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1. THE PROBLEM 

For many years I have enjoyed lecturing to groups of high school students about the 

excitement of mathematics. One diversion that never failed to capture their attention was as 

follows: Everyone was asked to write down a three digit number (abc with a > c), reverse it (to 

form cba), find the difference (as a three-digit number) between the two numbers, and add the 

difference to its own reverse. The amazed looks on the students' faces at discovering they had all 

reached the same end number 1089 was a sight to behold. The elementary algebra 

abc 

-c b a 

a-

c-

-c- 1 9 

-a + 10 9 

10 8 

c-

a-

9 

-a + 10 

-c- 1 

quickly explained the surprise. Finally, I would tease that the number 1089 is interesting in itself, 

being the square of 33 and its reverse being the square of 99. 

The origins of the diversion are unknown to me, I learned of it from Rouse Ball ([1], p. 9). 

The question arises: Can the diversion be extended to numbers other than those having three 

digitsl For two-digit numbers, the answer is yes, the end number always being 99. For four- and 

five-digit numbers, a little effort shows that three end numbers are possible, although the three 

numbers are different in the two cases. More effort is required to show that six- and seven-digit 

numbers give rise to different sets of eight possible end numbers. Thus, the sequence of the 

numbers of possible end numbers, corresponding to initial numbers of 2, 3, 4, 5, 6, 7, ... digits 

begins 1, 1, 3, 3, 8, 8, ... . No prizes for guessing how it continues! Our main result is that the 

number of possible end numbers corresponding to initial numbers of n +1 digits is the Fibonacci 

number i ^ ^ . 

What of the end numbers themselves? The unique end number generated by two-digit 

numbers is 99, which turns out to be a divisor of all end numbers. The unique end number gen-

erated by three-digit numbers is 1089, which is 99x11. The three end numbers generated by 

four-digit numbers are 9999, 10890, and 10989, which are, respectively, 99x101, 99x110, and 

99 x 111. These examples illustrate the general situation. With each n +1 -digit number X = xn ... 

x0 (xn >x0) we associate an «-digit number X
b
 consisting of a string of 0s and Is, which has the 

property that the end number generated by Xis 99 X .̂ We give a simple characterization of the 

numbers X\ and hence of the end numbers themselves. 
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2. THE CODE OF A NUMBER 

Throughout our discussion, nonnegative integers will be written in decimal form and T will 

denote the number 10. We write X = x„ ...x0, where xQ,...,xn are integers between 0 and 9 

inclusive, to denote the n +1-digit number E"=0 ^V. The n +1 -digit number obtained by revers-

ing the digits of X is called the reverse of X (in w + 1-digit arithmetic) and is denoted by J ' , 

whence X' = xQ ... xn. Suppose that X = xn ... x0 is such that xn > xQ. Write the number X - X
f 

as an w + 1-digit number—this may necessitate including some zeros at the front of the standard 

decimal representation of X - X'. Now reverse the digits of the difference X - X' to obtain the 

number (X-X
f
)

f
. Finally, add the difference to its reverse to produce the number X* defined 

by the equation 

x* = x-x
f
+(x-xy. 

We wish to find the number, denoted here by an, of different (end numbers) X* that are possible 

as X ranges over all n +1-digit numbers xn ... x0 (xn > xQ). The diversion that motivated our dis-

cussion depends on the fact that a2 = 1, i.e., for three-digit numbers, only one (end number) X* 

can occur. 

The key to our analysis is the association with each n +1 -digit number X = xn ... x0 (xn > x0) 

an w + 1-digit number X
H
 called the code ofX. This code X

B
 comprises a string of 0s and Is, has 

leading digit 1, final digit 0, and encodes all the information needed to pass from X to the (end 

number) X* to which it gives rise. We first explain the construction of X
11

 informally, leaving a 

formal definition until later. 

Write down the number X = xn ...x0 (xn > x0) and beneath it, its reverse X' = x0 ...xn, as 

shown below: 
xn ... x0 

"~
 X

0 • • •
 X

n 

Consider the role played by the i
th

 column from the right (i = 0, ..., n) in the subtraction of X' 

from X. Define an integer zi as follows: if a ten has to be borrowed from the i + 1
th
 column, zi is 

1; otherwise, it is 0. In this way we construct a string z0, ...,z„ of 0s and Is. The /? +1 -digit 

number zQ ... zn is called the code of X and is denoted by X
a
. Since we are assuming that 

xn > x0, z0 = 1, and zn = 0. The w-digit number z0 ...zn_x obtained by deleting the final 0 (zn) 

from the code zQ ... zn of Xis called the truncated code of Xand is denoted by X
b
. 

To illustrate the above ideas, consider the six-digit number X = 812311. Subtracting X' 

from X, we find that 
812311 

-113218 
699093 

The columns for which a ten has to be borrowed from the adjacent column to the left are (label-

ing from the right) the 0
th

, 1
st
, 3

rd
, and 4

th
, whence (using the above notation) z0-\,z] = 1, 

z2 = 0, z3 = 1, z4 = 1, and z5 = 0. Hence, X
B
 = 110110 and X

b
 = 11011. For this particular X, 

X* =699093 + 390996 = 1090089 = 99x11011 = 99X
b
 . That this is no chance happening is 

shown in our first result. 
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Theorem 1: Let X = xn ...x0 (xn > x0) have truncated code X
b
 = z0 ... zn_x. Then X* = 99X

i>
. 

