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1. INTRODUCTION

The first congruence in this paper arose in an effort to extend a result of Collings [1] and the second congruence
is merely an elaboration of part of a theorem of Wall [5]. In the final section we look at some congruences modulo
m<,

Seme of the symbols involved are: O(m), the period of divisibility modulo m (or rank of apparition of m or entry
point of m), the smallest positive integer z such that F, =0 (mod m/ (see Daykin and Dresel [2]); Cfm), the
period of cycle modulo m, the smallest positive integer k; Fyr, =F,, (modm), n >0 T(m), the smallest positive
integer 0; Fiey=1. (mod mi Infact, ze=k (See Wyler (6].)

Collings’ result was than when m is prime, 2 iseven,

{1.1) Fo+ Fyoper = 0 (mod m),
where
F,, = Fn_7+Fn_2 {n 23}, F7 = F2 =1.
We show that /m can be compaosite if FzyiQ, = —7 {mod m).
2. LEMMAS

Lemsma 2.1: (see Vinson [5].}
For m > 2 D{m/) is odd implies that 7{m/=4; and Ofm) is even implies that 7m}=1 or 2

Proof: Simson's refation can be expressed as
F§+1 = Fz+2Fz+(_7)z+2
= (—1)"2 singe F, =0 (mod m),
=7 (med m) if z= Diml iseven,
=~—7 fmod m) i 2z=Dfm) isodd. .

When
F§+7 =1 {(mod mj,
Timj =2 # Fyep = 1 (mod m/,
Timj=1 if Fyep =1 (mod ml.
When

-7 (mod m},

il

F21
FZy=1 (mod m) if m>Z
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Foep = 27 (mod m).
F§+1 = FZi1Fze1 = —Fpz7  (mod m);
z+1 = [F +1]2 7 {mod m),

and
T(m) = 4
Lemma 2.2: Fr-7 =1 (med m).
PTOOf.' Frq = ‘Fk+1" Fk = F1 -0 (mod m)
=17 (mod m).
3. THEQREMS

Theorem 3.1: 1f ¢#1 and FZ5 = —1  (mod m), then
Fr#Fyozer =0 (mod m) forall r> 0.

Proof: ¢ = T{m) which takes only the values 7, 2, 4 (Lemma 2.1). But ¢ # 7 (given). Therefore  is even.
Therefore, Fzyi’z, exists and is unique. Moreaver,
Fugzir = FLoqF, (mod m) (see Eq. (8) of [4])
—F, (mod m) as FZ+7 = —]
5 Fpt Fygprr =0 (mod m).

NOTE. (i} Conversely, if for 2 #7 we are given that
FrtFyozer =0 (mod m/,
for all 7, this congruence must hoid for r=17,

IH

L 1=F; = —F 150241 {mod m/
—F +1F1 (mod m}
= _Fz+1

IH

On the other hand, it is possible for
Frt Franzsr
to be congruent to zero for some particular » without Fz+7 being congruent to —7. Thus, when m = 12,
Fi2=144 =0 f(mod 712} and =z =12
Foe1=Fyj3=233 =5 (maod 12
Le=2
Fz+, =Fyz=~1 {(mod 72).

Despite this,
F3+ Fyge3 = F3+F15=2+610 = 612 =0 (mod 12).

{iil) When e =7 the situation is very untidy. If z is odd, Fyo,+ does not exist. Even when z is even,
we have trouble with FZ%. As ¢ = 7, Fz+7:7 {mod m). Therefore

Ffag = JFpeg =T = «1

(and possibly other values as well). —7 is always a possible value for FZ+7 but never the exclusive value.
(iii} Although —7 is always‘a possible value for F. 1 fe = 7), it is not necessarily true that

Fr+ Fyoper =0 (mod m} forall r>0.

Thus, when m = 4, z = 6.
ZFp=1 (modm), :-2=1.

F2+.F%z+2=F2+F5=6‘EZ (mod 4}.
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Theorem 3.2: Fot(—1)Fr, =0 (mod m/.
Proof: ~Fr=0=Fp and Fpy=1=F; (modm) by Lemma 2.2
—Fpp = —F+Frg =Fp+F; =F5 (mod m).
It follows by induetion on & that
(~1)" T Fpep = A=1)" Fpypp # (~1) Fieopag
Fr2+Fp; (mod m)

=F, (mod m/,
which gives the required result.
4. CONGRUENCES MODULD m?

