=1,
“ ‘{ﬂ’", if (Alp)=-1 @-3)

If p does not divide y ,,A = (a - f)(a” - B™), then ™ # ,@’”; therefore, Yt * 0 for all ». Thus,

we have

—‘—gm:(Arp). (3.4)
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Together with (3.2) this shows that Y / Y ! = (Alp) (mod p"O ;); since both sides of this
congruence are integers, the congruence must hold modulo p"Z, completing the proof of (i).

As in (3.2), one can see from Proposition 2 that, provided Y is always nonzero, one has
[ (a"’ ,B ) as the p-adic limit of Y mp L Y > and thus determlne the value L as stated in part
(i1) of the theorem. One may dlscover the stronger congruences of (iii) [which will be useful in
the proofs of Corollary 1(ii) and Theorem 3], however, by making a simple algebraic
manipulation.

Suppose that p divides y ,,A; then write x, = o Y, ,B'"p ,Z, -y,, and
}/"’Pr :er_er :(yr+zr)p—yr _pyr (p)yp -k _k-1 p 1 (35)
}/mpr_l X =Yy Z,

If p divides ¥ ,, = (a” — ™)/ (a - B) but not A = (& — f§)*, then a” = " (mod p . ) therefore,
a” :,B'”. Since {a”, 7} ={a, B} and @” = ", we have @" = " <F,; thus, &" ,B'” €z,
Note that a, ,B # 0 since p does not divide A ; hence, p does not divide x=-af3, and by F ermat's
little theorem, ,B'"(P"l)—l From Proposition 2(i), (ii), we have ™ =" :ﬁ'"zﬁ"’Pr_'
(mod p’QK) Therefore, the term py?~' in (3.5) is congruent to p modulo p"*'O . The final
term z”~! is zero modulo p"""V O, , which shows that Y mpr /ymp,_, = p (mod p" O ;); since both
sides are integers, the congruence holds modulo p"Z, as asserted in (ii). In fact, since
r(p—1)=r+1for p>2andr>0, we see that the congruence (1.3) holds modulo p"™'Z when
p>2 and p divides y,, but not A.

The case (A|p) =0, A= 0 is similar; using Proposition 2(iii) we find that for p >2 the term
py?~"in (3.5) is congruent to p/}”'(p‘l) modulo p"*"2O ., all terms within the summation in (3.5)
are zero modulo p ">, and the final term z7™' is zero modulo p" »*VO . Thus, for
p>2, we have Y oyt v, S = = L (mod p" ) and, therefore, modulo p"Z. In addition, since
r-1/2)(p-D=r +1/2 forp >3 or for p=3andr>1, in these cases the congruence (1.4)
holds modulo p"*'Z, since it holds modulo p"*"*$, while both sides lie in Z. If (A2) =0, we
find from Proposition 2(iv) that 20" =L (mod2" D) and z, =0(mod2" ), giving the
result in that case.

Finally, if A =0, then P(¢) = (1- az)* for some a €Z, and a quick computation from (1.2)
yields y, =na"'. If A#0, then a # 0; therefore, we have Yorl?V, - :pa""’r—](”_l) eZ. As
in Proposition 2(i), if p does not divide « this lies in p+ p’”Z whereas if @ e pZ, it is clearly
congruent to zero modulo p""'Z.

Proof of Corollary 1: We first treat the case where A >0 and A #0 so that y, # 0 for all n.
If p does not divide y,,A, part (i) follows directly from (1.4) upon multiplication by y ey From
Theorem 1(ii), we find by induction on 7 that Y mpr = =0 (mod p"*'Z) if p divides ¥, and Y mp =0
(mod p"Z) if p divides A. It then follows that both sides of (1.5) are zero modulo prZ if p
divides y , A
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For (ii), we recall from Theorem 1(iii) that the congruence (1.4) holds modulo p""'Z when
p>3 and p divides A. In this case or in the case where p divides y,,, we obtain (ii) upon multi-
plication of (1.4) by Y

To extend these results to arbitrary Aand A, we observe that if A'=A+p" and y! is
defined by 4 =0,71=1, and y,,, =AY, +uy, , then y, =y, (mod p"7) for all n. Tt is clear
that we may choose N large enough so that N >2r, A’ = (1) +4u>0, and A’ #0. Since A’=
A (mod pZ), the results for any A, A follow from the results for A’, 1.

