The Fibonacci Quarterly 1974 (12,4): 351-354

SOME CONGRUENCES FOR FIBONACCI NUMBERS

A. G. SHANNON

The New South Wates Institute of Technology, Sydney, Australia and

A. F. HORADAM

University of New England, Armidale, Australia and
Science Institute, University of fceland, Reykjavik, Iceland and
S. N. COLLMGS

The Open University, Bletchley, England

1. INTRODUCTHON

The first congruence in this paper arose in an effort to extend a result of Collings [1] and the second congruence is merely an elaboration of part of a theorem of Wall [5]. In the final section we look at some congruences modulo m^{2}.
Some of the symbols involved are: $D(m)$, the period of divisibility modulo m (or rank of apparition of m or entry point of m), the smallest positive integer z. such that $F_{z} \equiv 0(\bmod m)$ (see Daykin and Dresel [2]); $C(m)$, the period of cycle modulo m, the smallest positive integer $k: F_{k+n} \equiv F_{n}(\bmod m), n \geqslant 0 ; T(m)$, the smallest positive integer $\ell: F_{z+1}^{\ell} \equiv 1 .(\bmod m)$. In fact, $z \ell=k$. (See Wyler [6].)
Collings ${ }^{\circ}$ result was than when m is prime, ℓ is even,

$$
\begin{equation*}
F_{r}+F_{1 / 2 \ell_{z}+r} \equiv 0(\bmod \mathrm{~m}), \tag{1.1}
\end{equation*}
$$

where

$$
F_{n}=F_{n-1}+F_{n-2} \quad(n \geqslant 3), \quad F_{1}=F_{2}=1
$$

We show that m can be composite if $F_{z+1}^{1 / 2} \equiv-1(\bmod m)$.

2. LEMMAS

Lemma 2.1: (see Vinson [5].)
For $m>2, D(m)$ is odd implies that $T(m)=4 ;$ and $D(m)$ is even implies that $T(m)=1$ or 2 .
Proof: Simson's relation can be expressed as

$$
\begin{aligned}
F_{z+1}^{2} & =F_{z+2} F_{z}+(-1)^{z+2} \\
& \equiv(-1)^{z+2} \quad \text { since } \quad F_{z} \equiv 0(\bmod m) \\
& \equiv 1(\bmod m) \quad \text { if } \quad z=D(m) \text { is even, } \\
& \equiv-1(\bmod m) \text { if } z=D(m) \text { is odd. } .
\end{aligned}
$$

When

$$
\begin{array}{ll}
F_{z+1}^{2} \equiv 1 & (\bmod m), \\
T(m)=2 \quad \text { if } \quad F_{z+1} \equiv 1 \quad(\bmod m), \\
T(m)=1 & \text { if } \quad F_{z+1} \equiv 1 \quad(\bmod m) .
\end{array}
$$

When

$$
\begin{aligned}
& F_{z+1}^{2} \equiv-1 \quad(\bmod m) \\
& F_{z+1}^{2} \equiv 1 \quad(\bmod m) \quad \text { if } \quad m>2
\end{aligned}
$$

$$
\begin{aligned}
& F_{z+1} \equiv \pm 1 \quad(\bmod m) \\
& F_{z+1}^{3}=F_{z+1}^{2} F_{z+1} \equiv-F_{z+1} \quad(\bmod m) \\
& F_{z+1}^{4}=\left[F_{z+1}^{2}\right]^{2} \equiv 1(\bmod m)
\end{aligned}
$$

and

$$
T(m)=4
$$

Lemma 2.2. Proof:

$$
\begin{aligned}
& F_{k-1} \equiv 1(\bmod m) \\
& F_{k-1}=F_{k+1}-F_{k} \equiv F_{1}-0(\bmod m) \\
& \equiv 1(\bmod m)
\end{aligned}
$$

3. THEOREMS

Theorem 3.1: If $Q \neq 1$ and $F_{z+1}^{1 / 2 \ell} \equiv-1(\bmod m)$, then

$$
F_{r}+F_{1 / 2 \ell z+r} \equiv 0 \quad(\bmod m) \quad \text { for all } \quad r>0
$$

