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Identity (1) below resulted from our investigation in [21] of chip-firing
games on complete graphs Kn, for n ≥ 1; see, e.g., [2] for antecedents.
The left side expresses the sum of the probabilities of a game experiencing
firing sequences of each possible length ℓ = 0, 1, . . . , n. This note gives a
combinatorial proof that these probabilities sum to unity.

We first manipulate

n − 1

n + 1
+

n
∑

ℓ=1

(

n

ℓ

)

ℓℓ−1(n + 1 − ℓ)n−1−ℓ

n(n + 1)n−1
= 1 (1)

into a form amenable to combinatorial proof. Multiplying by n(n+1)n and
using the relation

(

n

ℓ

)

=
(

n+1

ℓ

)

(n + 1 − ℓ)/(n + 1), we transform (1) to the
equivalent form

n
∑

ℓ=1

(

n + 1

ℓ

)

ℓℓ−2(n + 1 − ℓ)n−1−ℓℓ(n + 1 − ℓ) = 2n(n + 1)n−1. (2)

To see that (2) holds, first observe that the right side enumerates the
pairs (T,~e ), where T is a spanning tree of Kn+1 for which one edge e (of
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its n edges) has been distinguished and oriented (in one of two possible
directions). The left side also enumerates these pairs. Given (T,~e ), notice
that deleting the oriented edge ~e from T leaves behind a spanning forest of
Kn+1 with two components L, R (that we may consider ordered from left to
right). If |V (L)| = ℓ, for an integer ℓ with 1 ≤ ℓ ≤ n, then |V (R)| = n+1−ℓ.
Conversely, given such a spanning forest, we can recover (T,~e ) by selecting
a node x of L and a node y of R and letting ~e = (x, y). On the left
side of (2), the factor

(

n+1

ℓ

)

accounts for the selection of V (L) (hence for
the selection of V (R)). Since L, R are, respectively, spanning trees of the
induced (complete) subgraphs Kn+1[V (L)], Kn+1[V (R)], the factors ℓℓ−2

and (n + 1 − ℓ)n−1−ℓ are delivered by Cayley’s Formula [5]. Finally, the
factors ℓ, (n+1−ℓ) count the number of ways to select the vertices x ∈ V (L)
and y ∈ V (R) determining ~e.

Epilogue

Having attempted to prove (2) before realizing that it follows from es-
tablished identities, we fortuitously discovered the proof above. Here, we
outline a multitude of connections between (2) and the work of authors who
preceded us. Our presentation order is mainly chronological.

For integers r, n with 1 ≤ r ≤ n, we denote by Tn the number of
spanning trees of Kn and by Fn,r the number of spanning forests of Kn

that consist of r disjoint trees such that r specified nodes (roots) belong
to distinct trees. We thrice invoked Cayley’s Formula, Tn = nn−2, in our
proof above and shall connect one of its generalizations,

Fn,r = rnn−r−1, (3)

to (2) in our discussion below.

As it turns out, (2) goes back (at least) to 1917, when Dziobek [10] used
it in the form

n−1
∑

ℓ=1

(

n

ℓ

)

TℓTn−ℓ ℓ(n − ℓ) = 2(n − 1)Tn (4)

to give, among other results, an inductive proof of Cayley’s Formula. Bol [3]
also proved and applied (4) in deriving a generating-function identity for
the numbers Tn. Of course, once Cayley’s Formula is known, then (4) yields
a proof of (2).

Clarke [6] determined the number Tn,d of spanning trees of Kn with a
specified node of valency d ≤ n − 1: Tn,d =

(

n−2

d−1

)

(n − 1)n−d−1. Thus, the
number of spanning trees of Kn+2, with, say, the node (n + 2) of valency
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2, is
Tn+2,2 = n(n + 1)n−1. (5)

One obtains a combinatorial proof of (5)—reminiscent of our proof of (2)—
by reverse-subdividing at the bivalent node (n + 2) and noticing that then
Tn+2,2 enumerates the spanning trees of Kn+1 with a distinguished (but
not oriented) edge. In due course, we indicate a more direct connection
between (5) and (2).

