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Abstract

An 1876 theorem of Hermite, later extended by Bachmann, gives congruences mod-

ulo primes for lacunary sums over the rows of Pascal’s triangle. This paper gives an

analogous result for alternating sums over a certain class of rows. The proof makes use

of properties of certain linear recurrences.

1 Introduction

Given the importance of binomial coefficients and combinatorial sums in many areas of
mathematics, it is not surprising that divisibility properties and congruences of these com-
binatorial objects have been extensively studied. For instance, numerous older results can
be found in Dickson’s History [2, Ch. IX], while a more modern treatment of the subject is
given by Granville [4]. One such result is the following congruence due to Hermite [6] and,
in the general case, Bachmann [1, p. 46].

Theorem 1 (Hermite and Bachmann). Let p be a prime and k a positive integer. Then

∑

0<j(p−1)<k

(

k

j(p − 1)

)

≡ 0 (mod p). (1)

Bachmann [1, p. 53] and before him Hermite [6] used this congruence to derive recurrence
relations for the integer parts of Bernoulli numbers.
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It is the purpose of this paper to derive an alternating sum analog to a special case of
(1). This also has consequences in the theory of Bernoulli numbers and polynomials. In
fact, a congruence for the alternating sum in the special case where k is a multiple of p− 1,
given below as Corollary 1, is instrumental in a forthcoming study of possible multiple zeros
of Bernoulli polynomials [3].

While the congruence (1) is not difficult to prove, the following main result of this paper
requires considerably more effort.

Theorem 2. Let p be an odd prime and q a positive integer. Then

⌊q/2⌋
∑

j=0

(

q(p − 1)

2j(p − 1)

)

≡











1 (mod p), if q odd;

2 (mod p), if q even, p + 1 ∤ q;
3
2

(mod p), if p + 1 | q.

(2)

In order to derive the desired congruence for an alternating sum, we first note that from
(1) with k = q(p − 1) we immediately get

q
∑

j=0

(

q(p − 1)

j(p − 1)

)

≡ 2 (mod p). (3)

Then we use the obvious identity

q
∑

j=0

(−1)j

(

q(p − 1)

j(p − 1)

)

= −

q
∑

j=0

(

q(p − 1)

j(p − 1)

)

+ 2

⌊ q

2
⌋

∑

j=0

(

q(p − 1)

2j(p − 1)

)

,

and (2) and (3) immediately give the following

Corollary 3. Let p be an odd prime and q a positive integer. Then

q
∑

j=0

(−1)j

(

q(p − 1)

j(p − 1)

)

≡











0 (mod p), if q odd;

2 (mod p), if q even, p + 1 ∤ q;

1 (mod p), if p + 1 | q.

(4)

When q is odd, it follows by symmetry that this alternating sum vanishes; this also
implies the first case in (2); the case where q is even is more difficult. The congruences (1),
(2), and (4) have obvious interpretations in terms of lacunary sums of elements in certain
rows of Pascal’s triangle.

In order to prove Theorem 2, we first derive a number of lemmas in Section 2, followed
by the proof of the theorem in Section 3.

2 Auxiliary Results

We begin by stating the following classical divisibility and congruence results for binomial
coefficients; see also [4].
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Lemma 4. (a) (Kummer [8]) The exact power of the prime p which divides
(

n
m

)

is given by

the number of “carries” when m and n − m are added in base p.

(b) (Lucas [9]) For all primes p and nonnegative integers n, k, a, b with 0 ≤ a, b < p we

have
(

np + a

kp + b

)

≡

(

n

k

)(

a

b

)

(mod p). (5)

With these results we prove the following

Lemma 5. Let p be an odd prime and q, j integers with 2 ≤ q ≤ 2p and 1 ≤ j ≤ q − 1.
Then

(

q(p − 1)

j(p − 1)

)

≡

{

0 (mod p), if q 6= p + 1;
(

p−1
j−1

)2
(mod p), if q = p + 1.

(6)

Proof. First, let 2 ≤ q ≤ p. Then we can write in base p,

(q − j)(p − 1) = (q − j − 1)p + (p − (q − j)), j(p − 1) = (j − 1)p + (p − j),

and we see that upon adding these two numbers we have one carry in base p, and we are
done by Lemma 1(a).