Proof: $\ell=T(m)$ which takes only the values $1,2,4$ (Lemma 2.1). But $\ell \neq 1$ (given). Therefore ℓ is even. Therefore, $F_{z+1}^{1 / 2}$ exists and is unique. Moreover,

$$
\begin{aligned}
F_{1 / 2 \ell z+r} & \equiv F_{z^{+1}}^{1 / 1} F_{r} \quad(\bmod m) \quad(\text { see Eq. }(8) \text { of }[4]) \\
& \equiv-F_{r} \quad(\bmod m) \quad \text { as } \quad F_{z+1}^{1 / \ell} \equiv-1 \\
& \therefore F_{r}+F_{1 / 2 \ell z+r} \equiv 0 \quad(\bmod m)
\end{aligned}
$$

NOTE. (i) Conversely, if for $\ell \neq 1$ we are given that

$$
F_{r}+F_{1 / 2 \ell z+r} \equiv 0 \quad(\bmod m)
$$

for all r, this congruence must hold for $r=1$.

$$
\begin{aligned}
\therefore 1=F_{1} & \equiv-F_{1 / 2 \ell z+1} \quad(\bmod m) \\
& \equiv-F_{z+1}^{1 / 2 \ell} F_{1} \quad(\bmod m) \\
& \equiv-F_{z+1}^{1 / 2 l} .
\end{aligned}
$$

On the other hand, it is possible for

$$
F_{r}+F_{1 / 2 \not 2+r}
$$

to be congruent to zero for some particular r without $F_{z+1}^{1 / 2 l}$ being congruent to -1 . Thus, when $m=12$,

$$
\begin{gathered}
F_{12}=144 \equiv 0 \quad(\bmod 12) \quad \text { and } z=12 . \\
F_{z+1}=F_{13}=233 \equiv 5 \quad(\bmod 12) \\
\therefore \ell=2 \\
\therefore F_{z+1}^{1 / 2}=F_{13} \neq-1 \quad(\bmod 12) .
\end{gathered}
$$

Despite this,

$$
F_{3}+F_{1 / 222+3}=F_{3}+F_{15}=2+610=612 \equiv 0 \quad(\bmod 12)
$$

(ii) When $\ell=1$ the situation is very untidy. If z is odd, $F_{1 / 292+r}$ does not exist. Even when z is even, we have trouble with $F_{z+1}^{1 / 2}$. As $\ell=1, F_{z+1} \equiv 1(\bmod m)$. Therefore

$$
F_{z+1}^{1 / 2}=\sqrt{F_{z+1}} \equiv \sqrt{1}= \pm 1
$$

(and possibly other values as well). -1 is always a possible value for $F_{z+1}^{1 / 2}$, but never the exclusive value.
(iii) Although -1 is always a possible value for $F_{z+1}^{1 / 2,}(l=1)$, it is not necessarily true that

$$
F_{r}+F_{1 / 2 \ell z+r} \equiv 0 \quad(\bmod m) \quad \text { for all } \quad r>0
$$

Thus, when $m=4, z=6$.

$$
\begin{aligned}
& \therefore F_{z+1} \equiv 1 \quad(\bmod m), \quad \therefore \ell=1 \\
& \therefore F_{2}+F_{1 / 2 z+2}=F_{2}+F_{5}=6 \equiv 2 \quad(\bmod 4) .
\end{aligned}
$$

Theorem 3.2:

$$
F_{r}+(-1)^{r} F_{k-r} \equiv 0 \quad(\bmod m)
$$

Proof: $\quad-F_{k} \equiv 0=F_{0} \quad$ and $\quad F_{k-1} \equiv 1=F_{1} \quad(\bmod m)$, by Lemma 2.2

$$
-F_{k-2}=-F_{k}+F_{k-1} \equiv F_{0}+F_{1} \equiv F_{2} \quad(\bmod m)
$$

It follows by induction on k that

$$
\begin{aligned}
(-1)^{r-1} F_{k-r} & =(-1)^{r-1} F_{k-r+2}+(-1)^{r} F_{k-r+1} \\
& \equiv F_{r-2}+F_{r-1} \quad(\bmod m) \\
& \equiv F_{r} \quad(\bmod m)
\end{aligned}
$$

which gives the required result.

