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Abstract

The generalized Motzkin numbers are common generalizations of the Motzkin num-

bers and the Catalan numbers. We investigate their combinatorial properties, including

the combinatorial interpretation, the recurrence relation, the binomial transform, the

Hankel transform, the log-convexity, the continued fraction of the generating function,

and the total positivity of the corresponding Hankel matrix.

1 Introduction

The Motzkin numbers Mn count the number of lattice paths from (0, 0) to (n, 0) with steps
H = (1, 0), U = (1, 1) and D = (1,−1), never going below the x-axis [1, 6]. It is well known
that the Motzkin numbers satisfy the recursion

(n+ 3)Mn+1 = (2n+ 3)Mn + 3nMn−1

(see [16] for a combinatorial proof). The Motzkin numbers are closely related to the ubiqui-
tous Catalan numbers Cn = 1

n+1

(

2n
n

)

, which count the number of lattice paths from (0, 0) to
(2n, 0) with steps U and D, never falling below the x-axis. For example,

Mn =
∑

k

(

n

2k

)

Ck, Cn+1 =
∑

k

(

n

k

)

Mk.

1



It follows that

Cn+1 =
∑

k

(

n

2k

)

Ck2
n−2k.

See [5, 6] for combinatorial interpretations of these identities. On the other hand, the Motzkin
numbers and the Catalan numbers enjoy some similar properties, including the recurrence
relations

Mn+1 = Mn +
n−1
∑

k=0

MkMn−1−k, Cn+1 =
n

∑

k=0

CkCn−k

and the generating functions

∑

n≥0

Mnx
n =

1− x−
√
1− 2x− 3x2

2x2
,

∑

n≥0

Cnx
n =

1−
√
1− 4x

2x
.

Very recently, Z.-W. Sun [18] introduced the generalized Motzkin numbers

Mn(b, c) :=

⌊n/2⌋
∑

k=0

(

n

2k

)

Ckb
n−2kck, n = 0, 1, 2, . . . , (1)

where b, c ∈ N. Clearly, the generalized Motzkin numbers are common generalizations of the
Motzkin numbers and the Catalan numbers:

Mn(1, 1) = Mn, Mn(2, 1) = Cn+1.

It is also known that Mn(3, 1) = Hn are the restricted hexagonals numbers described in
Harary and Read [7] and Mn(0, 1) form the sequence (C0, 0, C1, 0, C2, 0, . . .) of the Catalan
numbers.

Sun [18] established the recursion

(n+ 3)Mn+1(b, c) = b(2n+ 3)Mn(b, c)− (b2 − 4c)nMn−1(b, c),

the generating function

M(b, c; x) :=
∑

n≥0

Mn(b, c)x
n =

1− bx−
√

(1− bx)2 − 4cx2

2cx2
, (2)

and applied them to study arithmetic properties of the generalized Motzkin numbers. The
object of this paper is to investigate combinatorial properties of the generalized Motzkin
numbers, including the combinatorial interpretation, the recurrence relation, the binomial
transform, the Hankel transform, the log-convexity, the continued fraction of the generating
function, and the total positivity of the corresponding Hankel matrix.

Let α = (an)n≥0 be a sequence of nonnegative numbers. We say that the sequence is
log-convex if aiaj+1 ≥ ai+1aj for 0 ≤ i < j. Many well-known combinatorial numbers form a
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log-convex sequence, including the Catalan numbers Cn and the Motzkin numbers Mn. See
[11, 19, 21] for details. Define the Hankel matrix H(α) of a sequence α = (an)n≥0 by

H(α) = [ai+j]i,j≥0 =















a0 a1 a2 a3 · · ·
a1 a2 a3 a4 · · ·
a2 a3 a4 a5 · · ·
a3 a4 a5 a6 · · ·
...

...
...

...
. . .















.

A matrix is called totally positive of order r (TPr for short), if its minors of all orders ≤ r
are nonnegative. It is TP if all minors are nonnegative. Clearly, a sequence is log-convex if
and only if its Hankel matrix is TP2. We refer the reader to [10, 13] for more information
about TP matrices.

