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Abstract

We present several polynomial congruences about sums with central binomial coef-

ficients and harmonic numbers. In the final section we collect some new congruences

involving Fibonacci and Lucas numbers.

1 Introduction

Recently, the following identity was proposed by Knuth in the problem section of the Amer-

ican Mathematical Monthly [3]:

(

∞
∑

k=1

(

2k

k

)

xk

k

)2

= 4
∞
∑

k=1

(

2k

k

)

(H2k−1 −Hk)
xk

k
, (1)

where Hn =
∑n

k=1 1/k is the n-th harmonic number. Playing around with this formula, we
realized that there is a corresponding polynomial congruence, namely, for all prime numbers
p,

(

p−1
∑

k=1

(

2k

k

)

xk

k

)2

≡ 4

p−1
∑

k=1

(

2k

k

)

(H2k−1 −Hk)
xk

k
(mod p). (2)
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By using this congruence together with some previous results given in [5, 6], we find that for
all prime numbers p > 3,

p−1
∑

k=1

(

2k

k

)

H2kx
k

k
≡ (2x− α)p£2(−β/α) + 2αp£2(β/α) (mod p) (3)

where £2(x) =
∑p−1

k=1
xk

k2
is the finite dilogarithm and

α =
1

2

(

1 +
√
1− 4x

)

and β =
1

2

(

1−
√
1− 4x

)

.

These kind of congruences have been actively investigated and many interesting formulas
have been discovered (see the references in [5, 6]). For example, by letting x = 1 in (3), we
recover the congruence

p−1
∑

k=1

(

2k

k

)

H2k

k
≡ 7

12

(p

3

)

Bp−2 (1/3) (mod p) (4)

which appeared in [4], where
(

x
y

)

denotes the Legendre symbol, and Bn(x) is the n-th

Bernoulli polynomial. Moreover, we show several congruences involving Fibonacci numbers
Fn and Lucas numbers Ln. Two of them are as follows: for all prime numbers p > 5,

p−1
∑

k=1

(−1)k

k

(

2k

k

)

H2kF3k ≡
13

10

(p

5

)

q2L (mod p), (5)

p−1
∑

k=1

(−1)k

k

(

2k

k

)

H2kL3k ≡
5

2
q2L (mod p), (6)

where qL = (Lp − 1)/p is the so-called Lucas quotient.
The paper is organized into four sections. The next section is devoted to a brief intro-

duction to the finite polylogarithm. In Section 3 we present the proofs of the main theorems
about the polynomial congruences and in the final section we establish various congruences
involving Fibonacci numbers.

2 The finite polylogarithm

The classical polylogarithm function is defined for complex |z| < 1 and all positive integers
d by the power series

Lid(z) =
∞
∑

k=1

zk

kd
.
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It is well known that the polylogarithm can be extended analytically to a wider range of z
and it satisfies several remarkable identities such as the two reflection properties,

Li2(z) + Li2(1/z) = −π2

6
− ln2(−z)

2
and Li2(z) + Li2(1− z) =

π2

6
− ln(z) ln(1− z).

These identities allow the explicit evaluation of the polylogarithm at some special values,
such as

Li2(1) = ζ(2) =
π2

6
, Li2(1/2) =

π2

12
− ln2(2)

2
, Li2(φ−) = −π2

15
+

ln2(φ+)

2
.

where φ± = (1±
√
5)/2.

The finite polylogarithm function is the partial sum of the above series over the range
0 < k < p where p is a prime

£d(x) =

p−1
∑

k=1

xk

kd
.

It satisfies some nice properties that resemble the ones satisfied by the classical polylogarithm.
Here we restrict our attention to £2(x) (see [5] for more details): for all prime numbers

p > 3,

£2(x) ≡ xp£2(1/x) (mod p),

£1(1− x) ≡ −Qp(x)− p£2(x) (mod p2),

£2(x) ≡ £2(1− x) + xp£2(1− 1/x) (mod p),

xp£2(x) + (1− x)p£2(1− x) ≡ 1

2
Q2

p(x) (mod p).

where

Qp(x) = xqp(x) + (1− x)qp(1− x), with qp(x) =
xp−1 − 1

p
.

Several congruences for special values of £2(x) are known:

£2(1) ≡ £2(−1) ≡ 0, £2(2) ≡ 2£2(1/2) ≡ −q2p(2) (mod p).

