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1. STATEMENT OF RESULTS 

Let X, ju G Z and define a sequence of integers {y„}„>o by the binary linear recurrence 

r 0 = ° , Y\^\ and y n+l = Xy n +M7n-i f o r n>0- 0-1) 

It is well known [9] that the polynomial P(t) -\-Xt- jut2 has the property that 
oo 

W 1 = Xr/,~1 (i.2) 
«=1 

is the ordinary formal power series generating function for the sequence {yn+i}„>0 (cf. [12]. Fur-
thermore, it is easy to see [1] that when the discriminant A = X2 +4ju ofP(t) is nonnegative and 
X & 0, the ratios yn+l I yn converge (in the usual archimedean metric on U) to a reciprocal root a 
of P(t). In this article we show that ratios of these y n also exhibit rapid convergence properties 
relating to P(t) in the/?-adic metrics on Q. Precisely, we prove that for all primes/? and all posi-
tive integers m the ratios y r ly r_, converge/?-adically in Z; this is shown via congruences 
that extend those predicted by the theory of formal group laws (cf. [2], [7], [10]) or the theory of 
/?-adic hypergeometric functions (cf [13]). When/? does not divide ymA, these ratios converge 
to the quadratic character of A modulo /?; otherwise, the limit is p or zero. Moreover, when 
p>3 and/? divides A, one obtains a supercongruence (cf. [2], [5], and eqs. (1.6), (3.8) below). 
These results are then used to give formal-group-law interpretations of some generalized Lucas 
sequences {Xn} = {ylnlyn\, and of the sequence {7^} = {F5n / (5Fn)} (where {Fn} is the familiar 
Fibonacci sequence associated to X = ju = 1) which has been studied in [3]. The results are as 
follows. 

Theorem 1: (i) If/? is a prime not dividing ymAy then for all r e Z + we have 

— ^ - ^ ( A | / ? ) (mod/?rZ). (1.3) 
ymp^ 

(ii) If/? divides ymA, then for all r eZ+ such that y r_, * 0 we have 

Y r 
= L (mod/?rZ), (1.4) 

V-1 

where L = 0 or L =p according to whether or not/? divides // . 

(Hi) The congruence (1.4) holds modulo /?r+1Z if/?>2 and/? divides ym but not A; or if 
(A|/?) = 0 and either /? > 3 or/? = 3 and r > 1. 
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Corollary 1: (i) For all primes p and all rn,r eZ+ we have 

?V=(A|/>)?V- (mod/Z). (1.5) 

(ii) Ifp divides ym but not A, then for all r e Z + we have 

where L = 0 or L=p according to whether or not p divides ju. 

Theorem 2: Suppose X = 1 and ju * - 1 , and for w > 0 set Xn = y2n I y n. Then the formal power 
series 

£(t) = T^L (1.7) 

is the logarithm of a one-dimensional formal group law over Z which is strictly isomorphic over 
Z to the formal multiplicative group law Gm(X, Y) = X + Y + XY. 

Theorem 3: Let {Fn} denote the usual Fibonacci sequence, i.e., the solution to (1.1) in the case 
A - ju - 1, and for n > 0 set Tn= F5n I {5Fn). Then the formal power series 

oo iYl 

T(*) = Z,T„- (1.8) 

is the logarithm of a one-dimensional formal group law over Z which is strictly isomorphic over 
Z to the formal multiplicative group law Gm(X, Y) = X + Y + XY. 

2. PRELIMINARY RESULTS 

The congruences (1.5) of Corollary l(i) are typical of those obtained from the theory of 
formal group laws; in fact (1.5) implies (via [10], Theorem A.8) that the formal differential 
co - P(t)~l dt is the canonical invariant differential on a formal group law over the ring 7Lp ofp-
adic integers when (A\p) ^ 0 (cf. eqs. (3.6), (3.7) below). Hazewinkel's book [7] is an excellent 
reference on formal group laws; the aspects of the theory most relevant to the present article are 
also summarized nicely in ([2], pp. 143-45; [5], §2.3; [10], Appendix). Our proof of Theorem 1, 
however, uses only the elementary theory of finite and /?-adic fields; for an exposition of these 
topics, the reader is referred to [8]. 

