The Fibonacci Quarterly 2002 (40,5): 446-452

GENERALIZED FIBONACCI SEQUENCES AND LINEAR CONGRUENCES

Giovanni Sburlati

Dipartimento di Fisica, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy e-mail: sburlati@athena.polito.it
(Submitted September 2000-Final Revision July 2001)

1. INTRODUCTION

There exists a very wide literature about the generalized Fibonacci sequences (see, e.g., [3], where interesting applications to number theory are also shown, and [2], where such sequences are treated as a particular case of a more general class of sequences of numbers). In this paper we start by defining some particular generalized Fibonacci sequences (denoted by $\left\{U_{n}(c-1,-c)\right\}_{n \in \mathbb{N}}$, $c \in \mathbb{N}$) and by studying their properties. In particular, we find interesting relations between a generic term $U_{n}(c-1,-c), n \in \mathbb{N}$, and $U_{n+1}(c-1,-c)$ and show a nice connection between the numbers $U_{n}(c-1,-c)$ and their expression in the c-ary enumeration system. After this, we give an estimate of the value of the logarithm of $U_{n}(c-1,-c)$ on the basis c.

Successively, we apply the properties of the sequences $\left\{U_{n}(c-1,-c)\right\}_{n \in \mathbb{N}}$ to the study of the number of solutions of linear equations in $\mathbb{Z}_{r}, r \in \mathbb{N}$.

Finally, we briefly show the principal characteristics of another class of generalized Fibonacci sequences, $\left\{U_{n}(c+1, c)\right\}_{n \in \mathbb{N}}, c \in \mathbb{N} \backslash\{1\}$.

2. GENERALIZED FIBONACCI SEQUENCES: THE SEQUENCES $\left\{U_{n}(c-1,-c)\right\}_{n \in \mathbb{N}}$

For each pair (h, k), $h, k \in \mathbb{C}$ of complex numbers such that $k\left(h^{2}-4 k\right) \neq 0$, we denote by $\left\{U_{n}(h, k)\right\}_{n \in \mathbb{N}}$ the generalized Fibonacci sequence defined as follows:

$$
\forall n \in \mathbb{N}, n \geq 2, U_{n}(h, k)=h U_{n-1}(h, k)-k U_{n-2}(h, k), U_{0}(h, k)=0, U_{1}(h, k)=1 .
$$

An explicit expression of the $n^{\text {th }}$ term of $\left\{U_{n}(h, k)\right\}_{n \in \mathbb{N}}$ for generic $n \in \mathbb{N} \cup\{0\}$ is given by the Binet formula

$$
U_{n}(h, k)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta},
$$

where

$$
\alpha=\frac{h+\sqrt{h^{2}-4 k}}{2} \text { and } \beta=\frac{h-\sqrt{h^{2}-4 k}}{2}
$$

are the distinct roots of the polynomial $x^{2}-h x+k \in \mathbb{C}[x]$, called the characteristic polynomial of the sequence. Moreover, for every integer $n \in \mathbb{N} \cup\{0\}$, we have

$$
\alpha \cdot \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}+\beta^{n}=\frac{\alpha^{n+1}-\alpha \beta^{n}+\alpha \beta^{n}-\beta^{n+1}}{\alpha-\beta}=\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta} .
$$

We then obtain

$$
\begin{equation*}
\forall n \in \mathbb{N} \cup\{0\}, \alpha \cdot U_{n}(h, k)+\beta^{n}=U_{n+1}(h, k) . \tag{1}
\end{equation*}
$$

As the role played by α and β in the Binet formulas is symmetric, the following equalities are also true:

$$
\begin{equation*}
\forall n \in \mathbb{N} \cup\{0\}, \beta \cdot U_{n}(h, k)+\alpha^{n}=U_{n+1}(h, k) . \tag{2}
\end{equation*}
$$

As a particular case, let us consider now the generalized Fibonacci sequences of the form $\left\{U_{n}(c-1,-c)\right\}_{n \in \mathbb{N}}, c$ being a positive integer; from the equalities $h=c-1$ and $k=-c$, we easily obtain $\alpha=c$ and $\beta=-1$. Then, for all $n \in \mathbb{N} \cup\{0\}$, from the Binet formula we have

$$
U_{n}(c-1,-c)=\frac{c^{n}-(-1)^{n}}{c+1},
$$

while equalities (1) and (2) show, respectively, that

$$
\begin{equation*}
\forall n \in \mathbb{N} \cup\{0\}, U_{n+1}(c-1,-c)=c U_{n}(c-1,-c)+(-1)^{n}, \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall n \in \mathbb{N} \cup\{0\}, U_{n}(c-1,-c)+U_{n+1}(c-1,-c)=c^{n} \tag{4}
\end{equation*}
$$