Moreover

£2

(

(1±i)/2
)

≡ −
q2p(2)

8
+

1

4

((−1

p

)

± i

)

Ep−3 (mod p),

£2(ω
±1
6 ) ≡ 1

8

(

(p

3

)

± i

√
3

3

)

Bp−2(1/3), (mod p)
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where ω6 = (1± i
√
3)/2 and En is n-th Euler number. Finally, for all prime numbers p > 5

we have

£2(φ±) ≡ ∓
√
5

10

(p

5

)

q2L (mod p),

£2(φ
2
±) ≡ −1

2

(

1±
√
5

5

(p

5

)

)

q2L (mod p),

£2(−φ±) ≡ −1

4

(

1±
√
5

5

(p

5

)

)

q2L (mod p).

Notice that the Lucas quotient satisfies (see [7]),

qL = Q(φ±) ≡
5Fp−( p

5
)

2p
(mod p).

3 Polynomial congruences for central binomial sums

In [5, 6], we studied various sum involving the central binomial coefficients. In particular, it
has been shown that for all prime numbers p > 3,

p−1
∑

k=1

(

2k

k

)

xk ≡
p−1
∑

k=1

(p−1
2

k

)

(−4x)k ≡ (1− 4x)(p−1)/2 (mod p), (7)

p−1
∑

k=1

(

2k

k

)

xk

k
≡ £1(α) +£1(β) (mod p), (8)

p−1
∑

k=1

(

2k

k

)

xk

k2
≡ 2£2(α) + 2£2(β) (mod p), (9)

p−1
∑

k=1

(

2k

k

)

H
(2)
k xk ≡ 2(£2(β)−£2(α))√

1− 4x
(mod p). (10)

where H
(2)
n =

∑n
k=1 1/k

2.
In [1, Proposition 5], Boyadzhiev used the following Euler-type series transformation

formula to handle series with central binomial coefficients: if an =
∑n

k=0

(

n
k

)

(−1)kbk then in
a neighborhood of x = 0,

∞
∑

k=0

(

2k

k

)

akx
k =

1√
1− 4x

∞
∑

j=0

(

2j

j

)

bj

( −x

1− 4x

)j

.
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It turns out that something similar holds for finite sum congruences:

p−1
∑

k=0

(

2k

k

)

akx
k ≡

(p−1)/2
∑

k=0

(p−1
2

k

)

ak(−4x)k =

(p−1)/2
∑

k=0

(p−1
2

k

)

(−4x)k
k
∑

j=0

(

k

j

)

(−1)jbj

=

(p−1)/2
∑

j=0

(−1)jbj

(p−1)/2
∑

k=j

(p−1
2

k

)(

k

j

)

(−4x)k

=

(p−1)/2
∑

j=0

(−1)jbj

(p−1
2

j

)

(−4x)j(1− 4x)
p−1

2
−j

≡ (1− 4x)
p−1

2

p−1
∑

j=0

(

2j

j

)

bj

( −x

1− 4x

)j

(mod p). (11)

In the next theorem we apply the above transformation.

Theorem 1. For all prime numbers p > 3,

p−1
∑

k=1

(

2k

k

)

Hkx
k ≡ −2(1− 4x)

p−1

2 £1

(

− β√
1− 4x

)

(mod p), (12)

p−1
∑

k=1

(

2k

k

)

Hkx
k

k
≡ 2(1− 4x)

p

2

(

£2

(

α√
1− 4x

)

−£2

(

− β√
1− 4x

))

(mod p). (13)

Proof. It is easy to verify by induction that

n
∑

k=1

(−1)k
(

n

k

)

Hk(1) = − 1

n
and

n
∑

k=1

(−1)k
(

n

k

)

Hk(2) = −Hn

n
.

Moreover

α

( −x

1− 4x

)

=
α√

1− 4x
and β

( −x

1− 4x

)

= − β√
1− 4x

.

Hence, by (11) and (8),

p−1
∑

k=1

(

2k

k

)

Hkx
k ≡ −(1− 4x)

p−1

2

p−1
∑

j=1

(

2k

k

)

1

k

( −x

1− 4x

)k

≡ −(1− 4x)
p−1

2

(

£1

(

α√
1− 4x

)

+£1

(

− β√
1− 4x

))

≡ −(1− 4x)
p−1

2

(

£1

(

1− α√
1− 4x

)

+£1

(

− β√
1− 4x

))

≡ −2(1− 4x)
p−1

2 £1

(

− β√
1− 4x

)

(mod p),
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where we also used £1(x) ≡ £1(1− x). Thus the proof of (12) is complete.
As regards (13), Eqns. (11) and (10) imply

p−1
∑

k=1

(

2k

k

)

Hkx
k

k
≡ −(1− 4x)

p−1

2

p−1
∑

j=1

(

2k

k

)

H
(2)
k

( −x

1− 4x

)k

≡ 2(1− 4x)
p

2

(

£2

(

α√
1− 4x

)

−£2

(

− β√
1− 4x

))

(mod p).

