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We define higher or arbitrary order universal Bernoulli numbers and higher
order universal Bernoulli�Hurwitz numbers. We deduce a universal first-order
Kummer congruence and a congruence for the higher order universal Bernoulli�
Hurwitz numbers from Clarke's universal von Staudt theorem. We also establish
other Kummer-type congruences for the higher order universal Bernoulli numbers
and for the universal No� rlund polynomials, generalizing the author's previous
work. � 2000 Academic Press
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1. INTRODUCTION

Let the power series F(t) over the polynomial ring Q[c1 , c2 , ...] be
defined by

F(t)= :
�

i=0

ci
t i+1

i+1

where c0=1.
Let G(t)=F &1(t) be the compositional inverse, so

G(t)= :
�

i=0

di
t i+1

i+1

where d0=1, d1=&c1 , d2= 3
2c2

1&c2 , ... . Observe that d1 , d2 , ... are also
indeterminates over Q.

Clarke [9] defined the universal Bernoulli numbers B� n in Q[c1 , c2 , ...] by
B� n �n!=[tn] t�G(t), i.e.,

t
G(t)

= :
�

n=0

B� n
tn

n!
.
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We generalize to define arbitrary or higher order universal Bernoulli
numbers B� (l )

n by

\ t
G(t)+

l

= :
�

n=0

B� (l )
n

tn

n!
.

If l=1 we get B� n , which we call ordinary or first-order. In most of our
applications the order l of B� (l )

n is a rational integer, usually in the range of
1 to n for higher order; a p-adic integer; or a variable x, in which case B� (x)

n

is called a universal No� rlund polynomial.
The specialization ci=(&1) i gives F(t)=log(1+t) and G(t)=et&1.

This yields the classical higher order Bernoulli numbers B(l )
n and No� rlund

polynomials B (x)
n . Other specializations have been studied in the ordinary

case [9, 10].
Ray defined higher order universal Bernoulli numbers in the context of

coalgebras and Hopf algebras. He used this machinery to show that the
universal Bernoulli numbers play a privileged role in the theory [18,
Proposition 10.1]. Much of the impetus for this study has come from
algebraic topology, since the universal Bernoulli numbers are relevant to
universal formal groups and to the homotopy of certain classifying spaces.

We believe that simple, direct definitions of arbitrary order Bernoulli
numbers are useful. The explicit formulas that come out of Lagrange inver-
sion [Corollary 2.3] are invaluable in studying the arithmetic of these
numbers. The arbitrary order context seems appropriate since the Lagrange
inversion works the same way for arbitrary order as for first order. Indeed,
the Lagrange inversion formulas express duality relations between order l
and order n&l universal Bernoulli numbers, as well as between order l
and order n&l+1 [Proposition 2.1]. Finally, the explicit general order
formulas appear more natural in some ways than the special first order
formula [9, Proposition 4] given by Clarke.

The first part of this paper relies heavily on Clarke's universal
von Staudt theorem [9, Theorem 5]. We deduce a universal first-order
Kummer congruence that fully generalizes the basic classical Kummer
result that if n is even and p&1 |% n then (cf. [7, 13])

Bn+ p&1

n+ p&1
#

Bn

n
(mod p).

The following theorem is proved in Section 3.

Theorem 3.2. Suppose that n�0, 1 (mod p&1). Then

B� n+ p&1

n+ p&1
#

B� n

n
cp&1 (mod pZp[c1 , c2 , ...]).
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Note that n�0, 1 (mod p&1) implies that p�5. The hypotheses of our
theorem are satisfied if n is even and p&1 |% n, since n and n mod p&1 have
the same parity for p{2. Our theorem also includes nontrivial congruences
for n odd. It is easy to see that the hypotheses are necessary for the conclusion
of our theorem.

Clarke defined [9] universal Bernoulli�Hurwitz numbers BH@
n , following

the terminology of Katz [14], essentially by an ad hoc definition as

BH@
n=B� (2)

n �(n&1) for n�2.