The year 1959 saw two more appearances of (2) in the literature. Dénes [9]
proved (2) in an article where he showed that Tn gives the number of ways
of representing a cyclic permutation (1, 2, . . . , n) as a product of (n − 1)
transpositions. Then Rényi [23], in proving (3), established a generaliza-
tion of (2) and cited [10, 9] as two earlier sources of the identity. Although
(3) was stated by Cayley [5], Rényi’s paper probably contains the first pub-
lished proof of this result. Close on its heels, however, was an argument by
Göbel [15], who showed that

Fn,r =
n−r
∑

k=1

(

n − r

k

)

rkFn−r,k (6)

and then used this recurrence to prove (3) inductively.

Busacker and Saaty [4, p. 137] possibly marked the first (discrete math-
ematical) textbook appearance of (2), that formed the starting point for the
authors’ treatment of Dziobek’s proof [10] of Cayley’s Formula. Because no
proof of (2) was supplied, the authors omitted some essential details, and,
curiously, they referenced Rényi [23] but not Dziobek.

An exercise in Riordan’s book [24, p. 116] directs the reader to derive
(algebraically) the relation

n
∑

ℓ=1

(

n

ℓ

)

ℓℓ−1(n + 1 − ℓ)n−ℓ = n(n + 1)n−1. (7)

Using (7) and Pascal’s Identity, a routine calculation leads to (2). The
agreement between the right sides of (7) and (5) reveals the more direct
connection between Clarke’s expression for Tn+2,2 and (2), to which we
alluded earlier.

The relation (7) specializes an identity belonging to a theory initiated
by Abel. In 1826, he published a generalization [1] of the Binomial Theorem
that spawned many identities and led eventually to the theory of polyno-
mials of ‘binomial-type’; see [20] or, e.g., [26, Exercise 5.37] for a more
recent reference. In deriving one of these identities (specifically (8) below),
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Riordan [24, pp. 18–23] studied the class of ‘Abel sums’ of the form

Ap,q
m (x, y) :=

m
∑

k=0

(

m

k

)

(x + k)k+p(y + m − k)m−k+q.

He gave an elementary proof that

A−1,0
m (x, y) = x−1(x + y + m)m, (8)

which, when combined with the ‘Pascal-like’ recurrence

Ap,q
m (x, y) = Ap,q+1

m−1 (x, y + 1) + Ap+1,q
m−1 (x + 1, y)

and the observation that

Ap,q
m (x, y) = Aq,p

m (y, x),

leads to
A−1,−1

m (x, y) = (x−1 + y−1)(x + y + m)m−1. (9)

Clearing the denominator on the right side of (9) gives the polynomial
identity

m
∑

k=0

(

m

k

)

x(x + k)k−1y(y + (m− k))m−k−1 = (x + y)(x + y + m)m−1, (10)

which shows that the sequence {z(z + m)m−1}m≥0 is of binomial type (cf.
[27]).

It is not difficult to see that (2), in which n ≥ 1, is equivalent to

m
∑

k=0

(

m

k

)

(k + 1)k−1(m + 1 − k)m−1−k = 2(m + 2)m−1, (11)

in which m := n − 1 ≥ 0. Putting x = y = 1 in (10) yields (11) and thus
delivers a sixth proof of (2). Notice that (3) gives

Fm+2,2 = 2(m + 2)m−1; (12)

this enumerative interpretation of the right side of (11) leads to a direct
combinatorial proof of (11) along the lines of our proof of (2).

Evidently, forest and tree enumeration played a central role in many
of these earlier results. Moon’s monograph [18, especially Chapters 3, 4]
presents an exceptionally well-organized account of these results to 1970,
including more detailed discussions of the references [5, 10, 3, 6, 9, 23,

4



15, 24] than is feasible to present here. Since its appearance, at least seven
more research articles have addressed results related to (2) and to identities
we introduced in connection with (2). These articles present a surprising
variety of contexts where (2) and its relatives have arisen.