When q ≥ p + 2, counting the carries would be more difficult, and we use instead Lucas’
result (5) in its iterated form, i.e., the result applied also to

(

n
k

)

. We write q = p+1+ s with
1 ≤ s ≤ p − 1. Then clearly

q(p − 1) = p2 + (s − 1)p + (p − s − 1). (7)

When 1 ≤ j ≤ p, we write j(p − 1) = (j − 1)p + (p − j), and with (5) and (7) we get
(

q(p − 1)

j(p − 1)

)

≡

(

1

0

)(

s − 1

j − 1

)(

p − s − 1

p − j

)

≡ 0 (mod p),

since either the second binomial coefficient on the right vanishes (when j > s), or the third
one vanishes (when j ≤ s). Next, when j = p + 1, we have j(p− 1) = (p− 1)p + (p− 1), and

(

q(p − 1)

(p + 1)(p − 1)

)

≡

(

1

0

)(

s − 1

p − 1

)(

p − s − 1

p − 1

)

≡ 0 (mod p)

for similar reasons as above. Thirdly, when p + 2 ≤ j ≤ q − 1, we write j = p + 1 + t,
1 ≤ t < s. Then in base p we have j(p − 1) = p2 + (t − 1)p + (p − t − 1), and thus

(

q(p − 1)

j(p − 1)

)

≡

(

1

1

)(

s − 1

t − 1

)(

p − s − 1

p − t − 1

)

≡ 0 (mod p)

since the last binomial coefficient on the right vanishes. This proves (6) for q 6= p + 1.
Finally, when q = p+1, we write q(p−1) = (p−1)p+(p−1) and j(p−1) = (j−1)p+(p−j)

so that, again by (5),

(

(p + 1)(p − 1)

j(p − 1)

)

≡

(

p − 1

j − 1

)(

p − 1

p − j

)

=

(

p − 1

j − 1

)2

(mod p),

and this completes the proof of the lemma.
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The next lemma is the central ingredient in the proof of Theorem 2. The proof uses a
variant of a standard method.

Lemma 6. Let p be an odd prime and ζ a primitive (2p − 2)th root of unity. If we define

Sp(q) :=

2p−2
∑

k=1

(

1 + ζk
)(p−1)q

(8)

for q = 1, 2, . . ., then

Sp(q) = (2p − 2)

⌊q/2⌋
∑

j=0

(

q(p − 1)

2j(p − 1)

)

. (9)

Proof. We use the well-known fact that

2p−2
∑

k=1

ζmk =

{

0, if 2p − 2 ∤ m;

2p − 2, if 2p − 2 | m.
(10)

Now, using a binomial expansion, we get with (8),

Sp(q) =

2p−2
∑

k=1

q(p−1)
∑

m=0

(

q(p − 1)

m

)

(

ζk
)m

=

q(p−1)
∑

m=0

(

q(p − 1)

m

) 2p−2
∑

k=1

ζmk.

The result now follows from (10).

By the theory of linear recurrence relations with constant coefficients we know from the
right-hand side of (8) that for fixed p the sequence {Sp(q)}, q = 1, 2, . . ., is a linear recurrence
sequence of order at most 2p−2, and that the characteristic polynomial of this sequence has
(1 + ζk)p−1, k = 1, 2, . . . , 2p − 2, as its roots. This motivates the following lemma.

Lemma 7. Let p be an odd prime and fp(x) the unique monic polynomial that has the

numbers (1 + ζk)p−1, k = 1, 2, . . . , 2p − 2, as its roots. Then

fp(x) ≡ x

2p−3
∑

n=0

anx
2p−3−n (mod p), (11)

where for 0 ≤ n ≤ p − 2 we have

an ≡

{

(m + 1)2, (mod p) if n = 2m;

(m + 1)(m + 2), (mod p) if n = 2m + 1,
(12)

and for p − 1 ≤ n ≤ 2p − 3,

an ≡ −a2p−3−n (mod p). (13)
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Remark. The expression in (12) can also be written more concisely as

an ≡
⌊

n+2
2

⌋ ⌊

n+3
2

⌋

(mod p).

The right-hand side is the shifted sequence A002620 in [10].

Proof of Lemma 4. Using the well-known fact that (1 + x)p ≡ 1 + xp (mod p), we have

(1 + ζj)p−1 =
(1 + ζj)p

1 + ζj
≡

1 + ζjp

1 + ζj
=

1 + (ζp−1)jζj

1 + ζj
(mod p)

for i 6= p − 1. Then, with ζp−1 = −1, we have

(1 + ζj)p−1 ≡











1 (mod p), if j even, j 6= p − 1;

0 (mod p), if j = p − 1;
1−ζj

1+ζj (mod p), if j odd.