The first terms of some of such generalized Fibonacci sequences, corresponding to fixed values of c, are:

$$
\begin{aligned}
& \left\{U_{n}(0,-1)\right\}_{n \in \mathbb{N}}: 0,1,0,1,0,1,0,1,0,1,0,1, \ldots \\
& \left\{U_{n}(1,-2)\right\}_{n \in \mathbb{N}}: 0,1,1,3,5,11,21,43,85,171,341,683, \ldots \\
& \left\{U_{n}(2,-3)\right\}_{n \in \mathbb{N}}: 0,1,2,7,20,61,182,547,1640,4921, \ldots ; \\
& \left\{U_{n}(3,-4)\right\}_{n \in \mathbb{N}}: 0,1,3,13,51,205,819,3277,13107,52429, \ldots ; \\
& \left\{U_{n}(5,-6)\right\}_{n \in \mathbb{N}}: 0,1,5,31,185,1111,6665,39991,239945, \ldots
\end{aligned}
$$

3. $\left\{U_{n}(c-1,-c)\right\}_{n \in N}(c \geq 2)$ IN THE $c-A R Y$ ENUMERATION SYSTEM

Theorem: Let $c \geq 2$ be a fixed integer; then, for each fixed integer $m \geq 2$, the two following assertions are equivalent:
(a) $\exists n \in \mathbb{N}: m=U_{n}(c-1,-c)$;
(b) in the c-ary enumeration system, the expression of m is either of the form $(c-1) 0(c-1) \ldots 0(c-1)$ or of the form $(c-1) 0(c-1) \ldots 0(c-1) 1$.
Moreover, when for a given m the two assertions are satisfied, we have $m=U_{d+1}(c-1,-c)$, where t denotes the number of digits of m which appear when it is written in the c-ary enumeration system.

The theorem can be proven by noticing that, for every $n \in \mathbb{N} \cup\{0\}$, we have the recursion $U_{n+1}(c-1,-c)=c U_{n}(c-1,-c)+(-1)^{n}$. Hence, if (a) is satisfied, assertion (b) straightforwardly follows by induction from the first few terms:

$$
\begin{aligned}
U_{2}(c-1,-c) & =c \cdot 1-1=c-1 ; \\
U_{3}(c-1,-c) & =c \cdot(c-1)+1=10 \cdot(c-1)+1=(c-1) 0+1=(c-1) 1 ; \\
U_{4}(c-1,-c) & =c \cdot U_{3}(c-1,-c)-1=10 \cdot[(c-1)]-1=(c-1) 10-1 \\
& =(c-1) 0(c-1) ; \\
U_{5}(c-1,-c) & =c \cdot U_{4}(c-1,-c)+1=10 \cdot[(c-1) 0(c-1)]+1 \\
& =(c-1) 0(c-1) 0+1=(c-1) 0(c-1) 1 ;
\end{aligned}
$$

$$
\begin{aligned}
U_{6}(c-1,-c) & =c \cdot U_{5}(c-1,-c)-1=10 \cdot[(c-1) 0(c-1) 1]-1 \\
& =(c-1) 0(c-1) 10-1=(c-1) 0(c-1) 0(c-1)
\end{aligned}
$$

(For the sake of clarity, the convention was adopted of writing the c-ary expressions in boldface characters; the dot denotes multiplication.) Conversely, if (b) is satisfied, m is clearly seen to be a term of the sequence $\left\{U_{n}(c-1,-c)\right\}_{n \in \mathbb{N}}$ by applying a finite number of times the recursion $U_{n+1}(c-1,-c)=c U_{n}(c-1,-c)+(-1)^{n}$, and assertion (a) follows.

Moreover, it is clear that, for every $n \geq 2$, the number of digits of $U_{n+1}(c-1,-c)$ when it is written in the c-ary system is one unit larger than the number of digits of $U_{n}(c-1,-c)$ when it is expressed in the same system. Since in the c-ary system the number $U_{2}(c-1,-c)$ is expressed by the only digit $c-1$, the second part of the theorem follows by induction.

