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Abstract

By considering a family of orthogonal polynomials generalizing the Tchebycheff polynomials
of the second kind we refine the corresponding results of De Sainte-Catherine and Viennot on
Tchebycheff polynomials of the second kind (Lecture Notes in Mathematics, vol. 1171, 1985,
Springer-Verlag, 120). © 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

There are a number of integrals of products of classical orthogonal polynomials with
respect to their weight functions that have a regular sign pattern (see, e.g. the classical
papers by Askey]], 2]). One way of proving the positivity of those integral expressions—

a way that has been very fruitful in the past (see, €g4f9, 11] and the references

cited there)—is to construct an adapted combinatorial structure and express the integral
as a generating function for that structure. Then proving the positivity of that sign pattern
boils down to deriving some specific geometric properties for those structures. Thus, a true
analytic result appears as a corollary of a combinatorial property.

The calculation of those integrals can also be viewed as an evaluation of a formal
linear functional applied to its associated orthogonal polynomials. Note that when the
weight function is unknown the positivity of the evaluation is somehow unexpected. In
this paper we want to illustrate this by making a study of “integrals” of products of
general Tchebycheff polynomialg &, a), which are defined by the following three-term
recurrence relation:

Unt1(X, @) = XUn(X, @) — AnUn—1(X, @), Uo(x,a) =1, Ui(x,a) =X, (1)
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whereix = a,Ax+1 = 1. HenceUn(2x, 1) is the Tchebycheff polynomial of the
second kindUn(x) (see B]). Vauchassade de Chaumont and Vienrid [have shown
how these generalized Tchebycheff polynomials with one parametese naturally from
some enumerative problems in molecular biologi§]] It is also known L3, 14] that the
polynomialsUn (X, a) are orthogonal with respect to the linear functiopal R(a)[x] —
R(a) defined byp(x2"*+1) = 0 and

w10 (1)

In addition, we can readily derive from)(the following generating function:

1+ Xw + aw?

n__
> Un(x, ayw" = ARy —— ©)

The aim of this paper is to give a combinatorial interpretation for the following evaluation
of ¢ at a product of generalized Tchebycheff polynomialgx, a):

[((Ng,...,NK); &) = eUn,(X,a) - - - Up (X, a)). (4)

In particular, our interpretation will imply that((ni, ..., nk); a) is a polynomial ofa
with nonnegative integratoefficients and generalize a result of De Sainte-Catherine and
Viennot on Tchebycheff polynomials of the second kiBH [

We start with some definitions and notationslaitice pathof lengthn is a sequence
¥ = (Po, P1, - - -, Pn) Of pointspi = (i, yi) in N x N, with stepss = (pi—1, pi) of type
up(yi = vi—1+ 1, X = Xj—1 + 1) ordown(y; = yi—1 — 1, X; = Xi—1 + 1). The path is
called a Dyck path ifpg = (0, 0) and p, = (n, 0). We can identify the path with its step
sequences, S, ..., Sy), Or its step-type sequence(sy), . . ., t(sy)) with starting point
po and ending poinp,, wheret(s) is u, if 5 is up;d, if it is down. We callx; (resp.y;)
the position(resp.heigh) of p;. The pointp; is called arise (resp.fall) if 5 is up (resp.
down); pj is called gpeak(resp.valley) if 5 is up (resp. down) ang 1 is down (resp. up).

Letn = (n1, ..., nk) be a composition of the positive integerLet [n] denote the set
{1,2,...,njandforj =1,...,k, let§ c [n] denote the segment

S ={i:n+---+n_1+l<i<nm+---+nj_1+nj}

So[n] =S USU---US&. Theparity (resp.position-parity of Sj is defined to be that

of nj (resp.n1+ --- +nj_1), for 1 < j <k, assuming thatg = 0. Thelocal parity of i

in §j is defined to be that of — ny — - - - — nj_1. Let DSV(n) be the set of Dyck paths of

lengthn such that all the peak-positions belondma, ny +ny, ..., N1+ --- + Ng_1}.
Given a patty in DSV(n), a valleyp; = (i, yi) of y is said to bespecial if y; is even

andi belongs to an even segment of odd position-parityelek(y) (resp.SVAL(y)) be

the number oeven-height riseéspecial valleyysof y. The following is our main result.