4. CONGRUENCES MODULO m^{2}

Here we use the results (see Hoggatt [3])
and
(4.2)

$$
\begin{gather*}
F_{n r+1}=F_{(n-1)_{r}} F_{r}+F_{(n-1)_{r+1}} F_{r+1} \tag{4.1}\\
F_{2 n+1}=F_{n}^{2}+F_{n+1}^{2} .
\end{gather*}
$$

If $a(\bmod m) \equiv F_{z+1} \equiv b\left(\bmod m^{2}\right)$, then b is of the form $B m+a$, for some B. For example, $F_{5} \equiv O(\bmod 5)$, $3(\bmod 5) \equiv F_{6} \equiv 8\left(\bmod 5^{2}\right)$, and $8=1 \times 5+3$.
Using $F_{Z} \equiv O(\bmod m)$ and (4.1) and (4.2) we find

$$
F_{2 z+1} \equiv F_{z+1}^{2}\left(\bmod m^{2}\right) \equiv b^{2}\left(\bmod m^{2}\right)
$$

and

$$
F_{3 z+1} \equiv F_{2 z+1} F_{z+1}\left(\bmod m^{2}\right) \equiv b^{3}\left(\bmod m^{2}\right),
$$

which, by the use of (4.1), can be generalized to

$$
\begin{equation*}
F_{n z+1} \equiv b^{n} \quad\left(\bmod m^{2}\right) \tag{4.3}
\end{equation*}
$$

Furthermore, since $F_{Z}=A m$ for some A, then

$$
F_{z-1} \equiv b-A m \quad\left(\bmod m^{2}\right)
$$

and

$$
\begin{aligned}
F_{2 z} & =F_{z-1} F_{z}+F_{z} F_{z+1} \\
& \equiv(b-A m) A m+A m b\left(\bmod m^{2}\right) \\
& \equiv 2 b A m\left(\bmod m^{2}\right) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
F_{3 z} & =F_{2 z-1} F_{z}+F_{2 z} F_{z+1} \quad(\text { from }(4.1)) \\
& \equiv\left(b^{2}-2 b A m\right) A m+2 b A m \cdot b \quad\left(\bmod m^{2}\right) \\
& \equiv 3 b^{2} A m \quad\left(\bmod m^{2}\right)
\end{aligned}
$$

Similarly, $F_{4 z} \equiv 4 b^{3} A m \quad\left(\bmod m^{2}\right)$. Thus

$$
\begin{equation*}
F_{n z} \equiv n b^{n-1} A m \quad\left(\bmod m^{2}\right) \tag{4.4}
\end{equation*}
$$

When $F_{n z} \equiv 0$ the congruence $n b^{n-1} A \equiv 0(\bmod m)$ reduces to $n A \equiv 0(\bmod m)$, because, from (4.3) and (4.4), if b and m have any factor in common, so have $F_{n z}$ and $F_{n z+1}$, which is impossible as adjacent Fibonacci numbers are always co-prime. Thus, if we solve $n A \equiv 0(\bmod m)$ for n, then $Z=n z$ gives that F_{Z} which is zero (mod m^{2})

Let us apply these methods to find which Fibonacci numbers are divisible by convenient powers of 10 . Instead of working with $m=10$, we shall find the equations simpler if we write $10=m_{1} \cdot m_{2}$, where $m_{1}=2, m_{2}=5$, and $100=2^{2} .5^{2}, m_{7}=2, z=3, F_{3}=1.2$ and so $A=1$. The equation $n A \equiv 0(\bmod m)$ reduces to $n \equiv 0(\bmod 2)$, which gives $n=2$, so that $Z=2 z=6$. Similarly with $m_{2}=5, z=5$, and we find that $Z=5 z=25$.

If we take $m_{1}=4, z=6, F_{6}=2.4$ and so $A=2$. Thus $2 n \equiv 0(\bmod 4)$ which gives $n=2$ and $Z=2 z=12$. Similarly, with $m_{2}=25, z=25$ and $F_{25}=75025=3001.25$ which yields $A \equiv 1(\bmod 25)$. So $n=25$ and $Z=25 z=625$.

Relying on the known result that the period of divisibility by $m_{1} m_{2}\left(m_{1}, m_{2}\right.$ co-prime $)$ is given by $D\left(m_{1} m_{2}\right)=$ $\operatorname{LCM}\left(z_{1}, z_{2}\right)$ (see Wall [6]), we get the results:
$\operatorname{LCM}(3,5)=15$, and so F_{15} is the first Fibonacci number to be divisible by 10 . Icm $(6,25)=150$, and so F_{150} is divisible by $100 . \angle C M(12,625)=7,500$ and so F_{7500} is divisible by 10^{4}.
This has been an exercise in finding the z numbers. By an extension of the argument we can produce the corresponding k numbers-the period of recurrence of the Fibonacci numbers ($\bmod \mathrm{m}^{2}$).

