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Abstract

We present several polynomial congruences about sums with central binomial coef-
ficients and harmonic numbers. In the final section we collect some new congruences
involving Fibonacci and Lucas numbers.

1 Introduction

Recently, the following identity was proposed by Knuth in the problem section of the Amer-
ican Mathematical Monthly [3]:

where H,, = >"/'_, 1/k is the n-th harmonic number. Playing around with this formula, we
realized that there is a corresponding polynomial congruence, namely, for all prime numbers

b,
1

(’: (2:) %k> - 4 : <2:> (Haio1 = Hk)%k (mod p). ?
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By using this congruence together with some previous results given in [5, 6], we find that for
all prime numbers p > 3,

= (2K Haya*
Z <k> = (2x — a)P £o(—F/a) + 207 £5(B /) (mod p) (3)
k=1
where £Ly(z) = >07) i—’; is the finite dilogarithm and
a:%(l—i-\/l—élx) and B:%(l—\/l—élx).

These kind of congruences have been actively investigated and many interesting formulas
have been discovered (see the references in [5, 6]). For example, by letting x = 1 in (3), we
recover the congruence
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which appeared in [4], where <§> denotes the Legendre symbol, and B,(x) is the n-th

Bernoulli polynomial. Moreover, we show several congruences involving Fibonacci numbers
F,, and Lucas numbers L,,. Two of them are as follows: for all prime numbers p > 5,

(1)t <2k> Hy Fy = 13 (g) ¢ (mod p), (5)

5
>H2kL3k =3 q; (mod p), (6)

where ¢, = (L, — 1)/p is the so-called Lucas quotient.

The paper is organized into four sections. The next section is devoted to a brief intro-
duction to the finite polylogarithm. In Section 3 we present the proofs of the main theorems
about the polynomial congruences and in the final section we establish various congruences
involving Fibonacci numbers.

2 The finite polylogarithm

The classical polylogarithm function is defined for complex |z| < 1 and all positive integers
d by the power series
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It is well known that the polylogarithm can be extended analytically to a wider range of z
and it satisfies several remarkable identities such as the two reflection properties,
72 In*(—2) 2

Lis(z) + Lia(1/2) = 6 5 and Lis(z) 4+ Lis(1 — 2) = o In(z)In(1 — 2).

These identities allow the explicit evaluation of the polylogarithm at some special values,
such as
72 72 In%(2) 2 In*(¢y)

Lia(1) = ¢2) = &, Lip(1/2) = = T2 Tigo) = -+

where ¢+ = (1 +/5)/2.
The finite polylogarithm function is the partial sum of the above series over the range
0 < k < p where p is a prime

It satisfies some nice properties that resemble the ones satisfied by the classical polylogarithm.
Here we restrict our attention to £o(z) (see [5] for more details): for all prime numbers
p >3,
£o(x) = 2P L£(1/z)  (mod p),
£1(1—12)=-Q,(z) — pLa(z) (mod p?),
Lo(z) = £9(1 —z) + 2P £5(1 —1/2) (mod p),
)

2P Eoy(x)+ (1 —x)Pfa(l—2) =

where
Pl —1

Qp(z) = zgp(x) + (1 —2)gy(1 —x), with ¢,(z) = ;

Several congruences for special values of £9(x) are known:

£2(1) = £5(—1) =0, £5(2) =2£5(1/2) = —¢;(2) (mod p).

Moreover
£5((1£)/2) = —qgéz) +i ((%) + z) E, 5 (modp),
e = () £ 22)Bats). (mod )



where wg = (1 £4v/3)/2 and E,, is n-th Euler number. Finally, for all prime numbers p > 5
we have

£a(¢4) = JF\{—OE (g) q; (mod p),

1 5

£5(6) = —3 (1 £ (g))qL (mod p)
1 5

Lo(—ds) = _1(1 + \/?_ <§>>q% (mod p).
Notice that the Lucas quotient satisfies (see [7]),

S5F /»
0= Q)= —2 1 (anod p)

3 Polynomial congruences for central binomial sums

In [5, 6], we studied various sum involving the central binomial coefficients. In particular, it
has been shown that for all prime numbers p > 3,

STCAW pi ") (L) = (1 — 42" D2 (mod p), ")
> ()= (%)

Z (3)5 = 2@+ £49) modp), .
:i (Qkk) i’; = 2£5(a) + 2£65(8) (mod p), (9)

Eod

=1

where HY = S0 1/k2.

In [1, Proposition 5|, Boyadzhiev used the following Euler-type series transformation
formula to handle series with central binomial coefficients: if a,, = > (1) (—1)¥by, then in
a neighborhood of x = 0,

=2k, 1 (2 —z )’
e b [ —— ) .
;(k>w ¢1—4x;<1>]<1—4x>



It turns out that something similar holds for finite sum congruences:

k=0 k=0

S e S () ()

In the next theorem we apply the above transformation.