For p a prime number, Z Q and F d denote the ring of/7-adic integers, the field of/7-adic 
numbers, and the finite field of pd elements, respectively. We define K - ( ^ ( v A ) ifp does not 
divide A and K = Q ^ V A , y[p) ifp divides A. We let €)K denote the ring of algebraic integers 
ofK, WlK its unique maximal ideal, and K - DK IWlK the residue-class field of K; for x G€)K, 
x denotes its image in K. Let the positive integer d be defined so that K = F d; then, if x e €)K, 
the Teichmuller representative x of x is the unique element of €)K satisfying x = x (mod WlK) 
and xp = x. It is easily seen that x is given by the/?-adic limit x - limr_>o0 xp ' 
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If p is an odd prime and D is an integer, then -/D ^Zp if (D\p) = 1 and Vl) £Zp if 
(D\p) = -l; here (-\p) denotes the Legendre symbol. For ease of notation, we extend the 
definition of (A\p) to the case/? = 2 by 

fl, if A = l(mod8), 
(A|2) = {-1, if A = 5 (mod 8), (2.1) 

[0, ifA = 0(mod4). 

This is analogous to the Legendre symbol in that VA e Z2 if (A |2) = 1 and vA £ Z2 if (A |2) = - 1 . 
If A ^0 then P(t) = (I-at)(l-ftt), where a, ft are distinct elements of €)K . It is well 

known, and easily computed from (1.2), that in this case we have the Binet form 

r.-^f (2.2) 
for Yn- I* follows that, for all primes/? and all positive integers m, r such that Y r-\ ^ 0, we have 

Ym? ampr-pmp> - i w l _ " ^ _ rh f /v"^ /?w^ :<&,(<*"* , / T ' ), (2.3) 

where O/JT, 7) = X ^ 1 + X ^ F + • • • + XYP~2 + Yp~l is the (two-variable) pih cyclotomic poly-
nomial. 

Considering P(t) sR[t], if A > 0 then a,ft GU, and if X * 0 then a * -ft; therefore, ;K„ * 0 
for all ft if A > 0 and X^O. However, when A < 0 one can have Y n - 0 in certain cases. We now 
show that this can only occur when P(t) is equal to l-t + t2,1-27 + 2/2, 1-37 + 372, or one of 
these polynomials with t replaced by kt for some integer k. We state Proposition 1 explicitly as 
follows. 

Proposition 1: Suppose P{t) = 1 - Xt - jut2 = (1 - at){\ - /it) with X, ju eZ, and let « e Z + . Then 
the following are equivalent: 

(A) a"=ft". 
(B) One of the following holds: 

(i) A = 0; 
(ii) n is even and X - 0; 

(III) ft is divisible by 3, and X - k, ju = -k2 for some £ e Z; 
fiv) ft is divisible by 4, and X = 2k, ju - -2k2 for some k GZ; 

(v) ft is divisible by 6, and X = 3k, ju = -3&2 for some k e Z. 

/ W / * Suppose a" =/?w. If ft = 1, then a = /?, so A = (a-ft)2 = 0, as in (i). Now suppose 
a^ ft; therefore, a, ft, and A are all nonzero, so a" = ft" implies (a I ft)n = 1. 

Choose m to be the minimal positive integer such that (a / ft)m = 1; then m > 1 and a I ft = C,m 

is a primitive mth root of unity. It follows that a" = /T if and only if ft is a multiple of m. If 
rn = 2, then a2 = ft2, so a = -/?, whence A = a +/? = 0, as in (ii). 
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We now suppose m>2; then ^m does not lie In Q. The minimal polynomial of £m over Q is 
the //1th cyclotomic polynomial Om(X, 1), which is irreducible of degree <f>(m). [Here <f>(m) 
denotes Euler's totient.] But Cm = al j3 lies in the quadratic field Q(VA"), SO the minimal polyno-
mial of £m has degree 2 over Q. Thus, (j)(m) = 2, which occurs precisely when rn = 3, 4, or 6. 