Proof: Now 

X = Yjxif and X'= £*„_,. 7'. 
7=0 7=0 

Suppose that X* = zQ ...zn. Then the definitions ofz0,...,z„ show that 

7=0 

where we have written z_x - 0. Hence, 

x* = x-x
r
+(x-xy 

n 

i=0 

n 

;=0 

= f>,.r
+1

 - i>,r
+1

+^iX-,^
1
 - t^r-

1 

7 = 0 / = 0 7=1 7 = 1 

= (T
2
-l)z0...zn_1 

= 99J^. D 

Theorem 1 shows that the number an we seek is the same as the number of different 

truncated codes X
h
 or, equivalently, codes X* there are as X ranges over all n + l -digit numbers 

X = x0 ...xn (xn > x0). The idea of a truncated code was introduced to allow Theorem 1 to be 

stated effectively, and from now on only the codes themselves will be considered. To help calcu-

late an. we need to reformulate and formalize the definition of X^ given earlier. Define the code 

X* of X = xn ... x0 (xn >x0) to be the number y„ ...y0, where the y „ , . . . , yQ are defined induc-

tively as follows. Let y„ = l. For i = 1,..., n, define yn_i to be 1 if either xn_i > xt or xn_t = xt 

and y„_j+l = 1, and to be 0 otherwise, i.e., if either xn_i <xt or xn_t =xt and yn_i+i =0. This 

definition clearly accords with that given previously. 

Theorem 2: The « + l-digit number yn ...y0 is the code of some n + \ -digit number xn ...x0 

(xn > x0) if and only if: (i) each of y0, ...,y„ is 0 or 1 and y0 =
z
0,yn = 1; (ii) if, for some / = 0, ..., 

n-1, yn_t = 0, andjV-/-i = 1, then yM = 0; (iii) if, for some i = 0, ..., n-1, yn_, = 1 andjV/.i = °> 

thenj /+1 = l. 

Proof: The only if part of the assertion follows directly from the definition of code just 

given. To establish the if part, suppose that y0,...,y„ satisfy conditions (i)-(iii). Let wn ... wQ be 

the code of yn ...y0. Then (ii) shows that wn =yn = 1. Either yn_x is 0 or 1. Suppose first that 

yn_x = 0. Then (ii) shows that yx = 1, whence wn_x = yn_x = 0. Suppose next that yn_x = 1. Since 

yx is 0 or 1 and wn - 1, the definition of wn_x shows that wn_1 -yn_x - 1. Therefore, in all cases, 
w
n-\

 =
 yn-v Continuing in this way, it can be shown that wn_2 = y„_2, •••,

w
o = yo> whence 

wn ... w0 = yn ...y0, i.e.,y„ ...y0is its own code. • 
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3, THE CALCULATION OF an 

We call any n + 1-digit number yn...yQ satisfying conditions (i)-(iii) of Theorem 2 an w + 1-

digit code. Theorems 1 and 2 together show that an is simply the number of n +1-digit codes that 

there are, and it is this observation we use to calculate an. Trivially, the only two-digit code is 10 

and the only three-digit code is 110. There are precisely three four-digit codes—1010, 1100, 

1110—and three five-digit codes—10010, 11100, 11110. Thus, ax=a2=l and a3 = a4 = 3. It 

should be noted that, in each of the five-digit codes, the second and third digits are equal, and if 

the middle (i.e., third) digit is removed, then a four-digit code is obtained. Conversely, if each of 

the four-digit codes is extended by repeating its second digit, a five-digit code is obtained. These 

remarks explain why a4=a3. We now extend these ideas. 

Suppose that y2n ...yn+1 ynyn_i... j 0 is a 2^ + 1-digit code (n> 1). Then conditions (ii) and 

(iii) of Theorem 2 show that yn+l =yn. It follows easily that yln ... JVt-i JVi ...y0 is a 2/2-digit 

code. Conversely, if z2n_x ...znzn_l ...z0 is a 2w-digit code, then z2n_l ...znznzn_l ...z0 is a 2w + l-

digit code. Hence, there is a bijection between the set of 2w +1-digit codes and the set of 2n-digit 

codes, whence a2n = a2n_v 

To help find a recurrence relation satisfied by the an, we consider, for each natural number n, 

the set &
)
n comprising all w + 1 -digit numbers sn...sQ satisfying: (a) each of s09...,s„ is 0 or 1; 

(b) if, for some i - 0 , . . . ,n-1, sn_i - 0 and sn_i_l - 1, then sM = 0; (c) if, for some / = 0,..., n-1, 

sn_. - 1 and 5„_/_1 = 0, then si+l - 1. Thus, an is the number of those elements sn ... s0 in SPW for 

which sn = 1 and sQ = 0. If an element of &
)
n is taken, and each 0 in it is changed to 1, and each 1 

to 0, then another element of &
)
n is obtained. Hence, the number of elements sn...s0 in &

)
n for 

which sn = 0 and sQ = l is also an. Similarly, the number of those elements sn ... sQ in ifn for 

which sn = sQ - 0 is the same number as those for which s„=s0 = l; we denote this common 

number by bn. 