Clarke then proved [9, Theorem 12] the congruence

BH@
n

n
#&

B� n

n
+c1

B� n&1

n&1
mod Z[c1 , c2 , ...].

This theorem generalizes a result of Carlitz [6, Theorem 3]. Clarke's
proof, which uses only the generating function definition, is just a slight
modification of the one given by Carlitz.

We define higher order universal Bernoulli�Hurwitz numbers BH@ (l )
n by

BH@ (l )
n =

B� (l+1)
n

n&l
for l=0, 1, 2, ..., n&1.

Clarke's theorem is the special case for l=1 of the following general
result, which is deduced from Clarke's universal von Staudt theorem.

Theorem 3.4.

BH@ (l )
n

(n) l
#& :

l&1

i=0

ci
B� (l&i )

n&i

(l&i )(n&i ) l&i

+cl
B� n&l

n&l
mod (cl , cl+1 , ...) Z[c1 , c2 , ...].

The proofs of these theorems in Section 3 follow from the universal von
Staudt theorem. On the other hand, Section 4 does not depend on the first-
order theory. Since our approach to the classical higher order theory relies
on the same Lagrange inversion that is the cornerstone of the universal
theory, it is not surprising that many of our results [2, 3] carry over.
In most cases, only minor modifications are required in the statements
and proofs. The primary exception is where the proofs involve the higher
order Bernoulli polynomials B (l )

n (x), since the universal analogues do not
have similar symmetry properties. As an example, if &=&p is the p-adic
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exponential valuation and [x] is the greatest integer function, we proved
in [1, Theorem 3.3] that if l is a ( p-adic) integer then

&(B(l )
n �n!)�&_ n

p&1& .

That proof used the Bernoulli polynomials and cannot be adapted, but we
gave an alternate proof [2, Lemma 2], which shows immediately that if &
is extended to polynomials as the minimum valuation of the coefficients,
then we have

Theorem 4.2. &(B� (l )
n �n!)�&[ n

p&1].

We have included a list of our congruences that carry over to the univer-
sal context with some discussion. Proofs are given to the extent that they
differ substantially from our classical proofs. Included in the list is the
strong mod mp version of a congruence for universal No� rlund polynomials
[Theorem 4.10] that was noted but not proved in [3] for the classical
No� rlund polynomials. The congruences and denominator estimates are all
best possible, i.e., the congruences don't hold modulo higher powers of p
and the bounds for the denominators are achieved.

2. PRELIMINARIES

Notations. p is always a (rational) prime and Zp is the ring of p-adic
integers. We denote the exponential valuation by &=&p , so e=&(n) means
pe & n, and &(n�m)=&(n)&&(m).

We extend & to multivariable polynomials by &( f (x))=min[&(cI)]
over all coefficients cI of f (x). Divisibility and congruence are understood
p-adically, e.g., f (x)#g(x) (mod n) if n | f (x)& g(x) in Zp[x], i.e., if
&( f (x)& g(x))�&(n).

We make heavy use of the following fundamental facts about factorials
and binomial coefficients (cf. [16, Chap. 4]).

If n=kp+: where 0�:<p, then

&(n!)=&((kp)!)=&(k!)+k. (1)

If n=kp+: where :�0, then

n!#(&1)k :! k! pk (mod p&(n!)+1). (2)
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If S(n) is the base p digit sum, then

&(n!)=
n&S(n)

p&1
. (3)

Since the binomial coefficient

\ n
m+=

(n)m

m!
=

n!
m! (n&m)!

# Z,

&(n!)�&(m!)+&((n&m)!). (4)

p |% \ n
m+ if and only if S(n)=S(m)+S(n&m). (5)

Lagrange inversion gives the following fundamental proposition, where
[tn] denotes the coefficient of tn in the indicated formal power series.

