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1. INTRODUCTION

There exists a very wide literature about the generalized Fibonacci sequences (see, e.g., [3],
where interesting applications to number theory are also shown, and [2], where such sequences
are treated as a particular case of a more general class of sequences of numbers). In this paper we
start by defining some particular generalized Fibonacci sequences (denoted by {U,(c—1, —¢)},en»
c €N} and by studying their properties. In particular, we find interesting relations between a
generic term U,(c—1,~¢), neN, and U, (c-1,—c) and show a nice connection between the
numbers U, (c—1, —¢) and their expression in the c-ary enumeration system. After this, we give
an estimate of the value of the logarithm of U, (c—1, — ¢) on the basis c.

Successively, we apply the properties of the sequences {U,(c~1, —c)},cn to the study of the
number of solutions of linear equations in Z,, r e N.

Finally, we briefly show the principal characteristics of another class of generalized Fibonacci
sequences, {U, (c+1,¢)},en, € €N{1}.

2. GENERALIZED FIBONACCI SEQUENCES: THE SEQUENCES {U, (c—-1,-¢)},n

For each pair (4, k), h,k € C of complex numbers such that k(h* —4k) =0, we denote by
{U,(h, k)},cn the generalized Fibonacci sequence defined as follows:

VneN, n>2, Uh,k)=hU, (b k)— kU, ,(h k), Uy(h, k) =0, U,(h, k) = 1

An explicit expression of the n'™ term of {U,(h, k)},. for generic n eN U {0} is given by
the Binet formula

U (h k)= “a—:ﬁ-

ﬂ’
where
2 _ 7
a=h+VI12 4k and ﬁ:h hé 4k

are the distinct roots of the polynomial x* —hx +k € C[x], called the characteristic polynomial of
the sequence. Moreover, for every integer n € N U {0}, we have

. an_ﬁn +ﬂ" _ a"“—aﬂ"+aﬂ"—ﬂ”+l _ an+l_ﬂn+l

a-p a-p a-p

a

We then obtain
vnEN U{O}’ a'Un(h) k)+ﬁn:Un+l(h) k) (1)
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As the role played by & and f in the Binet formulas is symmetric, the following equalities are
also true:
vrneN {0}, g-Uhk)y+a”=U, (hk). 2)
As a particular case, let us consider now the generalized Fibonacci sequences of the form
{Un(c—1,-¢)},en, ¢ being a positive integer; from the equalities A=c~—1 and k = —c, we easily
obtain & = ¢ and f=—1. Then, for all n €N U {0}, from the Binet formula we have
cn — (_l)n

Ulemb=a="7

while equalities (1) and (2) show, respectively, that

YneNU{0}, U, (c-1,-c)=cU,(c-1,-c)+(-1), 3)

and
VrneN {0}, Uflc-1,-0)+U, (c-1,-c)=C". 4)
The first terms of some of such generalized Fibonacci sequences, corresponding to fixed values of

¢, are:
{U,0,-D},n:0,1,0,1,0,1,0,1,0,1,0,1...;
{U,(,-2)},.5:0. 113 511,21, 43,85, 171,341,683, ..
U2, -3)},:0,1,2,7,20, 61,182, 547,1640,4921, ...;
{U,(3,-4)},.n:0,1,3,13,51,205,819, 3277, 13107, 52429, ...;

{U,(5,-6)},n:0,1,5 31,185, 1111, 6665, 39991, 239945, ...

3. {U,(c—1,-¢c)},n (¢>2) IN THE c-ARY ENUMERATION SYSTEM

Theorem: Let ¢>2 be a fixed integer; then, for each fixed integer m > 2, the two following
assertions are equivalent:
(@ ImeN:m=U,~-1,~c);
(b) in the c-ary enumeration system, the expression of m is either of the form
(c-1)0(c-1)...0(c- 1) or of the form (c-1)0(c~1)...0(c - DL.
Moreover, when for a given m the two assertions are satisfied, we have m = U, afe—1,-¢), where
¢ denotes the number of digits of m which appear when it is written in the c-ary enumeration
system.
The theorem can be proven by noticing that, for every n €N U {0}, we have the recursion
U, e~ —c)=cU,(c-1,—c)+(-1)". Hence, if (a) is satisfied, assertion (b) straightforwardly
follows by induction from the first few terms:
Uye-1,-¢)=c-1-1=¢~1
Ufe-L-c)=c-{c-D+1=10-(c-D+1={c-DO0+1=(c- 1,
Ufe-1,-c)=cUyc-L~-¢c)~-1=10-[(¢-DI]-1=(¢-1)10-1
=(e-Do(c-1);
Use~L-0)=c-Uc~-1,-c)+1=10-[(c - DO(c-)]+1
={e—DMc-D0+1=(c-D0(c-DL;
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Ufc-1,-¢)=c-Usc-1,-¢c)-1=10-[(c-1)0(c-D1]- 1
= (e~ 1)0(c-D10-1= (- 1)0(c—1)0(c—1).
(For the sake of clarity, the convention was adopted of writing the c-ary expressions in boldface
characters; the dot denotes multiplication.) Conversely, if (b) is satisfied, m is clearly seen to be
a term of the sequence {U,(c—1,—-¢)},.n by applying a finite number of times the recursion
U,(c—1,-c)=cU,(c~1,—c)+(-1)", and assertion (a) follows.