Theorem 1. Let Mn := Mn(b, c) be the generalized Motzkin numbers defined by (1). Then

we have the following.

(i) The recurrence relation

Mn+1(b, c) = bMn(b, c) + c
n−1
∑

i=0

Mi(b, c)Mn−1−i(b, c)

for n ≥ 1.

(ii) The generating function

M(b, c; x) =
1

1− bx− cx2

1− bx− cx2

1− bx− · · ·

.

(iii) The binomial transform

n
∑

k=0

(

n

k

)

Mk(b, c) = Mn(b+ 1, c).

(iv) The Hankel transform

det











M0 M1 · · · Mn

M1 M2 · · · Mn+1
...

...
. . .

...

Mn Mn+1 · · · M2n











= c(
n+1

2 ).
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(v) The Hankel matrix










M0 M1 M2 · · ·
M1 M2 M3 · · ·
M2 M3 M4 · · ·
...

...
...

. . .











is totally positive if b2 ≥ 4c.

(vi) The sequence (Mn)n≥0 is log-convex if b2 ≥ c.

2 Proof of Theorem 1

The generalized Motzkin triangle is an infinite lower triangular matrix M(b, c) = [Mn,k(b, c)]
defined by

M0,0(b, c) = 1, Mn+1,k(b, c) = Mn,k−1(b, c) + bMn,k(b, c) + cMn,k+1(b, c), k ≥ 1. (3)

Such a triangle has occurred in the literature. For example, it is called the (b, c/b)-Motzkin
triangle in He [8]. In particular, M(1, 0) is the famous Pascal triangle, M(1, 1) is the Motzkin
triangle [2], and M(2, 1) is the Catalan triangle of Aigner [3]. Following Aigner [3], M(b, c)
is a recursive matrix and the entries Mn,0(b, c) of its first column are the corresponding
Catalan-like numbers. In this section, we first demonstrate that the generalized Motzkin
numbers Mn(b, c) is precisely the Catalan-like numbers corresponding to the generalized
Motzkin triangle M(b, c), i.e., Mn(b, c) = Mn,0(b, c), and then apply this result to prove
Theorem 1.

The generalized Motzkin triangle is also a Riordan array. A Riordan array, denoted
by (g(x), f(x)), is an infinite lower triangular matrix whose generating function of the kth
column is xkfk(x)g(x) for k = 0, 1, 2, . . ., where g(0) = 1 and f(0) 6= 0. A basic example of
Riordan array is the Pascal triangle

P =

[(

n

k

)]

n,k≥0

=

(

1

1− x
,

1

1− x

)

.

It is well known [14, 15] that all Riordan arrays form a group under the matrix multiplication:

(g(x), f(x)) ∗ (d(x), h(x)) = (g(x)d(xf(x)), f(x)h(xf(x))). (4)

A Riordan array R = (g(x), f(x)) = [rn,k]n,k≥0 can be characterized by two sequences A =
(an)n≥0 and Z = (zn)n≥0 such that

r0,0 = 1, rn+1,0 =
∑

j≥0

zjrn,j, rn+1,k+1 =
∑

j≥0

ajrn,k+j (5)
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for n, k ≥ 0 (see [9] for instance). Let A(x) and Z(x) be the generating functions of A- and
Z- sequences respectively. Then it follows from (5) that

g(x) =
1

1− xZ(xf(x))
, f(x) = A(xf(x)). (6)

See [9] for details. NowM(b, c) is a Riordan array with A(x) = 1+bx+cx2 and Z(x) = b+cx.
Let M(b, c) = (M(x),m(x)). Then by (6),

M(x) =
1

1− bx− cx2m(x)
, m(x) = 1 + bxm(x) + cx2m2(x). (7)

Note that m(0) = 1. Solve (7) to obtain

M(x) = m(x) =
1− bx−

√

(1− bx)2 − 4cx2

2cx2
.