Theorem 1. For any compositiom = (ng, ..., Nk) of the positive integer n, we have

I(n; a) — Z aEHR()’)"rSVAL(y). (5)
yeDSV(n)
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Fig. 1. The Dyck paths of DS, 3, 2, 3).

Some remarks are in order. As we will show later, the weight function in the statement
of the above theorem is different, but inspired, from that of the corresponding moments.
If a =1, it can be shownd] that (4) can be written as

1
I(n;1) = ;/lunl(x) -+ Up (v 1 — x2dx,

soTheorem Ireduces to a result of De Sainte-Catherine and Vierjot [

The set DSVn) itself may change if is rearranged. Moreover, in, if all the even
integers are to the left of odd ones, ag22, 3, 3), then there is no even segment of odd
position-parity and so no path in D$W) will have any special valleys.

Example. The set DS\(2, 3, 2, 3) is shown inFig. 1, where even up-steps and special
valleys are each weighted lay Note thatS, = {1,2}, $ = {3,4,5}, S = {6, 7}, & =
{8,9, 10}; and only 3 is an even segment of odd position-parifyheorem 1reads

I (n; a) = 2a2 + ad for any rearrangementof (2, 3, 2, 3).

If K =2 andn = (m, n), then to form a Dyck path in DS¥h, n) we must haven = n
and the path should start with up-steps and end with down-steps, which imply the
orthogonality.

Corollary 1. For any positive integers rm we have

¢(Um(x, A)Un(x, @) = 8" smp, (6)
For any propositiorA we define the characteristic functigrtA) to be 1, if Ais true; 0, if
false. The following is the linearization formula fok, (x, a).
Corollary 2. For any positive integers m and n,

min(m,n)
Um(x, @)Un(x,@) = ) al/a+xme=omoddxtetimoddyy,  sx,a).  (7)
k=0

Proof. SinceUn(X, @) is a polynomial inx of degreen, we have the expansion

m+n
Um(x. @)Un(x,a) = Y _ c(m,n,HUj(x, a),
I=0

wherec(m, n, 1) € R(a). From the orthogonalityd) we derive

cm, n, 1) = a 12 pUmn(x, a)Un(x, @)U (X, Q).
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By Theorem 1 o(Un(X, @)Un(X, a)Uj(x,a)) = O if m+n+1 is odd orl > m+n.
Supposem + n + | is even and sef = m + n — 2k with k > 0, then
e (Un(x, a)Up(Xx, a)U| (X, @)) is the generating function of Dyck paths of lengtm?+
n — k) whose peak-positions are containednm m + n}. Therefore,

c(m,n, 1) = alt+lo/2=l/2), if mornis odd, ork is even,
» T alt+k+D/2)=1/2) - if mandn are even, andl is odd,

ak/2, if k is even,
alk/2] if m, n, k are odd,
ak+td/2  otherwise

Combining the above cases, we obtaih ( O

There are several ingredients in our derivation of the combinatorial interpretation for
I (n; a). First, as in b], we obtain a preliminary combinatorial interpretationlgf; a)
with signed weight functiohy interpretingJn (X, a) asweighted matching polynomiaté
the segment graph dm] and the momentg(x") as generating functions aoncrossing
perfect matching®f the complete graph om]. This will be done in the next section.
The difficult part is to construct aveight-preserving sign-reversing involuti@m wpsr
involution on the underlying set. I18ection 3we describe an involutiog on the set of
weighted paths with fixed starting and ending points, theséation 4 we apply this
involutiony to prove our main theorem.