(14)

Hence

fp(x) ≡ x(x − 1)p−2

p−2
∑

j=0

(

x −
1 − ζ2j+1

1 + ζ2j+1

)

(mod p). (15)

First, using the expansion
(

p − 2

k

)

=
(p − 2)(p − 3) · · · (p − 2 − k + 1)

1 · 2 · · · k
≡ (−1)k(k + 1) (mod p), (16)

which can also be found in [2, p. 272], we have

(x − 1)p−2 =

p−2
∑

k=0

(

p − 2

k

)

(−1)kxp−2−k ≡

p−2
∑

k=0

(k + 1)xp−2−k (mod p). (17)

Next, if we set

xj :=
1 − ζ2j+1

1 + ζ2j+1
(18)

and solve for ζ2j+1, we get

ζ2j+1 =
1 − xj

1 + xj

,

and by raising this to the (p− 1)th power, we see that the xj, j = 0, 1, . . . , p− 2, are all the
roots of the polynomial equation

(1 − x)p−1 = −(1 + x)p−1,

since ζ is a primitive (2p − 2)th root of unity. But since

p−1

2
∑

j=0

(

p − 1

2j

)

x2j =
(1 + x)p−1 + (1 − x)p−1

2
, (19)
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we see that the expressions in (18) are exactly the zeros of the polynomials on the left of
(19), and thus

p−2
∑

j=0

(

x −
1 − ζ2j+1

1 + ζ2j+1

)

=

p−1

2
∑

j=0

(

p − 1

2j

)

x2j ≡

p−1

2
∑

j=0

x2j (mod p), (20)

where we have used the congruence
(

p−1
k

)

≡ (−1)k (mod p), which can be obtained as in
(16), or see [2, p. 272]. If we define the sequence {δj} by δj = 1 when j is even and δj = 0
when j is odd, then the product of the polynomials in (17) and (20) becomes

2p−3
∑

n=0

(

n
∑

k=0

(k + 1)δn−k

)

x2p−3−k =

2p−3
∑

n=0

anx
2p−3−n,

where the inner sum is not usually taken over the whole range. In fact, it is easy to see that

an =
n
∑

k=0

(k + 1)δn−k for 0 ≤ n ≤ p − 2, (21)

and

an =

p−2
∑

k=n−p+1

(k + 1)δn−k for p − 1 ≤ n ≤ 2p − 3. (22)

Now, for n ≤ p − 2 we get from (21),

a2m =
m
∑

k=0

(2k + 1) = (m + 1)2,

a2m+1 =
m+1
∑

k=1

2k = (m + 1)(m + 2),

which is just (12). In (22) we shift the order of summation, to obtain

an =

2p−3−n
∑

k=0

(k + n − p + 2)δp−1−k ≡

2p−3−n
∑

k=0

(k + n + 2)δk (mod p)

since p − 1 − k ≡ k (mod 2). Finally we reverse the order of summation, so that

an ≡

2p−3−n
∑

k=0

(2p − 3 − n − k + n + 2)δ(2p−3−n)−k

≡ −

2p−3−n
∑

k=0

(k + 1)δ(2p−3−n)−k (mod p).

This, with (21), accounts for (13), which completes the proof of the lemma.

We are now ready to prove our main result.
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3 Proof of Theorem 2

In view of Lemma 3 it suffices to determine the Sp(q), q = 1, 2, . . . We first find the initial
values (mod p) of this sequence. By the first part of Lemma 2 we immediately get the first
two parts of (2) for q ≤ 2p. By the second part of (6) we have for q = p + 1,

2

⌊q/2⌋
∑

j=0

(

q(p − 1)

2j(p − 1)

)

≡ 4 + 2

p−1

2
∑

j=1

(

p − 1

2j − 1

)2

(23)

= 4 +

(

2p − 2

p − 1

)

− (−1)
p−1

2

(

p − 1
p−1
2

)

(mod p),

where we have used a well-known explicit formula; see, e.g., [5, Eq. (3.74)]. For the first
binomial coefficient on the right we have, by (5),

(

2p − 2

p − 1

)

=

(

1 · p + (p − 2)

0 · p + (p − 1)

)

≡

(

1

0

)(

p − 2

p − 1

)

= 0 (mod p),

and as a special case of a well-known theorem of Morley (see, e.g., [4] or [7, p. 105]) we have

(−1)
p−1

2

(

p − 1
p−1
2

)

≡ 4p−1 ≡ 1 (mod p).