Form = 3 we have <D3(X, 1) = X2 +X + 1 and £m = a/fi = ( - l±V = 3) /2 , so arg(a//?) = 
±2;r / 3. Since a and /? are complex conjugates, arg(a / p) = 2 arg(a), whence arg(a) = ±n/3 or 
+27T13. Therefore, a-k-(l± V-3)/2 for some real scalar k, whence P(t) = l-kt + k2t2. Since 
P(t) eZ[t]y we must have k GZ, precisely as in (iii). In this case, A = -3&2, 

For m = 4, we have <D4(X, 1) = X2 +1 and ^w = a/ /? = i V 1 ! , so arg(a//?) = ± A 7 2 . Thus, 
arg(a) = ±;r/4 or ±3/r/4, so a = £-(l±V-T) for some real scalar A. Therefore, P(t) = l-
2kt + 2k2t2

y and since P(/) <=Z[Y], we must have k eZ, precisely as in (iv). In this case, 
A = -4&2. 

Form = 6, we have «D6(X, 1) = X2 - X+ 1 and ^ = a I (3 = ( l±V I 3 ) /2 , so arg(a/j3) = 
±7r13. Thus, arg(a) = ±;r/6 or ±5;r/6, or a = & • (3 ± V-3)/2 for some real scalar k. There-
fore, P(i) = l-3kt + 3k2t2, and since P(t) eZ[7], we must have k eZ, precisely as in (v). In this 
case, A = -3k2. 

We have shown that (A) implies (B). Using the above calculations, we find that (B) implies 
(A) by direct computation. This concludes the proof 

When ym * 0, it is also well known that sm(n) = Xmn I Xm is an integer for all n eZ+. In fact, 
it is easily seen from the Binet form (2.2) that sm(n) satisfies the recursion (1.1) with X and ju 
replaced by Xm = am + /T and (~l)m~ljum =-am{3m, respectively, and the parameters Xm = 
XY m+2fJY m-\ and (~l)m~l jum clearly lie in Z. Our method will be to use (2.3) to deduce integral 
congruences for the integers Y r IY r-\ from the following /7-adic congruences for powers of a 
and p. 

Proposition 2: Suppose P(i) = 1 - Xt - pit2 = (1 - at){\ - pi) with X, ju eZ. 
(i) If(A\p) = 1, then amf = amf'X (mod/ZZ,); 

(ii) If (A \p) = - 1 , then ampr = pm/~l (mod pr€)K); 
(iii) Ifp>2 and (A\p) = 0, then ampr = a ^ " ' ^ /? w / _ 1

 s fim^ (mod//"1/2£)r ); 
(iVJ If (A|2) = 0, then amr~l ^/T2'"1 (mod2r£)^) and a"12''' = aw2' (mod2r-1Or). 

iVu^- If x,y,ps G O ^ mdx = y(modps£)K) write JC = j + z with z eps£)K; then 

x / ? = j ; / 7 + (2.4) 

and hence x^ = yp (mod / / + 1 0 ^ ) if jgp > 5 +1. Thus, we need only prove these results in the case 
r = 1 and in addition that a2m = a4m (mod2£)^) when (A|2) = 0; we may also assume m - 1 with 
no loss of generality. 

If (A\p) = 1, then d = 1, K = Qp9 £)K = Zp9 WK = pZp, and K = ¥p. The statement a p = a 
(modpZ^) is Fermat's little theorem, which proves (i) in the case r = 1. 
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If (A \p) - - 1 , then d - 2 and a, /? are conjugates in the unramified extension K of Qp (their 
minimal polynomial over Q is t2 + Xju~lt-ju~l). We note that p does not divide ju, since if/? 
divides // then A = 22 (mod4/?Z) and then (A|/?) = l. Therefore, a,/? are units in © r (since 
a/3=-ju), and a,/? are conjugates in K over F̂  (their minimal polynomial being t2 + X~ju~lt-
JTl). Since K = F 2 and xh>xp is the nontrivial automorphism of F 2 over Fp, we have ~ap - (5 

and f5p -~d\ therefore, ap = /3 and J3P =a modulo 3Kr. Since ^ is unramified, we have WlK -
p€)K, yielding the r = 1 case of (ii). 