4. AN ESTIMATE OF $\log _{c}\left(U_{n}(c-1,-c)\right)(c \geq 2, n \geq 1)$

For any $c \geq 2$ and $n \geq 1$, we know that

$$
U_{n}(c-1,-c)=\frac{c^{n}-(-1)^{n}}{c+1}
$$

hence, we have $\log _{c}\left(U_{n}(c-1,-c)\right)=\log _{c}\left(c^{n}-(-1)^{n}\right)-\log _{c}(c+1)$, which is equal to

$$
\log _{c}\left[c^{n}\left(1-\frac{(-1)^{n}}{c^{n}}\right)\right]-\log _{c}\left[c\left(1+\frac{1}{c}\right)\right]=n-1+\log _{c}\left(1-\frac{(-1)^{n}}{c^{n}}\right)-\log _{c}\left(1+\frac{1}{c}\right)
$$

Now we suppose c fixed and consider $\log _{c}\left(U_{n}(c-1,-c)\right)$ as a function of n. Since

$$
\frac{\ln (1+y)}{y}=1+o(1) \text { as } y \rightarrow 0
$$

we have $\ln (1+y)=y+o(y)(y \rightarrow 0) ; \log _{c}(1+y)=\frac{y}{\ln c}+o(y)(y \rightarrow 0)$. Then, for $n \rightarrow+\infty$, we can write

$$
\log _{c}\left(1-\frac{(-1)^{n}}{c^{n}}\right)=\frac{(-1)^{n-1}}{c^{n} \ln c}+o\left(\frac{1}{c^{n}}\right)(n \rightarrow+\infty)
$$

On the other hand, for every positive real number x, the following inequalities hold: $0<\ln (1+x)$ $<x$; hence, we have $0<\log _{c}(1+x)<\frac{x}{\ln c}$. Taking $x=\frac{1}{c}$, we obtain

$$
0<\log _{c}\left(1+\frac{1}{c}\right)<\frac{1}{c \ln c}
$$

Then, from the above equalities we have, when setting $\gamma(c)=\log _{c}\left(1+\frac{1}{c}\right)$, the approximation of $\log _{c}\left(U_{n}(c-1,-c)\right)$ holding for n large,

$$
\begin{aligned}
\log _{c}\left(U_{n}(c-1,-c)\right) & =n-1+\log _{c}\left(1-\frac{(-1)^{n}}{c^{n}}\right)-\log _{c}\left(1+\frac{1}{c}\right) \\
& =n-1-\gamma(c)+\frac{(-1)^{n-1}}{c^{n} \ln c}+o\left(\frac{1}{c^{n}}\right)(n \rightarrow+\infty)
\end{aligned}
$$

where $0<\gamma(c)<\frac{1}{c \ln c}$.

5. LINEAR EQUATIONS $\mathbb{N} \mathbb{Z}$. AND THCHR ReLATION WITH THE SEQUENCES $\left\{U_{n}(c-1,-c)\right\}_{n \in \mathbb{N}}$

We consider the problem of finding the elements $\left(x_{1} ; x_{2} ; \ldots ; x_{k}\right) \in\left(\mathbb{Z}_{r}\right)^{k}$ which satisfy the congruence equation

$$
\begin{equation*}
\sum_{j=1}^{k} x_{j} \equiv a(\bmod r) \tag{5}
\end{equation*}
$$

and the constraining equalities

$$
\begin{equation*}
\operatorname{gcd}\left(x_{j}, r\right)=d_{j} ; j=1,2, \ldots, k \tag{6}
\end{equation*}
$$

where r and k are fixed positive integers, r is odd, $a \in \mathbb{Z}$, and $d_{1}, d_{2}, \ldots, d_{k}$ are k divisors (not necessarily distinct) of r. Let us pose, for each prime divisor p of $r, b_{p}=\#\left(\left\{j, 1 \leq j \leq k: p \nmid d_{j}\right\}\right)$, and let us assume that, for each $p, b_{p} \geq 2$.