2. Matching polynomials and Dyck path complexes

A graph on a finite seSis an ordered paiG = (S, E) whereE is a set of some pairs
{s,t} of elements ofS. An element ofSis called a vertex oz and that ofE an edge of
G. A matchingu of the graphG is a subset of edges such that no two edgegs béave a
common vertex. Given a matchingof G, a vertex ofG is said to basolatedif it does not
belong to any edge qgi. A perfect matching is a matching without isolated vertices. The
complete graph o1 is the graphKs = (S, E), whereE is the set of all possible edges
{s, t} with s # t. The segment graph dn] is the graph Seg= ([n], E), whereE is the
set of all edgesi, i + 1} for 1 <i < n— 1. We put weight on the matchings of $egach
isolated point is weighted and each edgf, i + 1} is weighted—1, if i is odd;—a, if i is
even. According to Viennot's theonL{l, it is easy to derive fromi) that the polynomial
Un(X, &) is the generating function of all matchings of Sege. the weighted matching
polynomial of Seg:

Un(X, a) = Z (_1)|M\aE|ND(M) Xn*ZIM\’ (8)
neM(Seg,)

where|u| is the number of edges pf (thusn—2| | is the number of isolated verticesof
andeIND(u) the number of edgds, i +1} with i even. Itis possible to give a combinatorial
proof of (3) by using the above combinatorial interpretati@hfor Un (X, a).

Consider the complete grapgty, on [n]. A matchingu of Ky is noncrossing iff it has
Nno crossing pairs, i.e. there are no edfje$} and{i’, j’} of u satisfyingi <i’ < j < j’.
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Let 1 be a noncrossing perfect matchinglgf. Theheightof an edge(s, t}, s < t, in u
is the number of edges, j} in u such thai < sandj > t. Itis known [L0, 12] that the
number of noncrossing perfect matchingaf, with i even-height edges isMarayana
number (1) (;14). LetEHE(1) denote the number of edges of even height it follows
from (2) that

pn(x") = Y atriEw, 9
neM;

where M, is the set of noncrossing perfect matching&af

Definition 1. Letn = (n1, ..., nk) be a composition ofi. An edge(s, t} of K, is called
homogeneou§esp.consecutiveif both s andt belong to the same segmegjtfor some

j (resp.|s — t| = 1). We define anatching complerf typen to be a noncrossing perfect
weighted matchingw of K, satisfying the following:

1. There are two kinds of edges: red and blue. Blue edges are consecutive and
homogeneous.

2. Each red edge is weighted 1, if it is of odd heightif of even height. Each blue
edgefi, i + 1} is weighted—1, if i is of odd local parity—a, if of even local parity.

An edge is said to be am-edge, if its weight isa or —a; 1-edge, if its weight is 1 or-1.
Given a matching complex, let EINDB(u) denote the number of bleeedgedi,i + 1}
in u, and leteHRE(x) denote the number of rexdedges.

Let MC(n) be the set of matching complexes of typelnterpreting blue edges as
matchings from the polynomials, and red edges as matchings from the moments, it follows
from (4), (8) and Q) that

I(n; a) = Z (_1)b(u)aEINDB(M)+EHRE(u), (10)
neMC(n)

whereb(u) denotes the number of blue edges.

Although it is possible to describe our proof of the main theorem within the model of
matching complexes, it seems more convenient to switch to the model of Dyck paths as it
will be clear in the next section.

It is well known that the noncrossing perfect matchingskaf are in one-to-one
correspondence with Dyck paths of lengtHndeed, given a noncrossing perfect matching
u of K, we can define the step-type sequenceype- t; - - - ty of a Dyck path by setting
ti = u, if i is the smaller vertex of an edgejin t; = d, otherwise. Obviously the mapping
type is a bijection10]. Thus, using this bijection and suitably weighting path steps we can
switch from a matching complex toyck path complexvhich is defined in the following.