Proposition 2.1. Let F(t) be a power series with zero constant term and
first degree coefficient one, and let G(t)=F &1(t). Then

(i) [tn] \ t
G(t)+

l

=
l

l&n
[tn] \F(t)

t +
l&n

.

(ii) [tn] \ t
G(t)+

l

=[tn] \F(t)
t +

l&n&1

F $(t).

Proof. Part (i) follows immediately from [11, Theorem 1.2.4], using
essentially the same proof as for [9, Proposition 4], which is the special
case l=1.

For part (ii), differentiate the series on the right in (i). K

Remark 2.2. (a) The case l=n is not a major problem in (i), since we
can first use polynomial division to divide by l&n and then take l=n.
Specifically,

[tn] \ t
G(t)+

n

=n[tn] log \F(t)
t + if n>0. (6)

(b) If F(t) is as in the Introduction, then Proposition 2.1(i) expresses
a kind of duality between order l and order n&l universal Bernoulli
numbers. Similarly, Proposition 2.1(ii) is a duality between order l and
order n&l+1 universal numbers. In particular, order 0 and order n+1 are
both trivial, and order 1 (ordinary) and order n (No� rlund numbers) are
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dual. The range 1�l�n is stable for this duality, which appears to be the
more significant of the two dualities.

Henceforth consider the case of the Introduction when

F(t)= :
�

i=0

ci ti+1�(i+1) and F $(t)= :
�

i=0

ci t i. (7)

Let (u)=(u1 , u2 , ...) be a finite sequence of nonnegative integers,
w=w(u)=� iui the weight of (u), and d=d(u)=� ui the degree of (u).
Observe that (u) is a partition of w into d parts, where ui is the number of
occurrences of i.

Let

u!=u1 ! u2 ! ..., \d
u +=

d !
u!

(8)

the multinomial coefficient, 4u=2u13u2 } } } , cu=cu1
1 cu2

2 } } } , and tu(s)=
( s

d )( d
u)�4u=(s)d �(u! 4u).

Corollary 2.3.

(i)
B� (l )

n

n!
=

l
l&n

:
w=n

tu(l&n) cu.

(ii)
B� (l )

n

n!
= :

w�n

tu(l&n&1) cucn&w .

Proof. Part (i) follows from Proposition 2.1(i) by the binomial and
multinomial expansions, namely, let H=(F(t)�t)&1. Then (F(t)�t)s=
(1+H)s=� ( s

d ) Hd, and H d=�d(u)=d ( d
u) (cu�4u) tw(u).

Part (ii) follows similarly from Proposition 2.1(ii). K

See [2, (10), (14)] for the classical versions of these formulas. Note that
the number of terms in (i) is the partition function p(n). The monomials cu

flag the partitions.

Remark 2.4. Corollary 2.3(i) can be explicitly rewritten as

B� (l )
n �n!=l :

w=n \
l&n&1

d&1 +\d
u+ cu<d4u.
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The following corollary is the special case l=1 of the previous one.

Corollary 2.5. (i) B� n=n �w=n (&1)d&1 (n+d&2)! cu�(u! 4u).

(ii) B� n=n �w�n (&1)d (n+d&1)! cucn&w �(u! 4u).

Remark 2.6. Corollary 2.5(i) is the same as [9, Proposition 4]. Clarke
doesn't use (ii), which has more terms than (i), so monomials in c1 , c2 , ...
occur multiple times. However, (ii) is particularly useful for certain inductions,
and the terms have somewhat better integrality properties.

Proposition 2.7. If w(u)=n and d(u)=d then (n+d )(n+d&2)!�
u! 4u # Z.

Proof. This is what we need from Clarke's universal von Staudt
theorem [9, Theorem 5]:

If p&1 |% n then
(n+d&2)!

u! 4u # Zp . (9)

If p&1 | n and p is odd then
(n+d&2)!

u! 4u # Zp , (10)

except if up&1=d=n�( p&1), in which case n+d=dp and (n+d)(n+d&2)!�
u! 4u is a p-adic unit.

