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! S iTROiUCTlOi 

The first congruence in this paper arose in an effort to extend a result of CoSlings [1] and the second congruence 

is merely an elaboration of part of a theorem of Wall [5 ] . In the final section we look at some congruences modulo 

m2. 

Some of the symbols involved are: Dim), the period of divisibility modulo m (or rank of apparition of m or entry 

point of ml the smallest positive integer z. such that Fz = 0 (mod m) (see Daykin and Dresel [2]) ; C(m), the 

period of cycle modulo m, the smallest positive integer k: F^+n = Fn (mod m), n > 0; Tim), the smallest positive 

integer fi; F%+j == 7. (mod ml In fact, zfi = Ar. (See Wyler [6].) 

Ceilings' result was than when m is prime, c is even, 

(1.1) Fr + FVszz+r = 0 (mod m), 

where 

Fn = Pn~1 + Fn„2 (n>3), Fj = F2= 1 . 

We show that m can be composite if Fz+i = - / fmod ml 

2. LEIvlIViAS 

Lemma 2.1: (see Vinson [5].) 

For m>2, D(m) is odd implies that Tim) = 4; and Dim) is even implies that Tim) = f or 2. 

Proof: Simson's relation can be expressed as 

F2
ZH - FZ+2FZH-1)Z+2 

= l-Vz+2 since Fz = 0 fmod m), 

= / fmod m) if z = Dim) is even, 

= - / fmod m) if z = Dim) is odd. . 

When 

When 

F2
Z+1^1 (mudm), 

Tim) = 2 if Fz+1 ^ 1 

Tim) = 1 if Fz+1 = / 

F^+1 = -7 fmod m), 

Fz+1 = / fmod m) if 

fmod m), 

fmod m). 

m>2; 

so 
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Fz+1 ^ ±7 fmod m). 

z+1 ~ tz+1tz+1 

Fi+1 = [FZHJ2 - / ^mod m), 

Fz+1 = Fz+1FZ+1 = -Fz+1 fmod m); 

and 

T(m) = 4. 

Lemma 2.2: Fk^ = 7 /'mod m). 

Proof: Fk^ = Fk+1 - Fk = Fr- 0 fmod m) 

= 1 fmod m) . 

1 THEOREMS 

Theorem 3.1: If e^7 and Fjt2
f = - 7 fmod m), then 

Fr+F%siz+r - 0 (mod m) for ail r> 0. 

Proof: z = T(m) which takes only the values 7,2,4 (Lemma 2.1). But c # 7 (given). Therefore fi is even. 

Therefore, f ^ / exists and is unique. Moreover, 

^ f i z - r = ^ - / ^ r ^m°d m) (see Eq. (8) of [4]) 

= - / > fmod m) as FJ^2 / = - 7 

•'• Fr + FlMz+r = 0 (mod m). 

NOTE, (i) Conversely, if for c^7 we are given that 

Fr + FV29.z+r - # f m o d mh 

forall /; this congruence must hold for r= 1. 

:. 7 = f 7 E= -FiMz+1 fmod /7?>/ 

On the other hand, it is possible for 
Fr+FlMz+r 

to be congruent to zero for some particular r without Fz
2+i being congruent to - 7 . Thus, when m = 12, 

F12 = 144 = 0 fmod 72; and z = 12. 

Fz+1 = F13 = 233 = 5 fmod 7Z> 

:. fi = 2 

•'• f i * 7 = F13^ ~1 fmod 72; . 

Despite this, 
F3 + FlMz+3 = F3 + F15 = 2 + 610 = 612 ^ 0 /"mod 72J. 

(ii) When c = 7 the situation is very untidy. If z is odd, Fy^z+r does not exist. Even when z is even, 

we have trouble with Fz+<i. As £ = 7, Fz+1^1 (mod /wA Therefore 

f j i7 = v ^ 7 ̂  v7 = ±7 

(and possibly other values as well). —/ is always a possible value for Fz+1f but never the exclusive value. 

(iii) Although - 7 is always a possible value for Fz+i (Q = 1), it is not necessarily true that 

Fr+Fy2%z+r = 0 /'mod m) forall r>0. 

Thus, when m = 4, z = 6. 

;. Fz^. ; = 7 fmod /??,/, :. o. = 1. 

•'• F2 + F%z+2 = F2 + F5 =6^2 /'mod 4 ; . 
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Theorem 3.2: Fr + (-1)rFk„r == 0 frnod m). 

Proof: ~Fk = 0 = F0 and Fk^ = 1 = F1 (mod m), by Lemma 2.2 

~fk-2 = ~Fk + Fk-l = F0 + F1 = F2 (mod m). 

It follows by induction on k that 

<-ir1Fk_r = (-ir1Fk„r+2+(-DrFk„r+1 

= Fr-2 + Fr-1 ' m ° d ^ 

= /> (mod m), 

which gives the required result 

4. CONGRUENCES MODULO m2 

Here we use the results (see Hoggatt [3]) 

(4-1 > Fnr+1 = F(n-1)rFr + F(n-1)r+1Fr+l 

and 

(4.2) F2n+1 = Fn+Fn+1 . 