In the next theorem, we establish (2), the analogous congruence for the series (1).

Theorem 2. For all prime numbers p > 3,
(

p−1
∑

k=1

(

2k

k

)

xk

)

·
(

p−1
∑

k=1

(

2k

k

)

xk

k

)

≡ 2

p−1
∑

k=1

(

2k

k

)

(H2k−1 −Hk)x
k (mod p), (14)

(

p−1
∑

k=1

(

2k

k

)

xk

k

)2

≡ 4

p−1
∑

k=1

(

2k

k

)

(H2k−1 −Hk)
xk

k
(mod p). (15)

Proof. Since p divides
(

2k
k

)

for (p− 1)/2 < k < p, it follows that

(

p−1
∑

k=1

(

2k

k

)

xk

)

·
(

p−1
∑

k=1

(

2k

k

)

xk

k

)

≡
p−1
∑

n=1

xn

n−1
∑

k=1

(

1

k

(

2k

k

)(

2(n− k)

n− k

))

(mod p).

In a similar way,

(

p−1
∑

k=1

(

2k

k

)

xk

k

)2

≡
p−1
∑

n=1

xn

n−1
∑

k=1

(

1

k(n− k)

(

2k

k

)(

2(n− k)

n− k

))

≡
p−1
∑

n=1

xn

n

n−1
∑

k=1

((

1

k
+

1

n− k

)(

2k

k

)(

2(n− k)

n− k

))

≡ 2

p−1
∑

n=1

xn

n

n−1
∑

k=1

(

1

k

(

2k

k

)(

2(n− k)

n− k

))

(mod p).

Therefore, it suffices to show by induction that

n−1
∑

k=1

F (n, k) = 2(H2n−1 −Hn) where F (n, k) =
1

k

(

2k

k

)(

2(n− k)

n− k

)(

2n

n

)−1

.

It holds for n = 1, and it is straightforward to verify that

F (n+1, k)−F (n, k) = G(n, k+1)−G(n, k) with G(n, k) = − k2(2n− 2k + 1)F (n, k)

(n+ 1)(2n+ 1)(n+ 1− k)
.
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Hence, by the inductive assumption,

n
∑

k=1

F (n+ 1, k) =
n
∑

k=1

F (n, k) +
n
∑

k=1

(G(n, k + 1)−G(n, k))

= 2(H2n−1 −Hn) + F (n, n) +G(n, n+ 1)−G(n, 1)

= 2(H2n−1 −Hn) +
1

n
+ 0 +

(2n− 1)F (n, 1)

(n+ 1)(2n+ 1)n

= 2(H2n−1 −Hn) +
1

n
+

1

(n+ 1)(2n+ 1)
= 2(H2n+1 −Hn+1).

Now we are ready to show that our main result (3) and the congruence corresponding to
the series [2, Theorem 6]: for |x| < 1/4,

∞
∑

k=1

(

2k

k

)

H2kx
k =

1√
1− 4x

(

ln

(

1 +
√
1− 4x

2

)

− 2 ln(
√
1− 4x)

)

. (16)

Theorem 3. For all prime numbers p > 3,

p−1
∑

k=1

(

2k

k

)

H2kx
k ≡ (1− 4x)(p−1)/2

(

£1(β)− 2£1

(

− β√
1− 4x

))

(mod p) (17)

p−1
∑

k=1

(

2k

k

)

H2kx
k

k
≡ (2x− α)p£2(−β/α) + 2αp£2(β/α) (mod p). (18)

Proof. As regards (17), since H2k =
1
2k

+ (H2k−1 −Hk) +Hk, it follows immediately that,

p−1
∑

k=1

(

2k

k

)

H2kx
k =

1

2

p−1
∑

k=1

(

2k

k

)

xk

k
+

p−1
∑

k=1

(

2k

k

)

(H2k−1 −Hk)x
k +

p−1
∑

k=1

(

2k

k

)

Hkx
k

and we apply (7), (14), and (12). In a similar way, for (18),

p−1
∑

k=1

(

2k

k

)

H2kx
k

k
=

1

2

p−1
∑

k=1

(

2k

k

)

xk

k2
+

p−1
∑

k=1

(

2k

k

)

(H2k−1 −Hk)
xk

k
+

p−1
∑

k=1

(

2k

k

)

Hkx
k

k

and then we use (9), (15), and (13).