Here we use the results (see Hoggatt [31)

(4.1) Frrt1 = Fln-1)rFrt Fln-1)r+1Frer
and
(4.2) Font1 = FE2+Fheg

If 2a(mod m)=F,eq=5(mod m?), then b is of the form Bm +a, for some B. For example, F5=0/(mod 5),
3(mod 5)=Fg=8(mod 52}, and 8 = 1X 5+3.
Using F, =0 (mod m} and (4.1} and (4.2) we find

Foser = FZr7 tmod m?) = b2 (mod m?),
and
Fazt1 = Fope1Fzer (mod m?) = 6% (mod m?),

which, by the use of (4.1), can be generalized to
(4.3) Fpze7 = b7 (mod m?).

Furthermore, since £, = Am forsome A, then

Foog =b—Am (mod m?)
and
Fop = FaugFat FaFaug
= (b — Am}Am + Amb (mod m?)
= 2bAm (mod m?).
Also,

Fap = Foy 1Fy# FayFyeq  (from (4.1))
= (% - 2bAmJAm + 2bAm - b (mod m?)
= 36%2Am  (mod m?) .
Similarly, Fg, = 46°Am  (mod m?) Thus
(4.4) Fn, = nb™ Am  (mod m?).

When F,,, =0 the congruence n6""'A =0 (mod m/ reducesto nA =0 (mod mJ, because, from (4.3) and (4.4),
if b and m have any factor in common, so have F,, and F,,+7, which is impossible as adjacent Fibonacci num-
bezgs are always co-prime. Thus, if we solve n4A =0 (mad m/) for n, then Z=nz gives that Fz which is zero (mod
m* ..

Let us apply these methods to find which Fibonacci numbers are divisible by canvenient powers of 10, Instead of
workinag with m = 70, we shall find the equations simpler if we write 70=mq¢-mo, where my=2, mo=15, and
100=22.52 m;=2,z=3, F3=1-2 andso A=1 Theequation nA=0 (mod m) reducesto n=0 (mod 2/,
which gives n =2, so that Z=2z=6. Similarly with mo=15, z=15, and we find that Z = 52=25.

If we take my=4, z=6, Fg =24 andso A=2. Thus 2n =0 (mod 4) which gives n=2 and Z=2z=12.
Similarly, with mo =25, z=25 and Fog= 75025 = 3001-25 which yields A=7 (mod 25, So n = 25
and Z =25z =625
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Relying on the known result that the period of divisibility by mm» {m;,mo co-prime) is given by Dfmmo) =
LCM(z1, z2) (see Wall [6]), we get the results:
LCM(3,5) =15, andso Fjg is the first Fibonacci number to he divisible by 10. /em (6,25} = 150, and so F5pis
divisible by 100, LCM(12,625) = 7,500 and so F 500 is divisible by 707 .
This has been an exercise in finding the z numbers. By an extension of the argument we can produce the corres-
ponding & numbers—the period of recurrence of the Fibonacci numbers (mod m?).
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[Continued from page 350.]

(N ,

= g i _ K k=] )

(5) Felx) }% (~thel e (457 gegpll-1Vn)

=
Write

hiclx) = (1= agx +(=1)%x2 g (x)
(6) ce = llr—sbla]® + [(sa—rib] % .

Foliowing Riordan [8], with agp=2 and Aglx) =7 — x, we eventually derive
c1+5JEx = hylx)
co—x(2e+552) = halx) — Ze | hol~x) ~ (ag+ az)xgol~x) }
c3+ 55 x(3e +552) = hzlx) - 3e§ hql—x) — (aq +aglxy7(—x)}
7N cq— x(262 + 205%¢ + 255%) = h4lx) — 4e { hof—x) — (as+agixgol—x) }
+292{ holx) — (aq — apgixgplx) }

c5—ey = hglx)— 5 { haf-x)— (ag+a5}xg3(—x)} + 5@2; hylx) —{ag— aﬂxg;(x)}
where '
e = 2% — 5%+ 30r%s2 — 40r253 + 35057 — 105° .

Substituting values of a, = a* +5%, we have
halx) = /5 (r+sx)
holx) = 5(r —s%x) — 10exgp(—x) .
(8) halx) = 55 (r3 +s5x) — 15exg1(-x)
halx) = 25(r* — s%x) — 40exg of —x) + 500 % xgplx)
hslx) = 255 (r® +5%x) — 75exgsl—x) + 125¢°xg 1 (x) .
These functions lead back to (2.

[Continued on page 362.]