If a (mod m) = Fz+i=h (mod m), then b is of the form Bm+a, for some B. For example, F5 = 0 (mod 5), 

3 (mod 5) = F6 = 8 (mod 52), and 8 = 1 x 5 + 3. 

Using Fz^O fmod m) and (4.1) and (4.2) we find 

F2z+1 = l̂f-f-7 ' m ° d w2^ = b2 (mod m 2 ^ 

and 

F3z+1 = F2z+1FZ+1 (modw^J = b (modm ) , 

which, by the use of (4.1), can be generalized to 

(4.3) Fnz+1 = bn (mod m2). 

Furthermore, since Fz = Am for some A, then 

Fz_7 = b - Am /"mod m2) 

and 

F2z = Fz-1Fz + FzFz+1 

= (b -Am)Am+Amb fmod m2) 

= 2M/?i (mod /772/ 

Also, 

^ fe = F2Z-1FZ + F2ZFZ+1 (from (4.1)) 

= fa2 - 2bAm)Am+2bAm . A (mod /7?2j 

= 3&2/4/?7 /"mod /??2j . 

Similarly, F4 z = 4b3Am fmod /??2j. Thus 

(4.4) F „ z = nhn~1Am Anod /??2yL 

When Fnz = 0 the congruence nhn~1A=Q (modm) reduces to nA=0 (modm), because, from (4.3) and (4.4), 

if/? and m have any factor in common, so have Fnz and Fnz+i, which is impossible as adjacent Fibonacci num-

bers are always co-prime. Thus, if we solve nA=0 (modm) for n, then Z = A7z gives that Fz which is zero (mod 

m2l 
Let us apply these methods to find which Fibonacci numbers are divisible by convenient powers of 10. Instead of 

workina with m= 10, we shall find the equations simpler if we write 10 = mi>m2, where mi =2, m2 =5, and 

100=22>52 m1=2,z=3, F3=h2 and so A = 1. The equation nA^O (modm) reducesto n = 0 (mod 2}, 

which gives n = 2, so that Z = 2z=B. Similarly with m2 = 5, z = 5, and we find that Z=5z = 25. 

If we take m7 = 4, z = 6, F6 =2*4 and so A =2. Thus 2n =0 fmod 4) which gives n = 2 and Z=2z= 12. 

Similarly, with m2 = 25, z = 25 and F25= 75025 = 3001*25 which yields A = 1 (mod 251 So n * 25 

and Z = 25z = 625. 
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Relying on the known result that the period of divisibility by m^m2 (m],m2 co-prime) is given by D(m^m2) = 

LCMdf, z2) (see Wall [6]), we get the results: 

LCM (3,5) = 15, and so F^ is the first Fibonacci number to be divisible by 10. Icm (6,25) = 150, and so F-JQQ iS 

divisible by 100, LCM( 12,625) = 7,500 and so F7500 is divisible by 104. 

This has been an exercise in finding the z numbers. By an extension of the argument we can produce the corres-

ponding k numbers—the period of recurrence of the Fibonacci numbers (mod m2). 
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[Continued from page 350.] 

[k/2] 

(5) Fk(x) = £ (~f,J'eI T=J ( kJ! ) 9k-*(HM -
ho 

Write 

hk(x) = (1-akx + (-1)kx2)gk(x) 

ck = [(r-sh)a]k + [(sa~r)b]k . 

Following Riordan [6 ] , with ao = 2 and hpM= 1 -x, we eventually derive 

Cf+s^/5x = hf(x) 

I c2 - x(2e + 5s2) = h2(x) - 2e j h0(-x) - (a0 + a2)xg0(-x)) 

1 c3 + Ssj5 x(3e + 5s2) = h3(x) - 3e\h1(~x) - (a1 +a3)xg1(-x)\ 

(7) < C4-x(2e2 + 20s2e + 25s4) = h4(x) - 4ej h2(-x)- (a2 + a4)xg2(-x)} 

I +2e2\ ho(x) - (a4 - ao)xgo(x) | 

I c5-e1 = h5(x)-5e\h3(-x)-(a3 + a5)xg3(-x)^ +5e2^h1(x)~(a5-ai)xg1(x)j 

where 

e1 = 2r5~~5r4s + 30r2s2-40r2s3+35rs4~10s5 . 

Substituting values of ak = ak +bk, we have 

!

h7(x) = V 5 ( r + sx) 

h2(x) = 5(r2-s2x)~ 10exg0(-x) 

h3(x) - 5^/5 (r3 + s3x) - 15exg7(-x) 

h4(x) = 25(r4 - s4x) - 40exg2(-x) + 50e2xg0(x) 

h5(x) = 25^/5 (r5 + s5x)-~ 75exg3(-x) + 125e2xg / (x). 

These functions lead back to (2). 

(6) 

[Continued on page 362.] 