Theorem 1. For all prime numbers p > 3,

pi (2:> Hyah = —2(1 — 42)"7 £, (—%) (mod p),

k=1
p—

Proof. 1t is easy to verify by induction that

n

Z(—l)"‘(Z)Hk(l):—% and Z(—n'f(Z)Hk(z):—%.

k=1

Moreover

7 a and [ - b
e = — =— :
1— 4 14z 1—dx V1—4z
Hence, by (11) and (8),

-1

p—1 P k
2k k p—1 2k\ 1 —x

E =—(1—-4 2 - —
<k>Hkx ( ) i=1 <k>k <1_4x>

== (0 (25) + 4 (%))
= (1 42)"5 (,51 (1 — \/%W) + £, (—\AL_W))

5 (BB (oot = E (D) ()

kzi (2:) H;;ka = 2(1 — 4z)2 (£2 (\/%ﬁ) — £, <_\/1L_W>) (mod p).

(11)



where we also used £1(x) = £1(1 — x). Thus the proof of (12) is complete.
As regards (13), Eqns. (11) and (10) imply

p—1 p—1 k
Z H p 1 Z —
. k k 1 —4x

=1 7j=1

= 2(1 — da)} <£2 (ﬁ) £ (-\/%» (mod p).

In the next theorem, we establish (2), the analogous congruence for the series (1).

Theorem 2. For all prime numbers p > 3,

) (£ £ i

p—1

(g (Qkk)%k | 4 - (2:) (Hag-1 — Hk)%k (mod p). (15)

Proof. Since p divides (2:) for (p —1)/2 < k < p, it follows that

CZ: (2:) xk> | (: (2:) %) S kzi ( . (%f) ( ?_—k’@)) (mod p).

In a similar way,
(502) =SS (s () (2)
SIS )

n=1
—1 n—1
" 1/2k\ (2(n —k)
=2 E — - :
n=1 k=1
Therefore, it suffices to show by induction that
n—1 —1
12k (2(n—k)\ [2n
321 F(n,k) =2(Hs,—1 — H,) where F(n, k)= E(k) ( ok ) (n)

It holds for n = 1, and it is straightforward to verify that

k*(2n — 2k + 1)F(n, k)
m+1D)2n+1)(n+1-k)

Fn+1,k)—F(n,k) =G(n,k+1)—G(n, k) with G(n,k) = —



Hence, by the inductive assumption,

n

53Fm+1k E:Fnk-+§:GmJH4)—Gm$»
k=1 k=1

= 2(H2n,1 —H,)+ F(n,n)+Gn,n+1)—G(n,1)
B B 1 (2n —1)F(n,1)

= Aoy = o) + n O (n+1)2n+1)n

1 1

— (Hyy  — H) + & — (Hypr1 — Hoot),
(Hons = Ho) + 24 gy gy — 2o = o)

]

Now we are ready to show that our main result (3) and the congruence corresponding to
the series [2, Theorem 6]: for |z| < 1/4,

Theorem 3. For all prime numbers p > 3,

(2:) Hypa® = (1 — 42)®=D/? (131(6) — 24, (—L)) (mod p) — (17)

,_.

p—

- Vi—1z
> (2:) HQ;I = (22 — a)’£o(—B/a) + 20" £5(F/c)  (mod p). (18)

Proof. As regards (17), since Hyy, = + (Hog—1 — Hy) + Hy, it follows immediately that,

p—1 1 p—1 p—1
2k 1 2k 2k
KJ%M—i11)+ZXJW%me+§QJ%ﬁ

and we apply (7), (14), and (12). In a similar way, for (18),

p—1 p—1 p—1 p—1
2k\ Hopx® 1 2k 2k T 2k\ HzF
G5 =3 (D (Fome-mg+ X (0)%

k=1 k= 1 1

and then we use (9), (15), and (13). O

As a remark, we point out that although the series (16) does not converge for x = 1/4,
by letting f(x) be the left-hand side of (16) then

> (V)= [ e
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On the other hand, it can be verified that the congruence (18) holds even for z = 1/4, and
for all prime numbers p > 3,

Ho, _

kg~

4 Congruences with Fibonacci and Lucas numbers

£2(1) =0 (mod p).

k=1

By looking at this table and by using the values of £; and £5, we can easily obtain the
explicit values of the congruences established in the previous section.

o s
1 We wg
-1 P+ P
—2 2 ~1
/2 | (1+4)/2 | (1—14)/2
1/3 | (1+ws)/3 | (1+wgh)/3
14 1—i i
1—i 1+ —i
+iv3 | 14wt —wit
—¢2 —¢- o
—¢5 &% —0.

For example, for all prime numbers p > 3, by taking x = 1,1/2,1/3 in (18), we get respec-
tively (4), and the next two congruences,

> (2:) % 1% (%) By (1/4)  (mod p),
= () B =2 (2 5 o)

To order to get the congruences with F;, and L, we need consider the cases r = —¢7. If
r = —¢> then 20 — a = —¢* and

LIl
= =
Il

Eod

=1

p—1

(-7+3(2) v5) £alo) + (-1 + (%’) V3) £2(~0-)
5
4



where we used the fact that 2¢. =1 + (%) V5 (mod p). In a similar way, we find that

-1
— (—1)F [2k (5 13 /p
2 (o= (G455 (8) )t o
p—1

(—1)* /2K (1 3 /p
2 (k)Hk¢ik:<§iE<g>\/g>Q% (mod p).

Since VBFy;, = ¢3F — ¢*F and Ly = ¢ + ¢%, it follows that for p > 5, (5) and (6) hold and
also we find that

—_

p—

Z <_k1)k (2:) HyFy, = g (g) g7 (mod p),

(=D*
k

A
=

2k
(k‘ )HkLgk = q% (mod p).

k=1
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