Moreover, it is clear that, for every n>2, the number of digits of U,,,(c—1,—¢) when it is
written in the c-ary system is one unit larger than the number of digits of U, (c—1, —¢) when it is
expressed in the same system. Since in the c-ary system the number U,(c -1, —¢) is expressed by
the only digit ¢~ 1, the second part of the theorem follows by induction.

4. AN ESTIMATE OF log (U (c—1,—-¢)) (c22,n21)

Forany cz2 and n>1, we know that

Uye-1,-9= Z=C,

hence, we have log (U,(c-1, -¢)) =log,(c" — (-1)") —log,(c + 1), which is equal to

log, [c" (l - (;‘yi)} —log, [c(l + %)] =n-1+log, (1 - (;?n ) —log, (1 + %) .

Now we suppose ¢ fixed and consider log (U, (c -1, —¢)) as a function of n. Since

In(l+y)
Y

=1+0(l) as y >0,

we have In(1+y) = y+o(y) (y = 0); log,(1+y) == +0(y) (¥ — 0). Then, for n— +o, we can

write
10gc(1_._.__cn )_———-cn i +o(—-cn) (n — +o0).

On the other hand, for every positive real number x, the following inequalities hold: 0 <In(1+x)
< x; hence, we have 0 <log (1+x) <& . Taking x =, we obtain

1
cinc’

O<logc(l+—i-) <

Then, from the above equalities we have, when setting y(c) = log, (1+1), the approximation of
log,(U,(c—1, —c)) holding for n large,

log (U,(c-1,-c))=n-1+log, (1 - (—_—91) ~log, (1 + %)
c

:n-l—y(c)+%%:—l¥+o(§;) (72 — +00),

where 0 < y(c) <.
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5. LINEAR EQUATIONS IN Z, AND THEIR RELATION WITH
THE SEQUENCES {U,(c—1, —¢)},

We consider the problem of finding the elements (x;; x,;...; x,) € (Z)* which satisfy the
congruence eqguation

k
Z x;=a (modr), (5)
Jj=1
and the constraining equalities
ged(xj7r>:dj; 1:1727"'5‘;55 (6)

where r and k are fixed positive integers, r is odd, a € Z,, and d,, d,, ..., d, are k divisors (not
necessarily distinct) of . Let us pose, for each prime divisor p of 7, b, = #({j,1< j< k: pfd}}),
and let us assume that, for eachp, b, > 2.

Starting from formulas which give the total number N, of solutions of the above problem
(see [1], eq. (3.37), and [4], ex. 3.8, p. 138), replacing in such formulas Ramanujan sums by their
expressions as given by Holder's equalities, i.e.,

Vm,n eN, e n) = ) grimym 90 n/ ged(n, m)),
ged(j, m)=1

o and u being, respectively, Euler's and Mébius' functions (see [S]), and then using basic proper-
ties of ¢ and u and applying (in reverse order) the distributive property of the product with
respect to the sum, gives rise to the following equality:

N, = w(r/dl)«;o(r/;!ﬁ L p(r /dk)afz, )
where
-1 bp -1 bp—l
P = H [1_i_Lji. H [1__&_2____ . (8)
plr, pla (p-1)' pir, pla (p-1~7
The latter formula can be found in [5] for the special case ¢, =d, =.--=d, =1 only. Compare

equalities (7) and (8) also with [6]. .

Now we want to rewrite equality {8) in terms of the generalized Fibonacci sequences that we
treated in the previous sections. First, we observe that, for each prime divisor p of r, by applying
the Binet formula to the terms of {U (c~1, —¢)},en it the case in which ¢ = p~1, we have, for
each nonnegative integer n,

7 —'Em-" '_171
U,p-2,1-py=2"2L ) }ﬁ( ),

ie, pU(p-2,1-p)=(p-1)"-{-1)". Hence, from (8}, we obtain
_ o @ —H}”P] [{p%)bﬂ_(wz}"‘ﬂ}
=1 == :
I { @=0"  Lorml  @-D""
p-U, (=2,1-p) p-U, (p-2,1-p)

) p&gxa[ (p- 1) } Plﬁlj -n"" }
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U -2,1-
:H[L} ‘H [M} T Uy, +(p-2.1-p). ©)
14

5,1
pir (p-1~ r,pla p-1 plr, pla

Now let us fix a prime divisor g of r and let # be a residue class in Z, such that gju. We
want to calculate the ratio of F,, to F,. From expression (9) of F, for generic a, comparing the
case in which a = gu with the case in which a = u, we immediately obtain