If p=2, the term where u1=d=n is handled as above. (11)

In addition, if p=2 there are other nonintegral terms with &=&1, if
n#2 (mod 4) or n is odd, but in both cases n+d is even, so the result
follows. K

3. CONSEQUENCES OF THE VON STAUDT THEOREM

Throughout this section w=w(u)�n and d=d(u). Also,

m=_ n
p&1& , _=n&m( p&1), #u=

1
u! 4u , and {u=(n+d&1)! #u . (12)

Lemma 3.1. Suppose that _>1. If w(u)�n then

(i) {u # Zp , and

(ii) {u # pZp if up&1 {m.
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Proof. We will prove that if w(u)�n then &({u)�0, and &({u)>0 if
up&1 {m. To prove (i), write n+d&1=n&w+1+d+w&2. Then since
(d+w&2)! #u # Zp by (9) and (10) unless up&1=d, it suffices to assume
that w=( p&1) d. But then since _{0, we have n&w+1�2, so
n+d&1�d+w, whence &({u)�0 by Proposition 2.7.

To prove (ii), first observe that if w�n&( p&1) then &({u)>0, namely
n&w+1�p, so this is obvious if p&1 |% w, in which case (d+w&2)!
#u # Zp . If, on the other hand, p&1 | w and w=( p&1) d, then n&w+1�
p+2 since _>1. Again &({u)>0 by Proposition 2.7.

Next we have to dispose of a couple of cases.

Case 1. ui�p for some 1<i<p&1 or ui>0 for some i>p&1, where
p |% i+1.

In this case, let u$1=u1+ui , u$i=0, and u$j=uj for j{1, i. Clearly,
w&w$�p&1, d=d $, and &(u$!)�&(u!). It follows that &({u)�&({u$)>0.

Case 2. ui>0 for some i>p&1, where p | i+1.

In this case, let u$p&1=up&1+ui , u$i=0, and u$j=u j for j{ p&1, i. Let
:=&(i+1). If :=1, the argument is the same as in Case 1, namely
w&w$�p and d=d $, so &({u)�&({u$)>0. However, the argument is more
subtle if :>1. Now w&w$�ui ( p:& p)�ui (:+1) p, since :�2 and
p�5. It follows that &((n+d&1)!)=&((n&w$&1+w$+d )!)�ui :+
&((w$+d )!).

On the other hand, &(4u$)=&(4u)&(:&1) ui , so &(#u$)&&(#u)�
&(:&1) ui . Since (w$+d $)! #u$ # Zp , we have &({u)�ui:&u i (:&1)+
&((w$+d )! #u$)>0.

Hence if &({u)=0 then &({u)=&((n+d&1)!)&&(u1 ! up&1 ! pup&1). Let
up&1=m&k and l=[u1 �p]. We will show that k=0. Suppose k>0.
Then &(u! 4u)=&((lp)!)+&(((m&k) p)!)�&(((m&k+l ) p)!). On the other
hand, d�m&k+lp, so n+d&1�mp+_&k+lp&1. Since _�2 and
k�1, it follows that n+d&1�(m+l&(k&1)) p. Hence &({u)>0 if
up&1=m&k with k{0. K

Theorem 3.2 (Universal Kummer Congruence). Suppose n�0, 1
(mod p&1). Then

B� n+ p&1

n+ p&1
#

B� n

n
cp&1 (mod p).

Proof. Let S=[(u) | w�n and up&1=m], and let S$=[(u$) | w$=
w(u$)�_]. If (u) # S, let u$p&1=0 and u$j=u j for j{ p&1. Then (u) [ (u$)
gives a one�one correspondence between S and S$, with w$=w&m( p&1),
d $=d&m, and n&w=_&w$.
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If (u) # S then n+d&1=mp+_+d&1, so by (2)

(n+d&1)! #u #(&1)m (_+d $&1)! #u$ (mod p).