Definition 2. Letn = (ng, ..., nk) be a composition ofi. A path complexf typen is a
pairr = (y, w) such thaty is a path with point sequenc¢@o, p1,---, Pn)s Pi = X, Vi),
andw = (w1, ..., wp) is the sequence of weights of steps= (pj—1, pi) satisfying:

o If pj is nota peak, them; = aif 5 is up andy; is even; 1 ifs is down ory; is odd.
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Fig. 2. Paths ifH(6; 2, 4) andH(6; 1, 3) with step-type sequence, d, u, u, d, u).

o If p; is a peak, themw; = 1 or—1if y; is odd and is of odd local parity; 1 or-a
if yi is odd and is of even local paritya or —1 if y; is even and is of odd local
parity;a or —a if y; is even and is of even local parity.

If y is a Dyck path, the corresponding path complex is called a Dyck path complex. A peak
(resp. valley)p; of y is said to behomogeneoui i, i + 1 belong to the sam§; for some

j € [k]. The weight ofp; is the product ofw; andw;1. Furthermorep; is called positive
(resp. negative), if its weight is positive (resp. negative).

Let DC(n) be the set of all Dyck path complexes of typevhose negative peaks are all
homogeneous. For € DC(n), let EPNR(r) (resp.NP(r)) be the number olbcally-even
position negative peaksesp.negative peakf = and leteHPR(7r) be the number afven
height positive risesf .

Now we can restatel() as follows:

I(n;a) = Z (_1)NP(JT)aEPNF(JT)+EHPR71). (11)
7eDC(n)

Comparing 11) with (5), we need to find a wpsr involution diC (n) whose fixed points
are in one-to-one correspondence with paths in DBV

3. Fundamental involution

If the compositiom reduces tgn) a path complex of type is simply called a weighted
path of lengtm. Note that the peaks of any weighted path are homogeneouX.(bek, I)
be the set of weighted paths of lengtlwhose underlying paths go fro, k) to (n,1).
Clearly one should require that> |k — || andn = k+1 mod 2 in order to have at least
one such path ift{(n; k, I).

Example. All weighted paths i (6; 2, 4) andH(6; 1, 3) whose underlying paths have
step-type sequenca, d, u, u, d, u) are shown irFig. 2, where weight 1 of each down-step
is omitted.

Since a lattice path is determined by its step-type sequence when the starting and
ending points are fixed, we can encode any weighted path H(n; k, |) by a biword
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Fig. 3. Pattern&/ T, V—, L*, N—, NT andL~ (O is the starting point).

T o= ;11 ;“ > where(ty, ..., tn) is the step-type sequence aqd, ..., wy) the
—o wp

weight sequence. We say that a biwards a patternof x if it is a subword ofr, i.e.

7 = atp for some biwords andg, where the composition of words is concatenation.

In order to describe our involution we shall need the following patterns:
du ddu udu
+ — + — + —
V—(11>’ L—(11+)’ N _(+1+>’

_ _({u d __(dud _ _f(uud
ce(hy) v=Gt) =)

where 4’ means 1 ol and ‘—" means—1 or —a, moreover, we require that the negative
peak in the pattertN~ is of height at least 1. The patterns are illustrateHim 3.

Definition 3. Define H*(n; k,1) to be the set of all weighted paths € H(n; k,I)
satisfying one of the following conditions:

(i) = starts with(n —k+1)/2 positive up-steps and ends with+ k —1)/2 down-steps.

(i) m hass, s > 0, negative valleys of height O, sgy,, pr,. ..., Prs Withry <r2--- <
rs; it starts with(r, —Kk) /2 positive up-steps and is followed lay +k) /2 down-steps;
for eachi, 1 <i < s — 1, the portion ofr from py; to py,,, is one negative peak
followed by (ri+1 —r; — 2)/2 positive up-steps an@; +1 —ri — 2) /2 down-steps; the
portion of & after pr, is one negative peak followed tjp — rs — 2+ 1)/2 positive
up-steps andn —rs — 2 —1)/2 down-steps.

Example. Two weighted paths of type (i) if*(29; 3, 2) are illustrated irFig. 4, where
1 andzwo coincide starting from the eighth step. Note thathas four negative valleys
of height 0 with abscissas 9, 11, 19, 25 respectively, wijldnas one more such valley,
(3,0).