Cooper [8] derived (2) by analyzing the busy period for a single-server
queue with Poisson input and constant service times. Because he arrived
at (2) by first deriving a version of (9), the final step of his proof is equiv-
alent to the “sixth proof” mentioned above. Françon [13] proved combi-
natorially several identities of binomial-type, including (10). Phrased in
terms of labelled rooted forests, this proof was perhaps the first within our
scope to exploit the function-counting technique introduced by Foata and
Fuchs [12]; see [7, p. 129] for a textbook treatment. Getu and Shapiro [14]
presented another combinatorial proof of (10)—also using the Foata-Fuchs
encoding—that invoked (3) as their main lemma. This is a step up in the
level of generalization from the direct combinatorial proof of (11) that we
mentioned above: for (11) is a specialization of (10), and (12) is a special-
ization of (3). Another decade later, Shapiro [25] produced a combinatorial
proof of a generalization of (10). A seven-line computer-generated proof of
(8) appeared as [11]. Finally, Pitman [22, p. 178] reincarnated both (3) and
(6) (resp., as (10) and (11) in [22]).

Beyond the handful of textbook-length works [4, 24, 18, 7, 26] already
cited, we must also mention [17]. Exercise 1.44 [ibid., p. 22] comprises
our (8), (9), and (2), that Lovász obtained via formal manipulations and
induction. Exercise 4.6 [ibid., p. 34] establishes the identity

n−1
∑

ℓ=1

ℓ

(

n − 2

ℓ − 1

)

TℓTn−ℓ = Tn (13)

as a basis for deriving Cayley’s Formula. Lovász deduced (13) using an
argument similar to our proof of (2) (but involving over-counting) and then
used (13) to obtain (4). From there, he presented Dziobek’s proof [10] of
Cayley’s Formula and along the way derived and applied (2).

Despite the glut of earlier occurrences of (2), our proof is, as far as
we can tell, new. Incidentally, our approach also gives a combinatorial
proof of the American Mathematical Monthly Problem 4984, for which the
published solution [16] relied directly on Abel’s Identity.

An early draft of the present article closed with a problem. Riordan [24,
p. 97] connected a generalized version of the right side of (11) to an enu-
meration problem for forests of labelled rooted trees. As a special case, he
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derived (p. 117) the formula

m
∑

k=0

(

m

k

)

k 2kmm−1−k = 2(m + 2)m−1, (14)

which led to our problem: find a combinatorial proof that the left sides of
(11) and (14) coincide.

Moon [19] supplied the following solution. The paragraph containing
(11) alludes to a combinatorial proof of this identity, whose left side can be
seen to count the number of labelled forests on {1, 2, . . . ,m+2} consisting of
two trees rooted at two specified nodes and having an additional m labelled
non-root nodes. The left side of (14) enumerates these forests according to
the number k of nodes attached directly to the two roots. The binomial
coefficient counts the number of ways of selecting these k nodes; (3) shows
that there are kmm−1−k ways of forming k trees, on m labelled nodes,
that are rooted at the k selected nodes, and, finally, there are 2k ways of
attaching the k selected nodes to one or the other of the two nodes originally
specified as the roots of the final forest.

Moon [19] noted that his solution is a special case of the approach
Göbel [15] used to derive (3), an account of which also appears in [18,
p. 17]; this explains why the instance of (6) with n = m+2, r = 2 coincides
with (14).

Let us close with one more combinatorial proof—also due to Moon [19]—
this time for (7). Notice that the right side counts the spanning trees of
Kn+1 that are rooted at a node other than the node (n + 1). The left side
counts the same thing by classifying these trees according to the number ℓ
of nodes in the subtree obtained by discarding all the nodes in the branch,
attached at the root, that contains the node (n + 1).
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