Thus by the preceding lemma and Corollary 2.5(ii),

B� n

n
# :

u # S

(&1)d {ucucn&w (mod p)

# :
w�_

(&1)d {ucuc_&wcm
p&1 (mod p).

Therefore

B� n

n
#

B� _

_
cm

p&1 (mod p), (13)

which is clearly equivalent to the theorem. K

Remark 3.3. The preceding congruence is nontrivial for odd n.
However, the assumption _>1 is essential since it follows easily from
Corollary 2.5(i) that if p>2 then

B� p �p#&cp+(c1cp&1+c p
1 )�2 (mod p).

Hence the conclusion of the preceding theorem does not hold for n= p, in
which case m=_=1.

Recall that

BH@ (l )
n =

B� (l+1)
n

n&l
if l=0, 1, ..., n&1. (14)

In particular,

BH@ (0)
n =B� n�n if n>0, and BH@ (1)

n =BH@
n=B� (2)

n �(n&1) if n>1.

(15)

Theorem 3.4 (Generalized Bernoulli�Hurwitz Congruence).

BH@ (l )
n

(n) l
#& :

l&1

i=0

ci
B� (l&i )

n&i

(l&i )(n&i ) l&i
+cl

B� n&l

n&l

mod (cl , cl+1 , ...) Z[c1 , c2 , ...].
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Proof. From Corollary 2.3, with #u=1�(u! 4u),

BH@ (l )
n �(n) l =B� (l+1)

n �(n) l+1

=(l+1) :
w=n

(&1)d&1 (n&l+d&2)! #ucu (16)

= :
i�n

ci :
w=n&i

(&1)d (n+d&l&1)! #ucu. (17)

If i>l, then (n+d&l&1)! #u=(i&l+1+w+d&2)! #u which is in Z
by Proposition 2.7. If i=l, then (n+d&l&1)! #u=(w+d&1)! #u #
&(w+d&2)! #u mod Z, since (w+d)(w+d&2)! #u # Z by Proposition 2.7.

Finally, if i<l, then from (16) we get

:
w=n&i

(&1)d (&(l&i&1)+(w+d&2))! #ucu=&
1

l&i
B� (l&i)

n&i

(n&i ) l&i
.

The result now follows immediately from (17). K

4. HIGHER ORDER THEOREMS

Some of the classical p-adic divisibility results hold for universal higher
order Bernoulli numbers, and some of the classical congruences have
obvious extensions, but some do not. For example, if 1�_<p&1 and l is
a p-adic integer, then Remark 2.4 implies that l | B� (l)

_ and similarly that

pB� (l )
p&1 #&lcp&1 (mod pl ).

(Recall our convention stated at the beginning of Section 2 that divisibility
and congruences are understood p-adically in the context of an implied
domain.) On the other hand, it follows from [2, Corollary 6] that l2 | B (l )

p

in the classical case if p is odd, whereas the following proposition shows
that if p | l then pl |% B� (l )

p for the universal Bernoulli numbers.

Proposition 4.1. Suppose p is an odd prime and l is a p-adic integer.
Then

(i) l | B� (l )
p and

(ii) if p | l then B� (l )
p #l(c1 cp&1&c p

1 )�2 (mod pl ).
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Proof. By Remark 2.4,

B� (l )
p #lp! :

w= p \
l& p&1

d&1 +\d
u+ cu<d4u.

Clearly, &(d4u)=0 except for the two terms where u1= p and where
u1=up&1=1, and for these terms &(d4u)=1. Thus (i) follows, while if p | l,

B� (l )
p #lp! \\l& p&1

p&1 + c p
1 <p2 p+(l& p&1) c1 cp&1�(2p)+ (mod pl ).