P, U g-21-q9) (-1, (9-2,1-9)

Zan _ = 10
B U219/ Upa-21-9 0
Moreover, from (3), taking ¢ =g —1 and n =5, —1, we obtain
Uy, (4-2,1-9) = (@- DU, 1(@-2,1-@)+(-D"",
ie. (¢-DU,, (g -2.1-9) = U, (g -2,1-)+ (-1, and hence
P U (g-2,1-q)+(-D e
FTou _ bq(q H+(-D -1 (-1 an

L Up,(9-2,1-9) +qu(q—2,1—q)'
Equations (11) show that the ratio F, / F, depends on g, but is independent of #. They also show
that, when b, is even, then F, > F,, while when &, is odd, then F,, <F,. This means that a sum
having an even number of addenda which are not multipies of g tends to favor as possible results
the multiples of ¢, while a sum having an odd number of addenda which are not multiples of ¢
tends to favor the numbers which are not multiples of ¢. Moreover, since  is odd (which implies
q=3) and for ¢>2 the integer U,(c—1,—¢) tends to infinity as »—> 400, equations (11) show
that the greater ,, the nearer one to another are the values of F,, and F,. This means that ifina
sum there are many addenda which are not multiples of g, then the sum tends to favor significantly
neither the multiples of ¢ nor the integers which are not multiples of g. More generally, in view of
(7) and (8), the distribution in Z, of the values of the expression Z’;=1 X; 88 Xp, Xp,..., X, vary in
Z;, tends to be a uniform distribution as k tends to infinity (because P, tends to 1 and N,
becomes independent of a).

Furthermore, if ¢?|r, then for each residue class a in Z, which is a multiple of ¢, there exist
exactly g —1 classes # in Z, not multiples of ¢ such that a = gu (mod r). In this case, from equa-
tions (10), dividing F,, / F, by g -1, we obtain the number

Uy, -1(g-2,1-9)
Uy (g-2,1-9)°

which, being independent of a, can be considered as the ratio of the number of the strings (x;;
Xy;...; %) such that ¢| £, x; to the number of the strings (x;; xy; ...; ;) such that g} X% _; x,.

(12)

We now give an example of what was discussed in this section. Let the following problem be
assigned:
2 x;=a (mod3), ged(x;,3)=1forj=12,.,7.

j=1

We want to calculate the ratio N/ N,.
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By taking ¢ =3 and » =1, we have , =7 and then, by (11), we can write

No Mo B_ . N 1 _#&
N N B UG-2) @B 4

To obtain the ratio of the number of strings (x;; x,; ...; %;) € (Z3)7 such that 3|37

number of strings (x;; X,;...; %) € (Z‘“b7 such that 3/

this ratio is equal to 3“& i;, ie,toZl

j=1%; to the

=1%;, We use expression (12) and find that

6. THE SEQUENCES {U (c+ L)}, en

Another interesting class of generalized Fibonacci sequences is the set {U (c+1, ¢)},en, 1€,
of the sequences whose characteristic polynomial has ¢ and 1 as roots, ¢ being a positive integer
not equal to 1.

For all n eN U {0}, we have the Binet formulas

=" 4" e+

Uf(c+l,c)= (’; _11,

Some examples of such sequences are:
{U.(3,2)},en:0,13,7,1531,63,127,..;
{U,(4,3)},en:0,1,4,13,40,121,364,1093, ...;
{U,(5,9},en:0,1,5,21, 85 341, 1365, 5461, ..,
{U,(6,5},en:0,1,6,31,156, 781, 3906,19531, ...

From equalities (1) and (2) we have, respectively,

VreNu {0}, U, (c+Lo)=cU (c+],c)+1

and
VneNuU {0}, U, (c+Lc)=U,(c+1lc)+c".

For a fixed c, it is clear that the terms of {U, (c+1, ¢)},en, if we exclude the first term 0, are
exactly the integers which in the c-ary system are written in the form 11...1. Moreover, for each
n €N, the number of digits "1" that appear in the expression of U,(c+1,c) ip the c-ary system is

n.
For any ¢>2 and n>1, we have log,(U,(c+1, ¢)) =log,(c" - 1) - log,(c—1), which is equal

n-1+log, (1—5) logc(l—l).

Since log,(1+y) = &= +0(y) (y = 0),
1y 1 1
kogc(l—cﬂ)— c”lmcﬂ)(c‘“) (n— -+o0).

——g—dn(l—i) < 0.
c—1 c

to

Further,

Therefore, we deduce
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1 1
@-Dinc <logc(l c) <0.

A 1
logc(l c) —logc(l+c_1),

the approximation to log, (U,(c +1, ¢)) holding for large n,

Now we can write, setting

s(c)=

c

log, (U,(c+1,¢))=n—1+log, (l _c”i) ~log, (1 - 1)

c"Inc leld

=n-1+6(c) - 1 +0(~1—) (n— +0),

where 0 < 5(c) < m
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