REFERENCES

1. S.N. Collings, "Fibonacci Numbers," Mathematics Teaching, No. 52 (1970), p. 23.
2. D.E. Daykin and L.A.G. Dresel, "Factorization of Fibonacci Numbers," The Fibonacci Quarterly, Vol. 8, No. 1 (February 1970), pp, 23-30.
3. V.E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton-Mifflin, Boston, 1969, p. 59.
4. A.G. Marshall, "Fibonacci, Modulo n," Mathematics Teaching, No. 46 (1969), p. 29.
5. J. Vinson, "The Relation of the Period Modulo to the Rank of Apparition of m in the Fibonacci Sequence," The Fibonacci Quarterly, Vol. 1, No. 2 (April 1963), pp. 37-45.
6. D.D. Wall, "Fibonacci Series Modulo me" American Math. Monthly, Vol. 67 (1960), pp. 525-532.
7. 0. Wyler, "On Second-Order Recurrences," American Math. Monthly, Vol. 72 (1965), pp. 500-506.
[Continued from page 350.]

納

(5)

$$
F_{k}(x)=\sum_{i=0}^{[k / 2]}\left(-1 j^{i} e^{j} \frac{k}{k-j}\binom{k-j}{j} g_{k-2 j}\left((-1)^{j} x\right)\right.
$$

Write
(6)

$$
\left\{\begin{aligned}
h_{k}(x) & =\left(1-a_{k} x+(-1)^{k} x^{2}\right) g_{k}(x) \\
c_{k} & =[(r-s b) a]^{k}+[(s a-r) b]^{k}
\end{aligned}\right.
$$

Following Riordan [6], with $a_{0}=2$ and $n_{0}(x)=1-x$, we eventually derive
(7)

$$
\left\{\begin{array}{c}
c_{1}+s \sqrt{5} x=h_{1}(x) \\
c_{2}-x\left(2 e+5 s^{2}\right)=h_{2}(x)-2 e\left\{h_{0}(-x)-\left(a_{0}+a_{2}\right) x g_{0}(-x)\right\} \\
c_{3}+s \sqrt{5} x\left(3 e+5 s^{2}\right)=h_{3}(x)-3 e\left\{h_{1}(-x)-\left(a_{1}+a_{3}\right) x g_{7}(-x)\right\} \\
c_{4}-x\left(2 e^{2}+20 s^{2} e+25 s^{4}\right)=h_{4}(x)-4 e\left\{h_{2}(-x)-\left(a_{2}+a_{4}\right) x g_{2}(-x)\right\} \\
+2 e^{2}\left\{h_{0}(x)-\left(a_{4}-a_{0}\right) \times g_{0}(x)\right\} \\
c_{5}-e_{1}=h_{5}(x)-5 e\left\{h_{3}(-x)-\left(a_{3}+a_{5}\right) x g_{3}(-x)\right\}+5 e^{2}\left\{h_{1}(x)-\left(a_{5}-a_{1}\right) x g_{1}(x)\right\}
\end{array}\right.
$$

where

$$
e_{1}=2 r^{5}-5 r^{4} s+30 r^{2} s^{2}-40 r^{2} s^{3}+35 r s^{4}-10 s^{5}
$$

Substituting values of $a_{k}=a^{k}+b^{k}$, we have

$$
\begin{gather*}
h_{1}(x)=\sqrt{5}(r+s x) \\
h_{2}(x)=5\left(r^{2}-s^{2} x\right)-10 e^{3} g_{0}(-x) \\
h_{3}(x)=5 \sqrt{5}\left(r^{3}+s^{3} x\right)-15 e x g_{7}(-x) \tag{8}\\
h_{4}(x)=25\left(r^{4}-s^{4} x\right)-40 \operatorname{exg}_{2}(-x)+50 e^{2} x g_{0}(x) \\
h_{5}(x)=25 \sqrt{5}\left(r^{5}+s^{5} x\right)-75 \operatorname{exg}_{3}(-x)+125 e^{2} x g_{7}(x) .
\end{gather*}
$$

These functions lead back to (2).
[Continued on page 362.$]$