Part (ii) follows immediately by Wilson's theorem and Fermat's Little
Theorem. K

The following theorems are adaptations of classical results which we
have proved in [2, 3]. We will concentrate on the necessary modifications.
Again assume throughout this section that

m=[n�( p&1)], _=n&m( p&1), and also r(k)=&(k!). (18)

The next theorem gives a bound for the powers of p in the denominators
of B� (l)

n . For fixed n, the bound is good, but it is not necessarily a good
estimate for fixed l. See [1, 12, 22] for discussions of this point.

Theorem 4.2. If l is a p-adic integer and S(n) is the base p digit sum,
then &(B� (l )

n )�&[S(n)�( p&1)], or equivalently &(B� (l )
n �n!)�&m.

Proof. Since by Corollary 2.3(ii)

B� (l )
n

n!
= :

w�n

\l&n&1
d +\d

u+ cu

4u cn&w , (19)

the theorem follows immediately from [2, Lemma 2(i)], which says that

&(4u)�m. (20)

This completes the proof. K

The following theorem, which resembles formula (13), gives a Kummer-
type congruence for higher order universal Bernoulli numbers. The con-
gruence is trivial for certain values of l, e.g., if l=1 and S(n)>p&1, but,
as the remark after the theorem shows, the congruence is sharp for other
values of l. This is primarily a theorem for higher order universal Bernoulli
numbers.
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Theorem 4.3.

pm B� (l )
n

n!
#(&1)m \n+m&l

m + B� (l )
_

_!
cm

p&1 (mod p).

Proof. The proof, which uses Corollary 2.3(ii), is based on [2,
Lemma 2(ii)] that

&(4u)<m if up&1 {m. (21)

The proof is essentially the same as that for [2, Theorem 1(i)]. K

Remark 4.4. For given n, the preceding theorem demonstrates that the
estimate for the p-adic denominator given by Theorem 4.2 is sharp. We
know that if p&1 | n then the bound is achieved by the No� rlund number
B� (n)

n . (See [1, Remark 2].) We can easily deduce from Theorem 4.3 that if
p |% n then the bound is sharp for B� (n)

n , while if p | n it is sharp for B� (n&1)
n

since in this case p |% m+1. In both cases the coefficient of c_cm
p&1 in the

right-hand side of the congruence in Theorem 4.3 is nonzero.

Theorem 4.5. If p( p&1) |% n then l | pmB� (l )
n �n!.

Proof. The proof is essentially the same as [2, Theorem 2(i)], using a
restatement of [2, Lemma 4(ii)] that

w=n and p( p&1) |% n implies that s | pm tu(s) p-adically. K (22)

The next theorem is our higher order universal Kummer congruence.
The hypothesis _>1 is essential, as shown by Proposition 4.1(ii), with
l= p.

Theorem 4.6. If _>1 then

pm B� (l )
n

n!
#(&1)m \n+m&l

m + B� (l )
_

_!
cm

p&1 (mod pl ).

Proof. We must modify the proof of [2, Theorem 2(ii)], since that
proof uses the higher order Bernoulli polynomial. The modification is not
entirely trivial.

By [2, Lemma 4(iii)] and Corollary 2.3(i), if S=[(u) | w(u)=n and
up&1=m] and S$=[(u$) | w$=_], then

pm B� (l )
n

n!
#pm l

l&n
:

u # S

tu(l&n) cu (mod pl). (23)
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But if (u) # S, then

pm l
l&n

tu(l&n)=
l

l&n \
l&n

m + tu$(l&n&m)

=l \l&n&1
m + (l&n&m&1)d $&1#u$

#\l&n&1
m + l

l&_
(l&_)d $#u$ (mod pl ).

Since

\l&n&1
m +=(&1)m \n+m&l

m + ,

the result follows using Corollary 2.3(i) by summation over (u) # S. K

The following corollary gives important special cases where S(n)<p&1,
so that pm�n! is a p-adic unit.