The following lemma gives a characterization of the @(n; k,) = H(n
k, D\H*(n; k, ).

Lemma 1. Assume thatk is odd. Thane ﬁ*(n; k, ) if and only if it contains one of the
patterns V7, V=, N*, N—, LT and L".

Proof. The condition is clearly sufficient. It remains to show the ‘only if’ part.

Note thatifp;,i > 1, is a negative peak of height 1 then 1 must be a negative valley
of height 0, and ifp;j,i < n — 1, is a negative valley of height 0 thgm,1 must be a
negative peak of height 1.

Let be a path iH*(n; k, 1), then it must contain one of the following patterns: (1) a
negative peak of height greater than 1, (2) a valley of height greater than 0, (3) a positive
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Fig. 4. Two pathsrq andrzy in H*(29; 3, 2).

valley of height O preceded by two positive steps. Now, in case (1), it has a portion of type
V~, N~ or L™; in case (2);r has a valleyp; of height greater than 0, which entails the
following four cases:

(i) if = has a positive valley;, then it has a portion of type ;
(iiy if pi is negative, then it has a negative pgak, of height greater than 1,
(iii) if i > 1 andp; is positive andwj_1 is positive, then it has a portion of tygé' or
L+;
(iv) if i > 1 andp; is positive andwj_1 is negative, then it has a negative pgak; of
height greater than 1;

in case (3), it has a patted™ or L. [
The following result is crucial for the proof of our main theorem.

Proposition 1. Suppose that = |k — || and n= k + 1(mod 2. Then there is a weight-
preserving sign-reversing involutiah onH(n; k, 1) which has no fixed point, if & k+1;
exactly one fixed point, if & k + . In the latter case, if k is even the unique path starts
with (n+ k —1)/2 down-steps and ends with — k+1) /2 up-steps; if k is even the unique
path starts with(n — k + 1) /2 up-steps and ends witim + k — |)/2 down-steps.

Proof. We construct a wpsr involutiosr onH(n; k, 1) as follows: letr € H(n; k, I).
1. If kis even, we distinguish two cases.

e 71 contains a peak: Lab; be the leftmost one, we defing(r) by changing the
ith weight of to its opposite (this is possible becausendy; have the same
parity wherk is even).

e 7 contains no peak: Then must start with(n + k — 1)/2 down-steps and end
with (n — k 4+ 1)/2 up-steps, clearlp < k + 1. Definey () = 7.

2. If kis odd, we distinguish three cases.

e € H*(n;k,1): If 7 = VB or V=B then sety (r) = t2 t12 B; else

—w1 w
if 7 contains a pattera = L+, N+, L= or N~ then find the leftmost such a

portion, i.e. find the smallestsuch thatr = « (t‘ li+1 t‘“)ﬂ = atp
Wi Wi41 Wi42
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and defing) (7) = « (;2' _tli;iil ;2;12) B. Clearly s has no fixed points in

this case.
o 1 € H*(n; k, 1) withn > k +I: Thensx is one of the following forms:

k k
u d d d u d ! ol
0= («) @ o= () () ()
wherea anda’ are either empty or a sequence of positive up-stepsgarmti g’
are either empty or start with a down-step. In either case, dgfite) to be the
path of the other form witkk = o’ andB = B’. Clearlyy has no fixed points in
this case.
e 1w € H*(n; k,I) with n < k+1: Clearly,n is the unique path of type (i) in the
definition of H*(n; k, |) because a path of type (ii) must have a length greater
thank + 1. Definey () = 7.

Summarizing all the above yields the propositiofl
Example. The involutionyr on’H*(29; 3, 2) is illustrated inFig. 4, wherey : 71 > 2.

By computing the number aven up-stepsf the weighted path fixed by, we derive
from the above proposition that the generating functioffof; k, 1) is 0 if n > k + 1,
al(M—k+D/41 if n < k + | with k even and odd,al™k+)/4] otherwise.