If (A |/?) = 0, then q divides A = (a - (J)2, where q=p if/? > 2 and q = 4 if/? = 2. Therefore, 
a ^^(modg1 7 2©^), giving the middle congruence of (iii) and the first part of (iv) in the case 
r = 1. As in (i) and (ii) above, we have ap = a or /? (mod $RK) according to whether d - 1 or 
d = 2, which completes (iii) for r = 1, since 2ft = pll2£)K. Finally, if (A|2) = 0, then 2 divides 
X, and thus a,/? are roots of t2-JT1; this shows that K = F2 and so a,/? = 0 or 1 (mod 
21/2©^). Writing a = .y + z with ZG21/2€)K and J = 0 or 1, we use (2.4) to check that 
a2 Gy + 2£)K and a4 Gy + 4©^, proving the r = 2 case of the second statement of (iv). 

Remarks: This proposition and its proof remain valid for X, ju lying in Zp (not just in Z) pro-
vided one replaces the Legendre symbol with the Hilbert symbol. Furthermore, this proposition 
implies that, for each m e Z+ and each prime /?, the sequence {aw/? } is a /radically Cauchy 
sequence in ©^; the limit is the Teichmiiller representative am'. 

3. DEMONSTRATION OF THEOREMS 

Proof of Theorem 1: From Proposition 2(i), (ii), we have 

\ampr~\ if (A |/7) = 1, 
(mod//©*), (3.1) 

/ T ^ 1 , if (A |/7) = - 1 , 

and similarly for fimpr. Since O e Z[X, Y] and <J> (X, 7) = O (7, X), we have, in either case, 
-1 , r-\ 

^ - = <S>p{amp' \ T ' )^<S>p(amp\r') = -^<S>P{am,Pm)(™o&prDK) (3.2) 

dr 

provided ym r-\ * 0. Evaluating l im^^ amp using (3.1), we find that 

-\r, if(A|P)=-i. ( 3 3 ) 

If/? does not divide ymA = (a - P){am -pm), then am * /T ; therefore, ym _, * 0 for all r. Thus, 
we have 

amp-pmp 

^(am'r) = ̂ 4̂  = (A,/?)- (34) 
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Together with (3.2) this shows that ympr''Ymp,-i = (A|/?) (modprQK); since both sides of this 
congruence are integers, the congruence must hold modulo prZ, completing the proof of (i). 

As in (3.2), one can see from Proposition 2 that, provided y r_, is always nonzero, one has 
®p(am, pm) as thep-adic limit of Y mr ly m r-i, and thus determine the value L as stated in part 
(ii) of the theorem. One may discover the stronger congruences of (iii) [which will be useful in 
the proofs of Corollary 1 (II) and Theorem 3], however, by making a simple algebraic 
manipulation. 

Suppose that/? divides ymA; then write xr = ampt , yr - (imp , zr = xr -yr, and 

Y r YP-VP (V 4-7V-VP (P~lf \ \ 

rmp^ xr~yr 
••pyf + E i k~l 

zr 
rP'1 

+ zr. (3.5) 
U=2V ' J 

lip divides ym=(am -(3m)l(a-(3) but not A = (a-{J)\ then am = /T (mod/?£)r); therefore, 
am=j3m. Since {ap,fip} = {a,0} and am = fim, we have am = fim eFp; thus, am = j3meZp. 
Note that a, (3 ^ 0 sincep does not divide A; hence, p does not divide ju = -a/?, and by Fermat's 
little theorem, / H ^ 1 ) = 1. From Proposition 2(i), (ii), we have ampr~l = am = fim = fimpr~l 

(modpr€)K). Therefore, the term pyp~l in (3.5) is congruent to p modulo pr+l€)K. The final 
term zp~l is zero modulo /?r(/?_1)CV, which shows that y r Iy r-\ = p (modp7'€)K); since both 
sides are integers, the congruence holds modulo prZ, as asserted in (ii). In fact, since 
r(p-l) > r +1 for p > 2 and r > 0, we see that the congruence (1.3) holds modulo pr~lZ when 
p > 2 and/? divides ym but not A. 