Corollary 4.7. Let 1<_<p&1. Then

(i) B� (l )
p+_&1 #(1&l�_) B� (l )

_ cp&1 (mod pl ).
(ii) B� (l )

_p #(&l )_ ( l&1
_ ) B� (l )

_ c_
p&1 (mod pl ).

Proof. (i) is the special case m=1 and (ii) is the special case m=_ of
the theorem. Since S(n)=_<p&1 in both cases,

B� (l )
n #(&1)m n!

pm \n+m&l
m + B� (l )

_

_!
cm

p&1 (mod pl ).

Part (i) follows since ( p+_&1)!�p#&(_&1)! (mod p), and part (ii)
follows since (_p)!�p_#(&1)_ _! (mod p) by formula (2). Note that l | B� (l )

_

here. K

We now turn our attention to the universal No� rlund polynomials B� (x)
n .

Examples found for small n by Corollary 2.3(i) are

B� (x)
0 =1, B� (x)

1 = 1
2xc1 , B� (x)

2 = 1
4x2c2

1+x(&3
4c2

1+ 2
3 c2),

and (24)

B� (x)
3 = 1

8 x3c3
1+x2(c1 c2& 9

8c3
1)+x( 5

2c3
1&4c1 c2+ 3

2 c3).

The following theorem gives a precise formula for the highest power of
p in a denominator of the universal No� rlund polynomial.
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Theorem 4.8.

&(B� (x)
n �n!)=&&((mp)!).

Proof. It should be noted that the classical version of this result was
first found by Lundell [15, Proposition 2.2] and was rediscovered by the
author [3, Theorem 1]. The proof, which is based on [3, Lemma 2],
works here as well. The main idea is to show that &(u! 4u)�r(mp), with
equality iff up&1=m&k, u1�kp, and p |% ( m

k ). K

We will now prove a stronger version of the lemma mentioned above,
which is necessary for the stronger version of the congruence [3, Theorem 3]
that we will prove below.

Lemma 4.9. Let &1(u)=&(u! 4u). Suppose w(u)<(m+1)( p&1). Then

(i) &1(u)�r(mp),

(ii) &1(u)�r((m&1) p) unless up&1+[u1 �p]�m.

Proof. We give a proof like [3, Lemma 2], but sharpened slightly. It is
easy to see that up&1+[u1�p]�m if and only if up&1+[u1 �p]=m,
namely, if up&1=m&k and [u1 �p]=l, then m&k+l�m if and only if
l�k. But (m+1)( p&1)>(m&k)( p&1)+lp=m( p&1)+(l&k)( p&1)+l,
so l�k. Also, if w(u)�n=m( p&1)+_ and l�k then k=l�_.

We now prove both parts of the lemma simultaneously by induction on
m. The m=0 case is trivial. The proof now becomes quite similar to that
of Lemma 3.1.

Case 1. ui�p for some 1<i<p&1 or ui>0 for some i>p&1 such
that p |% i+1. In this case, let u$i=0, u$1=u1+ui , and u$j=uj for j{1, i.
Then w(u$) � w(u) & ( p & 1) and &(u$!) � &(u!), so &1(u) � &1(u$) �
r((m&1) p), by the inductive assumption.

Case 2. ui>0 for some i>p&1 such that p | i+1. This case is treated
differently from Lemma 3.1. If :=&(i+1), let u$i=0, u$p&1=up&1+:ui ,
and u$j=0 for j{i, p&1. Then &1(u)�&1(u$) and again &1(u$)�r((m&1) p)
since w(u$)�w(u)&( p&1), since kp&1&( p&1)�p&1 if k�2 and
p:&1&:( p&1)�p&1 if :�2. Hence &1(u)�&1(u$)�r((m&1) p).