4, Proof of the main theorem

For any sequenam = (mg, my, ..., Mk) of nonnegative integers witmg = my = 0,
let DC(n; m) denote the set of all Dyck path complexedid(n) whose underlying Dyck
paths have the ordinaty; at abscissa; + ---+ nj fori = 1,2,..., k. Similarly we can
define the subset DSY; m) of DSV(n). Thus we have the following decompositions:

DC(n) = UDC(n; m), DSV(n) = U DSV(n; m).
m m

We now define a wpsr involution orDC(n; m). Any Dyck path complexz in

DC(n; m) will be identified with ak-tuple (1, ..., k) of weighted paths, wherg; €
H(nj; mi_1, m;) is the restriction ofr on the segmerff forl <i <Kk.

Form = (71, ..., mk) in DC(n; m), if Y (mj) = n; foralli, set¥(x) = 7; otherwise,
set¥(m) = (71, ..., ¥ (@), ..., k), where is the smallest integer such thatr;) # ;.

Clearly ¥ is a wpsr involution orDC (n; m). According toProposition 1there is a unique
fixed pointrz, in DC(n; m) if Imi_1 — m;j| < nj < m_1 + m; for all i; no fixed point,
otherwise. Moreover, ift, = (71, ..., k) With ;€ H(nj; mi_1, m;), then eachr; is
the path described blproposition 1i.e. if mj_1 is even (resp. odd) them; starts with
(nj + mi_1 — m;)/2 down-steps (resp. up-steps) and ends with— mj_1 + m;)/2
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! I i I

Fig. 6. Involution ¥ on the path complexes @C(1, 5) with weighta or —a.

up-steps (resp. down-steps). lkegn; m) denote the fixed point set af. Clearly, we have
EHPR(r) = EHR(r) for all = € F(n; m). It follows from (11) that

Inpay=Y_ Y a™rm, (12)

m geF(n;m)

Note that a path complex i (n; m) has a homogeneous peakdhif m;_; is odd
andn; > |mj_1 — m;|, while no path in DSVn; m) has any homogeneous peak. To
complete the proof, we construct a bijectién = +— 7* from F(n; m) to DSV(n; m) by
settingn™ = (7, ..., my), wherer* = mj, if mj_; is even;z" is the path starting with
(nj + mi_1 — m;)/2 down-steps and ending witlj — m;_1 + m;j)/2 up-steps, in other
words, the step-type sequencerdfis the reverse of that ofj, if mj_1 is odd. Clearly, the
resulting pathr* is an element of DS¥h; m) and the map is a bijection.

Now we compare the weights of and 7*. For eachi, if 7* has a special valley
in §, i.e. bothmj_; and (nj — mj_1 4+ m;)/2 are odd and; is even, thenr* has
one more even positive up-step than otherwiser;* has the same number of them as
mi. So if we weight each special valley withy then ¢ becomes weight-preserving, i.e.
EHR(r) = EHR(t™) + SVAL(r*). Our main theorem follows fromil@).

Example. An example of® : = +— 7* from F(n; m) to DSV(n; m) is illustrated inFig. 5
forn = (3,4,3,4,3,6,3,2) andm = (0,3,5,2,4, 3,3, 2,0), where the two special
valleys are circled. While the involutio# on the path complexes @fC(1, 5) with weight
a or —a s illustrated inFig. 6.
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Fig. 7. De Sainte-Catherine and Viennot's involution witk= (1, 5).

Remark. Whena = 1, De Sainte-Catherine and Vienné} have given a sign-reversing
involution onDC(n), which consists of changing the leftmost homogeneous negative peak
to a positive peak and vice versa. As showrFig. 7, for a # 1, their involution does

not preserve weights. While it is obvious from the algebraic expresdjahdt| (n; a) is
symmetric by permuting; in n, this is not clear from our combinatorial interpretation, but
Guoniu Han (private communication) has recently constructed an involution or)SV
exhibiting this symmetry.
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