The case (A\p) - 0, A ^ 0 is similar; using Proposition 2(iii) we find that for p > 2 the term 
pyP~l in (3.5) is congruent to pJ3m{p~l) modulopr+l/2£)K, all terms within the summation in (3.5) 
are zero modulo pr+1/2£)K, and the final term zp~l is zero modulo /?(r_1/2)(/7"1)£)r. Thus, for 
p>2y we have y r ly r_i = L(modpr€)K) and, therefore, modulo prZ. In addition, since 
(r-l/2)(p-l) >r + l /2 for/?>3 or for /? = 3 a n d r > l , in these cases the congruence (1.4) 
holds modulo pr+lZ, since it holds modulo pr+l/2'€)K while both sides lie in Z. If (A|2) = 0, we 
find from Proposition 2(iv) that 2amr = L(mod2r£)K) and zr = 0(mod2r©^), giving the 
result in that case. 

Finally, if A = 0, then,P(/) = (I-at)2 for some a eZ, and a quick computation from (1.2) 
yields yn = nan~l. If X * 0, then a * 0; therefore, we have Y mr IY m r-\ = Z ? ^ (/7_1) GZ. As 
in Proposition 2(i), if/? does not divide a this lies in p + pr+lZ, whereas if a e/?Z, it is clearly 
congruent to zero modulo pr+1Z. 

Proof of Corollary 1: We first treat the case where A > 0 and X * 0 so that y n * 0 for all n. 
If/? does not divide ymA, part (i) follows directly from (1.4) upon multiplication by ym r.{. From 
Theorem l(ii), we find by induction on r that y r = 0 (mod/?r+1Z) if/? divides ^w, and y =0 
(mod/?rZ) if/? divides A. It then follows that both sides of (1.5) are zero modulo prZ if/? 
divides y mA. 
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For (ii), we recall from Theorem l(iii) that the congruence (1.4) holds modulo /?r+1Z when 
p > 3 and/? divides A. In this case or in the case where/? divides ym, we obtain (ii) upon multi-
plication of (1.4) by y r_i. 

To extend these results to arbitrary A and X, we observe that if X' = X + pN mdy'n is 
defined by y'0 = 0,y[ = 1, and y'„+l = X'y'n + ju/'n-h t h e n Yn = Y n (mod/?^Z) for all n. It is clear 
that we may choose N large enough so that N > 2r, A' = (A')2 +4// > 0, and X' ^ 0. Since A' = 
A (mod/?Z), the results for any A, X follow from the results for A', Xf. 

Remarks: One can easily determine from [4] with the aid of §5.8 in [7] that co = P(t)~l dt is the 
canonical invariant differential on the formal group law F(X, Y) over Z given by the rational 
function 

F(X,Y) = (X + Y-XXY)/(l + juXY) (3.6) 

(equivalently, Z*=1 ynTn I n is the logarithm of this formal group law). From this, it follows ([2]; 
[10], Theorem A. 8) that there exist congruences of the type 

rm^Hrmpr,(modprZp) (3.7) 

for some H eZp , when/? does not divide y [which is equivalent, via Corollary l(i), to the con-
dition (A|/?)^0]. What is surprising about Corollary 1 is that the congruences obtained also 
hold, and are in fact stronger, in the cases not predicted by the theory of formal group laws [i.e., 
when (A|/?) — 0]. Other congruences of the type 

c r=Hc r_x (mod/?arZJ (3.8) 

with a > 2 (called "supercongruences") have also been observed involving binomial coefficients 
[6] and the Apery numbers [2], and have been conjectured in [11]. 

Proof of Theorem 2: The statement that the formal power series (1.7) is the logarithm of a 
formal group law over Z which is strictly isomorphic over Z to Gm is equivalent to requiring that 
Xn eZ, Xx - 1, and for all primes/? and all m, r eZ+ the congruences 

VV i ( , n o d ^ z > (39) 

(cf. [2], pp. 143-45; [10], Theorem A.9). Assuming X = 1 and ju * - 1 , Proposition 1 tells us that 
yn is never zero, so Xn eZ for n > 0 and, from (2.3), we have Xn -an+pn. We have X = Xx - 1 
and A = /I2 +4// is odd, so it follows from Proposition 2(i), (ii), (iii), that the congruences (3.9) 
hold modulo pr~ll2€)K, but both sides are integers, so the theorem follows. 