Thus from Cases 1 and 2, if &(u)>r((m&1) p) then &1(u)=&(u1! up&1! pup&1).
If up&1 = m & k and l = [u1 � p] then &1(u) = r(lp) + r((m & k) p) �
r((m&k+l ) p)�r(mp). Also, if m&k+l<m, i.e., l�k&1, then &1(u)�
r((l+m&k) p)�r((m&1) p). Hence &(u)>r((m&1) p) implies l=k.

Finally, observe that

&1(u)=r(mp) iff u1�kp, up&1=m&k, and p |% \m
k+ . (25)
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The largest k satisfying (25) is min[_, m mod p]. K

The following theorem is the universalization of the mod mp con-
gruence that was stated in [3], but where only the mod p congruence was
proved [3, Theorem 3]. As usual, m=[n�( p&1)], _=n&m( p&1), and
r(k)=&(k!). Recall that polynomial congruence means the congruence of
all respective coefficients.

Theorem 4.10.

pr(mp) B� (x)
n

n!
#

pr(m)

m!
:
k \

m
k +\&

1
2+

k

(x&n&1)k( p&1)+m
B� (x)

_&k

(_&k)!
ckp

1 cm&k
p&1

(mod mp),

where 0�k�min[_, m] is the range of summation.

Proof. Let Sk=[(u) | w(u)�n, up&1=m&k, and u1�kp], for 0�k�
min[m, _]. Then, by Corollary 2.3(ii) and the preceding lemma, it suffices
to consider pr(mp) �k �u # Sk

tu(x&n&1) cucn&w .
If (u) # Sk , let u$1=u1&kp, u$p&1=0, and u$j=uj if j{1, p&1. Then

it is easy to see that (u) [ (u$) gives a one�one correspondence between
Sk and [(u$) | w(u$)�_&k], and that if (u) [ (u$), then w$=w&kp&
(m&k)( p&1)=w&n+(_&k) and d $=d&kp&(m&k)=d&k( p&1)
&m. Also, if (u) # Sk then by (2) and Fermat's Little Theorem we have
mod mp,

pr(mp)tu(x&n&1) cu

#
pr(m)

m! \m
k +\&

1
2+

k

(x&n&1)k( p&1)+m tu$(x&(_&k)&1) cu$ckp
1 cm&k

p&1 .

The result follows by summing over k and over (u) # Sk . K

Remark 4.11. The preceding theorem and lemma show that (mp)! is
the p-adic least common denominator of B� (x)

n �n!, and the highest degree
coefficient where it occurs has degree m+_+k( p&2), where k=
min[_, m mod p].

Also, if m{0 the preceding congruence does not hold mod mp2, namely,
the term with up&1=m&1, u_=1, and u j=0 for j{ p&1, _ satisfies
&1(u)=r((m&1) p) and alters the coefficient of c_cm

p&1 mod mp2.
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The following corollaries to Theorem 4.10 involve cases where _=0.

Corollary 4.12. If p&1 | n and m=n�( p&1) then

pr(mp) B� (x)
n

n!
#pr(m) \x&n&1

m + cm
p&1 (mod mp).

The next corollaries have p=2, where the situation is easy because we
can explicitly list the relevant terms.

Corollary 4.13.

2nB� (x)
n #(x&n&1)n cn

1 (mod 2n).

Proof. In this case m=n and p&1 | n. K

Remark 4.14. In his paper on the classical No� rlund polynomials [8],
the only congruence that Carlitz gave [8, (6.3)] is the weaker mod 2
version of this corollary. His method, using the theory of Hurwitz series,
does not appear to be generalizable.

Corollary 4.15.

2nB� (x)
n #x(x&n&1)n&1 cn

1 (mod 4n).

Proof. It is easy to see that the two terms with u1=n and with
u1=n&1 are the only ones that must be considered mod 4n. The critical
term with u1=n&3 and u3=1 does not contribute mod 4n since in this
case &1(u)=r(n&3)+n&1 and r(n&3)<r(n). K

In principle we can get congruences modulo higher powers of 2 by
explicitly listing the relevant terms.
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