Starting from formulas which give the total number N_{a} of solutions of the above problem (see [1], eq. (3.37), and [4], ex. 3.8, p. 138), replacing in such formulas Ramanujan sums by their expressions as given by Hölder's equalities, i.e.,

$$
\forall m, n \in \mathbb{N}, c(m ; n)=\sum_{\substack{j=1 \\ \operatorname{gcd} j(i n)=1}}^{n}\left(e^{2 \pi i / n}\right)^{j m}=\frac{\varphi(n)}{\varphi(n / \operatorname{gcd}(n, m))} \cdot \mu(n / \operatorname{gcd}(n, m)),
$$

φ and μ being, respectively, Euler's and Möbius' functions (see [5]), and then using basic properties of φ and μ and applying (in reverse order) the distributive property of the product with respect to the sum, gives rise to the following equality:

$$
\begin{equation*}
N_{a}=\frac{\varphi\left(r / d_{1}\right) \varphi\left(r / d_{2}\right) \ldots \varphi\left(r / d_{k}\right)}{r} \cdot P_{a} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{a}=\prod_{p|r, p| a}\left[1-\frac{(-1)^{b_{p}}}{(p-1)^{b_{p}}}\right] \cdot \prod_{p|r, p| a}\left[1-\frac{(-1)^{b_{p}-1}}{(p-1)^{b_{p}-1}}\right] . \tag{8}
\end{equation*}
$$

The latter formula can be found in [5] for the special case $d_{1}=d_{2}=\cdots=d_{k}=1$ only. Compare equalities (7) and (8) also with [6].

Now we want to rewrite equality (8) in terms of the generalized Fibonacci sequences that we treated in the previous sections. First, we observe that, for each prime divisor p of r, by applying the Binet formula to the terms of $\left\{U_{n}(c-1,-c)\right\}_{n \in \mathbb{N}}$ in the case in which $c=p-1$, we have, for each nonnegative integer n,

$$
U_{n}(p-2,1-p)=\frac{(p-1)^{n}-(-1)^{n}}{p}
$$

i.e., $p U_{n}(p-2,1-p)=(p-1)^{n}-(-1)^{n}$. Hence, from (8), we obtain

$$
\begin{aligned}
P_{a} & =\prod_{p \mid r, p p a}\left[\frac{(p-1)^{b_{p}}-(-1)^{b_{p}}}{(p-1)^{b_{p}}}\right] \cdot \prod_{p|r, p| a}\left[\frac{(p-1)^{b_{p}-1}-(-1)^{b_{p}-1}}{(p-1)^{b_{p}-1}}\right] \\
& =\prod_{p \mid r, p p^{\prime}}\left[\frac{p \cdot U_{b_{p}}(p-2,1-p)}{(p-1)^{b_{p}}}\right] \cdot \prod_{p|r, p| a}\left[\frac{p \cdot U_{b_{p}-1}(p-2,1-p)}{(p-1)^{b_{p}-1}}\right]
\end{aligned}
$$

$$
\begin{equation*}
=\prod_{p \mid r}\left[\frac{p}{(p-1)^{b_{p}-1}}\right] \cdot \prod_{p \mid r, p \nmid a}\left[\frac{U_{b_{p}}(p-2,1-p)}{p-1}\right] \cdot \prod_{p|r, p| a} U_{b_{p}-1}(p-2,1-p) . \tag{9}
\end{equation*}
$$

Now let us fix a prime divisor q of r and let u be a residue class in \mathbb{Z}_{r} such that $q \| u$. We want to calculate the ratio of $P_{q u}$ to P_{u}. From expression (9) of P_{a} for generic a, comparing the case in which $a=q u$ with the case in which $a=u$, we immediately obtain

$$
\begin{equation*}
\frac{P_{q u}}{P_{u}}=\frac{U_{b_{q}-1}(q-2,1-q)}{U_{b_{q}}(q-2,1-q) /(q-1)}=\frac{(q-1) U_{b_{q}-1}(q-2,1-q)}{U_{b_{q}}(q-2,1-q)} . \tag{10}
\end{equation*}
$$

Moreover, from (3), taking $c=q-1$ and $n=b_{q}-1$, we obtain

$$
U_{b_{q}}(q-2,1-q)=(q-1) U_{b_{q}-1}(q-2,1-q)+(-1)^{b_{q}-1}
$$

i.e., $(q-1) U_{b_{q}-1}(q-2,1-q)=U_{b_{q}}(q-2,1-q)+(-1)^{b_{q}}$, and hence

$$
\begin{equation*}
\frac{P_{q u}}{P_{u}}=\frac{U_{b_{q}}(q-2,1-q)+(-1)^{b_{q}}}{U_{b_{q}}(q-2,1-q)}=1+\frac{(-1)^{b_{q}}}{U_{b_{q}}(q-2,1-q)} . \tag{11}
\end{equation*}
$$