As a remark, we point out that although the series (16) does not converge for x = 1/4,
by letting f(x) be the left-hand side of (16) then

∞
∑

k=1

(

2k

k

)

H2k

4kk
=

∫ 1

4

0

f(x)

x
dx =

5π2

12
.
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On the other hand, it can be verified that the congruence (18) holds even for x = 1/4, and
for all prime numbers p > 3,

p−1
∑

k=1

(

2k

k

)

H2k

4kk
≡ £2(1) ≡ 0 (mod p).

4 Congruences with Fibonacci and Lucas numbers

By looking at this table and by using the values of £1 and £2, we can easily obtain the
explicit values of the congruences established in the previous section.

x α β
1 ω6 ω−1

6

−1 φ+ φ−

−2 2 −1

1/2 (1 + i)/2 (1− i)/2

1/3 (1 + ω6)/3 (1 + ω−1
6 )/3

1 + i 1− i i

1− i 1 + i −i

±i
√
3 1 + ω∓1

6 −ω∓1
6

−φ3
− −φ− φ2

−

−φ3
+ φ2

+ −φ+

For example, for all prime numbers p > 3, by taking x = 1, 1/2, 1/3 in (18), we get respec-
tively (4), and the next two congruences,

p−1
∑

k=1

(

2k

k

)

H2k

2kk
≡ 3

16

(−1

p

)

Bp−2 (1/4) (mod p),

p−1
∑

k=1

(

2k

k

)

H2k

3kk
≡ 2

9

(p

3

)

Bp−2 (1/3) (mod p).

To order to get the congruences with Fn and Ln we need consider the cases x = −φ3
±. If

x = −φ3
− then 2x− α = −φ4

− and

p−1
∑

k=1

(−1)k

k

(

2k

k

)

H2kφ
3k
− ≡ (−φ4

−)
p£2(φ−) + 2(−φ−)

p£2(−φ−)

≡ 1

2

(

−7 + 3
(p

5

)√
5
)

£2(φ−) +
(

−1 +
(p

5

)√
5
)

£2(−φ−)

≡
(

5

4
− 13

20

(p

5

)√
5

)

q2L (mod p).
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where we used the fact that 2φp
± ≡ 1±

(

p
5

)√
5 (mod p). In a similar way, we find that

p−1
∑

k=1

(−1)k

k

(

2k

k

)

H2kφ
3k
± ≡

(

5

4
± 13

20

(p

5

)√
5

)

q2L (mod p),

p−1
∑

k=1

(−1)k

k

(

2k

k

)

Hkφ
3k
± ≡

(

1

2
± 3

10

(p

5

)√
5

)

q2L (mod p).

Since
√
5F3k = φ3k

+ − φ3k
− and L3k = φ3k

+ + φ3k
− , it follows that for p > 5, (5) and (6) hold and

also we find that

p−1
∑

k=1

(−1)k

k

(

2k

k

)

HkF3k ≡
3

5

(p

5

)

q2L (mod p),

p−1
∑

k=1

(−1)k

k

(

2k

k

)

HkL3k ≡ q2L (mod p).

References

[1] K. N. Boyadzhiev, Series with central binomial coefficients, Catalan numbers, and har-
monic numbers, J. Integer Sequences 15 (2012), Article 12.1.7.

[2] H. Chen, Interesting series associated with central binomial coefficients, Catalan numbers
and harmonic numbers, J. Integer Sequences 19 (2016), Article 16.1.5.

[3] D. E. Knuth, Problem 11832, Amer. Math. Monthly 122 (2015), 390.

[4] G.-S. Mao and Z.-W. Sun, Two congruences involving harmonic numbers with applica-
tions, Int. J. Number Theory 12 (2016), 527–539.

[5] S. Mattarei and R. Tauraso, Congruences for central binomial sums and finite polyloga-
rithms, J. Number Theory 133 (2013), 131–157.

[6] S. Mattarei and R. Tauraso, From generating series to polynomial congruences, in prepa-

ration.

[7] H. C. Williams, A note on the Fibonacci quotient Fp−ε/p, Can. Math. Bull. 25 (1982),
366–370.

2010 Mathematics Subject Classification: Primary 11A07; Secondary 05A10.

Keywords: congruences, central binomial coefficient, harmonic number, Fibonacci number,
Lucas number.

9



(Concerned with sequences A000045, A000984, A001008, A014445, and A014448.)

Received April 14 2016; revised version received May 10 2016. Published in Journal of

Integer Sequences, June 2 2016.

Return to Journal of Integer Sequences home page.

10