The members sn ... s0 of ifn (n > 3) for which sn = s0 = 0, other than the one comprising all 

zeros, hatve one of the forms, 

0.. .0Z0.. .0, 

in which there are r initial zeros, r final zeros, and X is an n - 2r +1-digit code, for some natural 

number r satisfying 2r < n-l. Conversely, each w +1 -digit number of the above form lies in ifn 

and has both its initial and final digits zero. Thus, for n > 3, 

lan_2 + --+a4+a2 +1 (n even) 

n
 l

a
»-2 + -~+c*3 +«i +1 (« odd). 

Trivially, b2=bx = 1. 

Since a2n - a2n_l9 we need only calculate a2n_l. To this end, we note that every 2w + 2-digit 

code has one of the forms, 
1X0, 170, 1Z0, 

where X, 7, Z e6P2w-1 are such that X = ^ ^ j ... J0 satisfies 52w_j = 1, J0 = 0, 7 = s2n_x ...s0 satis-

fies s2n_i = 0, sQ = 1, and Z = ^ . j . . . 50 satisfies ^2«-i~
5
o-l- Conversely, each such X,Y,Z 

gives rise, respectively, to a 2??+ 2-digit code 1X0,170,1Z0. In view of our earlier remarks, the 

number of possible Xs is a2n_x, the number of possible 7s is a2n_u and the number of possible Zs is 

b2n_v Hence, for n>2, 
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a
2n+l ~

 a
2n-\ +

 a
2n-\

 +
*2«-l 

=
 a
2n-l +

a
2n-l + <*2n-3 + -

 a
3 +

 a
l +

1 

= 2a2n_l+a2n_3 + --+a3+al + L 

This recurrence relation enables us to prove our main result. 

Theorem 3: For each natural number n, a2n - a2n_x = F2n, i. e., an = iVa±ii. 

Proof: Since a2n = a2n_ly it remains only to prove that aln_x = F2n. We do this by induction 

on n. The cases ax = 1 = F2 and a3 = 3 = F4 have been established earlier. Suppose that a2k_x -

F2k, for k = 1, ...,n, where n>2. Then 

02n+l = *hn-\
 +a

2«-3 + - +03 +«i + 1 

= 2F2„+F2n_2 + .-+F4+F2+l 

=
 F

2n + (*2*+l "
 F

2n-l) + (
F
2n-l " ^ - 3 ) + • • • + (F 3 - F 3 ) + (F 3 - i ^ ) + 1 

~^2»
 +

 ^2«+l 

~
 F

2n+2• 

This completes the proof by induction. D 

An easy exercise shows that, for n > 2, 

b
2n=

b
2n-l=

F
2n-2+'-+

F
4+

F
2+

l
 =

 F
2n-V 

Since b2=bl=Fl, the 5„s are the Fibonacci numbers with odd suffixes, in the same way that the 

ans are those with even suffixes. 

4. CONCLUDING REMARKS 

Our original problem extends in the obvious way to include as initial numbers every n + l-

digit number X whose reverse X' satisfies X' < X. In this wider context, we ask: How many end 

numbers are now possible and what are they? The extra initial numbers that have to be considered 

either generate the end number 0 or have the form YXY', where Y is an r-digit number, X is an 

n-2r-v\-digit number whose initial digit exceeds its final one, and the natural number r satisfies 

2r < n-1. This latter form gives rise to the an_2r+l end numbers 99(10
r-1

) code of X. Thus, the 

total number of end numbers now possible is: 

a
n +

a
n-2 + '•• +

a
2 +

1
 =

 F
n +

 F
n-2 + - +

 F
2 +

1
 =

 F
n+l (

n
 ^Ven), 

« n + ^ 2 + ---+«l + l = ^Wl+^,-l + ---^2+l = ̂ +2 ("Odd). 

Denoting this latter number by an, we see that a2n - a2n_x = F2n+l, i.e., a„ = ^V*±ii+1 • 

Although our discussion has been concerned exclusively with base 10 arithmetic, it gener-

alizes, with only minor modifications, to an arbitrary base m. The main change required is that in 

Theorem 1 the number 99 has to be replaced by m
2
 -1. A propos the concluding remarks of 

the opening paragraph, the unique end number generated by a three-digit number abc {a > c) to 

base m is the four-digit number 10w-2 /w- l , which equals {m-l){m + l)
2
 and is a square 
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precisely when rn-l is; this is fortuitously so when m = 10. On the other hand, the reverse of 

I0m-2m-l is m-lm-2 01, which equals (m
2
 - I )

2
 and is always square. 
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