Equations (11) show that the ratio $P_{q u} / P_{u}$ depends on q, but is independent of u. They also show that, when b_{q} is even, then $P_{q u}>P_{u}$, while when b_{q} is odd, then $P_{q u}<P_{u}$. This means that a sum having an even number of addenda which are not multiples of q tends to favor as possible results the multiples of q, while a sum having an odd number of addenda which are not multiples of q tends to favor the numbers which are not multiples of q. Moreover, since r is odd (which implies $q \geq 3$) and for $c \geq 2$ the integer $U_{n}(c-1,-c)$ tends to infinity as $n \rightarrow+\infty$, equations (11) show that the greater b_{q}, the nearer one to another are the values of $P_{q u}$ and P_{u}. This means that if in a sum there are many addenda which are not multiples of q, then the sum tends to favor significantly neither the multiples of q nor the integers which are not multiples of q. More generally, in view of (7) and (8), the distribution in \mathbb{Z}_{r} of the values of the expression $\sum_{j=1}^{k} x_{j}$ as $x_{1}, x_{2}, \ldots, x_{k}$ vary in \mathbb{Z}_{r}^{*}, tends to be a uniform distribution as k tends to infinity (because P_{a} tends to 1 and N_{a} becomes independent of a).

Furthermore, if $q^{2} \mid r$, then for each residue class a in \mathbb{Z}_{r} which is a multiple of q, there exist exactly $q-1$ classes u in \mathbb{Z}_{r} not multiples of q such that $a \equiv q u(\bmod r)$. In this case, from equations (10), dividing $P_{q u} / P_{u}$ by $q-1$, we obtain the number

$$
\begin{equation*}
\frac{U_{b_{q}-1}(q-2,1-q)}{U_{b_{q}}(q-2,1-q)}, \tag{12}
\end{equation*}
$$

which, being independent of a, can be considered as the ratio of the number of the strings (x_{1}; $x_{2} ; \ldots ; x_{k}$) such that $q \mid \sum_{j=1}^{k} x_{j}$ to the number of the strings $\left(x_{1} ; x_{2} ; \ldots ; x_{k}\right)$ such that $q \mid \sum_{j=1}^{k} x_{j}$.

We now give an example of what was discussed in this section. Let the following problem be assigned:

$$
\sum_{j=1}^{7} x_{j} \equiv a(\bmod 3), \operatorname{gcd}\left(x_{j}, 3\right)=1 \text { for } j=1,2, \ldots, 7
$$

We want to calculate the ratio N_{0} / N_{1}.

By taking $q=3$ and $u=1$, we have $b_{q}=7$ and then, by (11), we can write

$$
\frac{N_{0}}{N_{1}}=\frac{N_{3}}{N_{1}}=\frac{P_{3}}{P_{1}}=1+\frac{(-1)^{7}}{U_{7}(1,-2)}=1-\frac{1}{43}=\frac{42}{43} .
$$

To obtain the ratio of the number of strings $\left(x_{1} ; x_{2} ; \ldots ; x_{7}\right) \in\left(\mathbb{Z}_{3}^{*}\right)^{7}$ such that $3 \mid \Sigma_{j=1}^{7} x_{j}$ to the number of strings $\left(x_{1} ; x_{2} ; \ldots ; x_{7}\right) \in\left(\mathbb{Z}_{3}^{*}\right)^{7}$ such that $3\left\{\sum_{j=1}^{7} x_{j}\right.$, we use expression (12) and find that this ratio is equal to $\frac{U_{6}(1,-2)}{U_{7}(1,-2)}$, i.e., to $\frac{21}{43}$.

6. THE SEQUENCES $\left\{U_{n}(c+1, c)\right\}_{n \in \mathbb{N}}$

Another interesting class of generalized Fibonacci sequences is the set $\left\{U_{n}(c+1, c)\right\}_{n \in \mathbb{N}}$, i.e., of the sequences whose characteristic polynomial has c and 1 as roots, c being a positive integer not equal to 1 .