Comparing with (2), we have M(b, c; x) = M(x). Thus Mn(b, c) = Mn,0(b, c). Furthermore,

M(b, c; x) = 1 + bxM(b, c; x) + cx2M2(b, c; x). (8)

Now we are in a position to prove Theorem 1.
(i) Comparing coefficients of xn+1 on both sides of (8), we have M0(b, c) = 1 and

Mn+1(b, c) = bMn(b, c) + c

n−1
∑

i=0

Mi(b, c)Mn−1−i(b, c)

for n ≥ 1.
(ii) Rewrite (8) as

M(b, c; x) =
1

1− bx− cx2M(b, c; x)
,

which leads to the continued fraction

M(b, c; x) =
1

1− bx− cx2

1− bx− cx2

1− bx− · · ·

.

(iii) Let P be the Pascal triangle. Then by (4),

P ·M(b, c) =

(

1

1− x
,

1

1− x

)

· (M(b, c; x);M(b, c; x))

=

(

1

1− x
M

(

b, c;
x

1− x

)

,
1

1− x
M

(

b, c;
x

1− x

))
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Note that

1

1− x
M

(

b, c;
x

1− x

)

=
1

1− x

1− bx
1−x

−
√

(

1− bx
1−x

)2 − 4cx2

(1−x)2

2cx2

(1−x)2

=
1− x− bx−

√

(1− x− bx)2 − 4cx2

2cx2

= M(b+ 1, c; x).

Hence P ·M(b, c) = M(b + 1, c). Comparing entries of the first columns on both sides, we
obtain

n
∑

k=0

(

n

k

)

Mk(b, c) = Mn(b+ 1, c).

(iv) Let H(b, c) = [Mi+j(b, c)]i,j≥0 be the Hankel matrix of the generalized Motzkin
numbers and

Hn = [Mi+j(b, c)]0≤i,j≤n =











M0 M1 · · · Mn

M1 M2 · · · Mn+1
...

...
. . .

...
Mn Mn+1 · · · M2n











the nth leading principal submatrices of H. The fundamental theorem of Aigner on recursive
matrices states that

Mm+n(b, c) = Mm+n,0(b, c) =
∑

k

ckMm,k(b, c)Mn,k(b, c),

or equivalently,
H = MTM t,

where T = diag[1, c, c2, c3, . . .] is a diagonal matrix [3, p. 351]. Since M is a lower triangular
matrix with all diagonal entries are 1, we have

det(Hn) = c1+2+···+n = c(
n+1

2 ).

To prove (v) and (vi), we need the following result, which is a special case of [4, Theorem
2.8].

Lemma 2. If the sequence (1, b, c) is PF, then M(b, c) is TP. If the sequence (1, b, c) is

log-concave, then the sequence (Mn,0(b, c))n≥0 is log-convex.

It is well known that a finite sequence of nonnegative numbers is PF if and only if its
generating function has only real zeros (see [10, p. 399] for instance). So, if b2 ≥ 4c, then
the matrix M is TP, and so is its transpose M t. Clearly, the diagonal matrix T is TP. Also,
the product of TP matrices is TP. Thus the Hankel matrix H = MTM t is TP if b2 ≥ 4c by
Lemma 2. This proves (v).

(vi) is an immediate consequence of Lemma 2. This completes the proof of the theorem.
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3 Remarks

In this paper we investigate the generalized Motzkin numbers by setting them in a broader
context (the generalized Motzkin triangle). This approach gives us more room to work and
is often more effective because the theory of matrices is more fruitful.

Aigner [3] used (weighted) lattice path techniques to give combinatorial interpretations
of entries of a recursive matrix, including the Catalan-like numbers. Here we present a
combinatorial interpretation of the generalized Motzkin numbers from such a viewpoint.

Recall that a Motzkin path of length n is a lattice path from (0, 0) to (n, 0) with steps
H = (1, 0), U = (1, 1) and D = (1,−1), never going below the x-axis. To the steps we assign
weights w(U) = 1, w(H) = b, w(D) = c. Let Pn be the set of Motzkin paths of length n. For
P ∈ Pn, define the weight w(P ) =

∏

w(steps). Then

Mn(b, c) =
∑

P∈Pn

w(P ).

Some combinatorial properties of the generalized Motzkin numbers follow immediately
from the point of view of weighted lattice paths, including the recurrence relations, the
generating functions and the log-convexity. We refer the reader to [3, 12, 17, 20] for more
information.
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