Hence with (23) we get the third part of (2) for q = p+1. The identity (9) now immediately
gives

Sp(q) ≡











−2 (mod p), if q odd;

−4 (mod p), if q even, p + 1 ∤ q;

−3 (mod p), if p + 1 | q;

(24)

for q ≤ 2p. It remains to show that (24) holds for all integers q ≥ 1.
We are done if we can show that the sequence {Sp(q)}q≥1, as given in (24), satisfies (for

all q) the recurrence relation (mod p) whose characteristic polynomial is given by (11); in
other words, we need to show that

a0Sp(n) + a1Sp(n − 1) + . . . + a2p−3Sp(n − 2p + 3) ≡ 0 (mod p) (25)

for all n ≥ 2p−2, with the aj as given in Lemma 4. We may obviously consider the sequence
{−Sp(q)}, and since by (13) the coefficients a0, a1, . . . , a2p−3 add up to 0 (mod p), we may
subtract a fixed constant from all terms. Hence for a fixed prime p ≥ 3 we are done if we
can show that

a0un + a1un−1 + . . . + a2p−3un−2p+3 ≡ 0 (mod p) (26)

for all n ≥ 2p − 2, where

uq = −Sp(q) − 3 =











−1, if q odd;

1, if q even, p + 1 ∤ q;

0, if p + 1 | q.
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This means that {uq}q≥1 is the alternating sequence (−1)q, with 1 subtracted whenever
p + 1 | q. This is the motivation for computing the alternating sum of all the aj, which by
(13) is

2

p−2
∑

n=0

(−1)nan = 2

p−3

2
∑

m=0

(a2m − a2m+1) = 2

p−3

2
∑

m=0

(

(m + 1)2 − (m + 1)(m + 2)
)

= −2

p−1

2
∑

m=1

m = −
(p − 1)(p + 1)

4
,

so that
2p−3
∑

n=0

(−1)nan ≡
1

4
(mod p). (27)

Now, if n is between k(p + 1) (for some k) and k(p + 1) + p − 4, then in the finite sequence
of indices n − 2p + 3, n − 2p + 4, . . . , n − 1, n, there are exactly two multiples of p + 1.

First, if n = k(p+1)+ j is even, with 0 ≤ j ≤ p−4, then we have to subtract aj +ap+1+j

from (27) since un and un−p−1 are 0 instead of 1. Since n is even, j is also even, say j = 2m,
and so by (12) we have aj ≡ (m + 1)2 (mod p), while by (13) and (12),

ap+1+j ≡ −ap−4−j ≡ −

(

p − 5 − 2m

2
+ 1

)(

p − 5 − 2m

2
+ 2

)

≡ −
(

(m + 1) + 1
2

)(

(m + 1) − 1
2

)

= −(m + 1)2 + 1
4
≡ −aj + 1

4
(mod p),

so that by (27) we have

2p−3
∑

n=0

(−1)nan − aj − ap+1+j ≡ 0 (mod p). (28)

Second, if n is odd, we have to add aj + ap+1+j to (27) since un and un−p−1 are 0 instead
of −1. Since n is odd, so is j, say j = 2m + 1, and so by (12) we have aj ≡ (m + 1)(m + 2)
(mod p), while by (13) and (12),

ap+1+j ≡ −ap−4−j ≡ −

(

p − 5 − 2m

2
+ 1

)2

≡ −
(

m + 3
2

)2
(mod p),

so that
aj + ap+1+j ≡ −1

4
(mod p),

and thus with (27) we have

2p−3
∑

n=0

(−1)nan + aj + ap+1+j ≡ 0 (mod p).

This, together with (28), means that (26) holds for n = k(p + 1) + j, 0 ≤ j ≤ p − 4.
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It remains to consider the case p − 3 ≤ j ≤ p; in this case there is only one multiple
of p + 1 among the indices n − 2p + 3, . . . , n − 1, n, and we have to add or subtract aj,
p − 3 ≤ j ≤ p, to, resp. from (27). Due to the ranges for which (12) and (13) are valid, all
four cases need to be considered separately, namely

ap−3 ≡

(

p − 3

2
+ 1

)2

≡ 1
4

(mod p),

ap−2 ≡

(

p − 3

2
+ 1

)(

p − 3

2
+ 2

)

≡ −1
4

(mod p),

ap−1 ≡ −ap−2 ≡
1
4

(mod p),

ap ≡ −ap−3 ≡ −1
4

(mod p).

Now with (27) we obtain
2p−3
∑

n=0

(−1)nan ± aj ≡ 0 (mod p).

where the sign is chosen according to the parity of j, just as in the previous case.
Altogether, we have shown that the recurrence relation (26) is always satisfied, and this

completes the proof.
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