For all $n \in \mathbb{N} \cup\{0\}$, we have the Binet formulas

$$
U_{n}(c+1, c)=\frac{c^{n}-1}{c-1} ; \text { then } \forall n \in \mathbb{N}, U_{n}(c+1, c)=c^{n-1}+c^{n-2}+\cdots+c+1 .
$$

Some examples of such sequences are:

$$
\begin{aligned}
& \left\{U_{n}(3,2)\right\}_{n \in \mathbb{N}}: 0,1,3,7,15,31,63,127, \ldots ; \\
& \left\{U_{n}(4,3)\right\}_{n \in \mathbb{N}}: 0,1,4,13,40,121,364,1093, \ldots \\
& \left\{U_{n}(5,4)\right\}_{n \in \mathbb{N}}: 0,1,5,21,85,341,1365,5461, \ldots ; \\
& \left\{U_{n}(6,5)\right\}_{n \in \mathbb{N}}: 0,1,6,31,156,781,3906,19531, \ldots
\end{aligned}
$$

From equalities (1) and (2) we have, respectively,

$$
\forall n \in \mathbb{N} \cup\{0\}, U_{n+1}(c+1, c)=c U_{n}(c+1, c)+1
$$

and

$$
\forall n \in \mathbb{N} \cup\{0\}, U_{n+1}(c+1, c)=U_{n}(c+1, c)+c^{n}
$$

For a fixed c, it is clear that the terms of $\left\{U_{n}(c+1, c)\right\}_{n \in \mathbb{N}}$, if we exclude the first term 0 , are exactly the integers which in the c-ary system are written in the form $11 \ldots 1$. Moreover, for each $n \in \mathbb{N}$, the number of digits " 1 " that appear in the expression of $U_{n}(c+1, c)$ in the c-ary system is n.

For any $c \geq 2$ and $n \geq 1$, we have $\log _{c}\left(U_{n}(c+1, c)\right)=\log _{c}\left(c^{n}-1\right)-\log _{c}(c-1)$, which is equal to

$$
n-1+\log _{c}\left(1-\frac{1}{c^{n}}\right)-\log _{c}\left(1-\frac{1}{c}\right) .
$$

Since $\log _{c}(1+y)=\frac{y}{\ln c}+o(y)(y \rightarrow 0)$,

$$
\log _{c}\left(1-\frac{1}{c^{n}}\right)=-\frac{1}{c^{n} \ln c}+o\left(\frac{1}{c^{n}}\right)(n \rightarrow+\infty) .
$$

Further,

$$
-\frac{1}{c-1}<\ln \left(1-\frac{1}{c}\right)<0 .
$$

Therefore, we deduce

$$
-\frac{1}{(c-1) \ln c}<\log _{c}\left(1-\frac{1}{c}\right)<0
$$

Now we can write, setting

$$
\delta(c)=\left|\log _{c}\left(1-\frac{1}{c}\right)\right|=\log _{c}\left(1+\frac{1}{c-1}\right)
$$

the approximation to $\log _{c}\left(U_{n}(c+1, c)\right)$ holding for large n,

$$
\begin{aligned}
\log _{c}\left(U_{n}(c+1, c)\right) & =n-1+\log _{c}\left(1-\frac{1}{c^{n}}\right)-\log _{c}\left(1-\frac{1}{c}\right) \\
& =n-1+\delta(c)-\frac{1}{c^{n} \ln c}+o\left(\frac{1}{c^{n}}\right)(n \rightarrow+\infty),
\end{aligned}
$$

where $0<\delta(c)<\frac{1}{(c-1) \ln c}$.

REWERENCES

1. U. Cerruti \& F. Vaccarino. "From Cyclotomic Extensions to Generalized Ramanujan Sums through the Winograd Transform." University of Turin (Italy), Mathematics Department, Preprint, 1991.
2. A. F. Horadam. "Basic Properties of a Certain Generalized Sequence of Numbers." The Fibonacci Quarterly 3.3 (1965):161-76.
3. E. Lucas. "Théorie des fonctions numeriques simplement periodiques." Amer. J. Math. 1 (1878):184-240, 289-321.
4. P. J. McCarthy. Introduction to Arithmetical Functions. New York: Springer-Verlag, 1986.
5. R. Sivaramakrishnan. Classical Theory of Arithmetic Functions. Marcel Dekker, 1989.
6. D. Ugrin-Šparac. "On a Class of Enumeration Problems in Additive Arithmetics." J. Number Theory 45 (1993):117-28.
AMS Classification Numbers: 11B39, 11A07