Proof of Theorem 3: From [3] we know that Tn eZ for all n, and it is clear that TY -1. 
Therefore, as in Theorem 2, we must show that for all primes/? and all m, r e Z+, we have 

V 3 V < m o d ^ <3-10> 
From the definition of Tn, one has 

Tn=±Q5(a\fi"), (3.11) 
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where a, (3 are the reciprocal roots of the polynomial P(t) -\-t-t1 associated to X - /j = 1. 
Since A = 5, for all primes p*5 these congruences follow directly from Proposition 2(i), (ii), as 
in (3.2). To complete the proof, we take advantage of the fact that 

m5 -5(mod5r+1Z), (3.12) 
F«r 

which is a consequence of Theorem l(iii). Dividing by 5, we obtain 

T^=-^-^l(moA5rI), (3.13) _ mir 

"m5"' 5F ,r_ 

which proves the congruence (3.10) in the case/? = 5, completing the proof. 

Remark: The result (3.13) is not best possible; in fact, the congruence T^r = 1 (mod52rZ) has 
been shown in ([3], Lemma 2). 

4. CONCLUDING REMARKS 

In [3] it is noted that for k eZ+ the sequences {T(k, n)}n>0 given by T(k, n) = Fkn I {FkFn) 
are always integral in the three special cases k = 1 [T(l, n) = 1 for all n], k = 2 [T(2, ri) = Ln, the 
nth Lucas number], and k = 5 [7(5, ri) = Tn]. Our Theorem 2 and Theorem 3 explain that all three 
of these sequences occur as the expansion coefficients for the logarithms of formal group laws 
over Z which are strictly isomorphic over Z to the same formal group law Gm. 

For p&2 one may also approach these /?-adic properties of the sequence {yn} via its 
combinatorial form 

r„+1=f\n-k
kY2kMk (4.D 

[9], which may be expressed in terms of hypergeometric functions as 

r„+1 = ^ 2 ^ , ' * / 2 , ( l - » ) / 2 . _ 4 ; < / / 
-n j 

(4.2) 

We sketch the method here: Taking n + \ = mpr and letting r-^co, the parameters -nil, 
( l -w) /2 , and -n converge/>-adically to 1/2, 1, and 1, respectively. Using a suitable modification 
of the argument in ([13], Theorem 4.1) one can show that when/7 does not divide y p, the/?-adic 
limit of y r I y r_, is given by 

r f» i ^ 
(-4////L2) 

v l y 
(4.3) 

where (as in the notation of [13]) the symbol 2^\(x) denotes the/?-adic "analytic continuation" of 
2Fl(x)/ 2F1(xp). Since 2Fl(l/2,1; 1; x) = ̂ ( 1 / 2 ; ; x) = ( l-x)"1 / 2 , the same value for thep-adic 
limit in (4.3) is also obtained from limr^o0(c r Ic r_y), where 
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But clearly lim^^c r Ic r_Y) = l im^^ tf 1(/?_1)/2 = A(p_1)/2, which is seen to be precisely (A|p) 
from Euler's criterion 

(A|^)^A(/?-1)/2(modpZ) (4.5) 

and the fact that (±1) = ±1. The point is that the sequences {y„+i} and {A"/2} should have the 
same /?-adic congruence behavior because they arise from hypergeometric functions that are p-
adically proximate (when n + l = mpr) So, if one is willing to appeal to the/?-adic analytic prop-
erties of the combinatorial form (4.1), one may obtain a fair explanation for the occurrence of 
(A|/?) in Theorem l(i) when (A|/?) ^ 0 . But again, Theorem 1 (II) shows that thep-adic limit in 
(4.3) even exists when (A|/?) = 0 [which is equivalent top dividing y by Corollary l(i)], a fact 
that is not predicted by the theory of/?-adic hypergeometric functions (cf. [13], Theorem 2.3). 
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