Remarks: One can easily determine from [4] with the aid of §5.8 in [7] that @ = P(t)™" d! is the
canonical invariant differential on the formal group law F(X,Y) over Z given by the rational
function

F(X,Y)=(X+Y-AXY)/(1+ uXY) (3.6)
(equivalently, X, v, 7" /n is the logarithm of this formal group law). From this, it follows ([2];
[10], Theorem A.8) that there exist congruences of the type

Yy = H}/mp,_1 (modp'Z,) 3.7

for some H e€Z,, when p does not divide y , [which is equivalent, via Corollary 1(i), to the con-
dition (A|p) #0]. What is surprising about Corollary 1 is that the congruences obtained also
hold, and are in fact stronger, in the cases not predicted by the theory of formal group laws [i.e.,
when (A|p) =0]. Other congruences of the type

€y = Hcmp,;l (mod p“Z ) (3.8)

with a 22 (called "supercongruences") have also been observed involving binomial coefficients
[6] and the Apéry numbers [2], and have been conjectured in [11].

Proof of Theorem 2: The statement that the formal power series (1.7) is the logarithm of a
formal group law over Z which is strictly isomorphic over Z to G, is equivalent to requiring that
A, €Z,4, =1, and for all primes p and all m,r € Z* the congruences

lmp, = ﬂmp,,] (mod p"7) 3.9

(cf. [2], pp. 143-45; [10], Theorem A.9). Assuming A =1and g # —1, Proposition 1 tells us that
¥ » 1s never zero, so A, €Z for n>0 and, from (2.3), we have A, ="+ ". Wehave A =4, =1
and A= A" +4u is odd, so it follows from Proposition 2(i), (ii), (iii), that the congruences (3.9)
hold modulo p""29, , but both sides are integers, so the theorem follows.

Proof of Theorem 3: From [3] we know that 7, €Z for all n, and it is clear that 7, =1.
Therefore, as in Theorem 2, we must show that for all primes p and all m, r € Z*, we have

Tmp, = Tmp’“' (mod p"7) (3.10)
From the definition of 7,, one has
1
7= 95" ), G.1)
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where a, 8 are the reciprocal roots of the polynomial P(f)=1-7~-1* associated to A= u=1.
Since A =5, for all primes p # 5 these congruences follow directly from Proposition 2(i), (i), as
in (3.2). To complete the proof, we take advantage of the fact that

r 5" r+l1
72— =5(mod5 ™ 2), (3.12)
FmSV“]
which is a consequence of Theorem 1(iii). Dividing by 5, we obtain
F ,
L1 = o= =1(modS'Z), (3.13)

ms"!

which proves the congruence (3.10) in the case p = 5, completing the proof.

Remark: The result (3.13) is not best possible; in fact, the congruence 7, =1 (mod 5% 7) has
been shown in ([3], Lemma 2).

4. CONCLUDING REMARKS

In [3] it is noted that for k € Z" the sequences {T(k,n)},., given by T(k,n)=F,,/(F,F,)
are always integral in the three special cases k=1 [I(1,n)=1 for all n], k=2 [T(2,n) = L,, the
n™ Lucas number], and k=5 [T(5,n) = 7.]. Our Theorem 2 and Theorem 3 explain that all three
of these sequences occur as the expansion coefficients for the logarithms of formal group laws
over Z which are strictly isomorphic over Z to the same formal group law G,,.

For p#2 one may also approach these p-adic properties of the sequence {y,} via its
combinatorial form

e AN
RS (i e @1
k=0
[9], which may be expressed in terms of hypergeometric functions as

-n/2, (1-n)/2
Fun =2 o =2, a2 (4.2)
-n
We sketch the method here: Taking n+1=mp" and letting r —> oo, the parameters —n/2,
(1-n)/2, and —n converge p-adically to 1/2, 1, and 1, respectively. Using a suitable modification
of the argument in ([13], Theorem 4.1) one can show that when p does not divide y ,, the p-adic
limit of Y / Y is given by
}/ r —l', 1 —
lim —F—= | 2" (-4ul 2)|, (43)
r—o }/pr~| 1
where (as in the notation of [13]) the symbol , %, (x) denotes the p-adic "analytic continuation" of
L Fi(x)/ ,Fi(x?). Since ,F;(1/2,1;1;x) = Fy(1/2;;x)= (1~ x)72, the same value for the p-adic
limit in (4.3) is also obtained from lim,_, (cp, /cp,_]), where
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But clearly lim, (¢ /¢ ) =lim, APTHD2 _ APD2 hich is seen to be precisely (A|p)

from Euler's criterion
(Alp) = AP (mod pZ) (4.5)

and the fact that (£I)=+1. The point is that the sequences {y,,,} and {A"*} should have the
same p-adic congruence behavior because they arise from hypergeometric functions that are p-
adically proximate (when n+1=mp") So, if one is willing to appeal to the p-adic analytic prop-
erties of the combinatorial form (4.1), one may obtain a fair explanation for the occurrence of
(A|p) in Theorem 1(i) when (A|p) #0. But again, Theorem 1(ii) shows that the p-adic limit in
(4.3) even exists when (A|p) =0 [which is equivalent to p dividing y ,, by Corollary 1(1)], a fact
that is not predicted by the theory of p-adic hypergeometric functions (cf. [13], Theorem 2.3).
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